Featured Articles

Display Method:
Paper •
OPEN ACCESS
Solid-state Z-scheme assisted hydrated tungsten trioxide/ZnIn2S4 photocatalyst for efficient photocatalytic H2 production
Lin Ye , Xinxin Peng , Zhenhai Wen , Haitao Huang
[Abstract](104) PDF(23)
Abstract:

Efficient water splitting for H2 evolution over semiconductor photocatalysts is highly attractive in the field of clean energy. It is of great significance to construct heterojunctions, among which the direct Z-scheme nanocomposite photocatalyst provides effective separation of photo-generated carriers to boost the photocatalytic performance. Herein, Z-scheme hydrated tungsten trioxide/ZnIn2S4 is fabricated via an in-situ hydrothermal method where ZnIn2S4 nanosheets are grown on WO3⋅xH2O. The close contact between WO3⋅0.5H2O and WO3⋅0.33H2O as well as ZnIn2S4 improve the charge carrier separation and migration in the photocatalyst, where the strong reducing electrons in the conduction band of ZnIn2S4 and the strong oxidizing holes in the valence band of WO3⋅0.33H2O are retained, leading to enhanced photocatalytic hydrogen production. The obtained WO3⋅xH2O/ZnIn2S4 shows an excellent H2 production rate of 7200 μmol g-1h-1, which is 11 times higher than pure ZnIn2S4. To the best of our knowledge, this value is higher than most of the WO3-based noble metal-free semiconductor photocatalysts. The improved stability and activity are attributed to the formation of the Z-scheme heterojunction, which can markedly accelerate the interfacial charge separation for surface reaction. This work offers a promising strategy towards the design of efficient Z-scheme photocatalyst to suppress electron-hole recombination and optimize redox potential.

Topical Review •
OPEN ACCESS
All-solid-state thin-film batteries based on lithium phosphorus oxynitrides
Wangqi Dai , Yan Qiao , Ziqiang Ma , Tian Wang , Zhengwen Fu
[Abstract](93) PDF(13)
Abstract:
Lithium phosphorus oxygen nitrogen (LiPON) as solid electrolyte discovered by Bates et al in the 1990s is an important part of all-solid-state thin-film battery (ASSTFB) due to its wide electrochemical stability window and negligible low electronic conductivity. However, the ionic conductivity of LiPON about 2 × 10−6 S cm−1 at room temperature is much lower than that of other types of solid electrolytes, which seriously limits the application of ASSTFBs. This review summarizes the research and progress in ASSTFBs based on LiPON, in the solid-state electrolyte of LiPON-derivatives with adjustable chemical compositions of the amorphous structure for the improvement of the ionic conductivity and electrochemical stability, in the critical interface issues between LiPON and electrodes, and in preparation methods for LiPON. This review is helpful for people to understand the interface characteristics and various preparation methods of LiPON in ASSTFBs. The key issues to be addressed concern how to develop solid-state electrolyte films with high conductivity and high-quality interface engineering as well as large-scale preparation technology, so as to realize the practical application of highly integrated ASSTFBs.
Paper •
OPEN ACCESS
Taking advantage of glass: Capturing and retaining of the helium gas on the moon
Ao Li , Xiao Chen , Lijian Song , Wei Xu , Juntao Huo , Guoxin Chen , Meng Gao , Ming Li , Lei Zhang , Bingnan Yao , Min Ji , Yan Zhang , Shaofan Zhao , Wei Yao , Yanhui Liu , Junqiang Wang , Haiyang Bai , Zhigang Zou , Mengfei Yang , Weihua Wang
[Abstract](1386) PDF(209)
Abstract:

Helium-3 (3He) is a noble gas that has critical applications in scientific research and promising application potential as clean fusion energy. It is thought that the lunar regolith contains large amounts of helium, but it is challenging to extract because most helium atoms are reserved in defects of crystals or as solid solutions. Here, we find large amounts of helium bubbles in the glassy surface layer of ilmenite particles that were brought back by the Chang’E-5 mission. The special disordered atomic packing structure of glasses should be the critical factor for capturing the noble helium gas. The reserves in bubbles do not require heating to high temperatures to be extracted. Mechanical methods at ambient temperatures can easily break the bubbles. Our results provide insights into the mechanism of helium gathering on the moon and offer guidance on future in situ extraction.

Topical Review •
OPEN ACCESS
Field-free approaches for deterministic spin–orbit torque switching of the perpendicular magnet
Hao Wu , Jing Zhang , Baoshan Cui , Seyed Armin Razavi , Xiaoyu Che , Quanjun Pan , Di Wu , Guoqiang Yu , Xiufeng Han , Kang L Wang
[Abstract](131) PDF(15)
Abstract:

All-electrical driven magnetization switching attracts much attention in next-generation spintronic memory and logic devices, particularly in magnetic random-access memory (MRAM) based on the spin–orbit torque (SOT), i.e. SOT-MRAM, due to its advantages of low power consumption, fast write/read speed, and improved endurance, etc. For conventional SOT-driven switching of the magnet with perpendicular magnetic anisotropy, an external assisted magnetic field is necessary to break the inversion symmetry of the magnet, which not only induces the additional power consumption but also makes the circuit more complicated. Over the last decade, significant effort has been devoted to field-free magnetization manipulation by using SOT. In this review, we introduce the basic concepts of SOT. After that, we mainly focus on several approaches to realize the field-free deterministic SOT switching of the perpendicular magnet. The mechanisms mainly include mirror symmetry breaking, chiral symmetry breaking, exchange bias, and interlayer exchange coupling. Furthermore, we show the recent progress in the study of SOT with unconventional origin and symmetry. The final section is devoted to the industrial-level approach for potential applications of field-free SOT switching in SOT-MRAM technology.

Topical Review •
OPEN ACCESS
Deep potentials for materials science
Tongqi Wen , Linfeng Zhang , Han Wang , Weinan E , David J. Srolovitz
[Abstract](190) PDF(35)
Abstract:

To fill the gap between accurate (and expensive) ab initio calculations and efficient atomistic simulations based on empirical interatomic potentials, a new class of descriptions of atomic interactions has emerged and been widely applied; i.e. machine learning potentials (MLPs). One recently developed type of MLP is the deep potential (DP) method. In this review, we provide an introduction to DP methods in computational materials science. The theory underlying the DP method is presented along with a step-by-step introduction to their development and use. We also review materials applications of DPs in a wide range of materials systems. The DP Library provides a platform for the development of DPs and a database of extant DPs. We discuss the accuracy and efficiency of DPs compared with ab initio methods and empirical potentials.

Paper •
OPEN ACCESS
The Interplay between (Electro)chemical and (Chemo)mechanical Effects in the Cycling Performance of Thiophosphate-based Solid-State Batteries
Jun Hao Teo , Florian Strauss , Felix Walther , Yuan Ma , Seyedhosein Payandeh , Torsten Scherer , Matteo Bianchini , Jürgen Janek , Torsten Brezesinski
[Abstract](907) PDF(39)
Abstract:

Solid-state batteries (SSBs) are a promising next step in electrochemical energy storage but are plagued by a number of problems. In this study, we demonstrate the recurring issue of mechanical degradation because of volume changes in layered Ni-rich oxide cathode materials in thiophosphate-based SSBs. Specifically, we explore superionic solid electrolytes of different crystallinity, namely glassy 1.5Li2S-0.5P2S5-LiI and argyrodite Li6PS5Cl, with emphasis on how they affect the cyclability of slurry-cast cathodes with NCM622 (60% Ni) or NCM851005 (85% Ni). The application of a combination of ex situ and in situ analytical techniques helped to reveal the benefits of using a solid electrolyte with a low Young's modulus. Through a synergistic interplay of (electro)chemical and (chemo)mechanical effects, the glassy solid electrolyte employed in this work was able to achieve robust and stable interfaces, enabling intimate contact with the cathode material while at the same time mitigating volume changes. Our results emphasize the importance of considering chemical, electrochemical, and mechanical properties to realize long-term cycling performance in high-loading SSBs.

Topical Review •
OPEN ACCESS
Multiscale understanding of high-energy cathodes in solid-state batteries: from atomic scale to macroscopic scale
Shuo Sun , Chenzi Zhao , Hong Yuan , Yang Lu , Jiangkui Hu , Jiaqi Huang , Qiang Zhang
[Abstract](672) PDF(66)
Abstract:

In the crucial area of sustainable energy storage, solid-state batteries (SSBs) with nonflammable solid electrolytes stand out due to their potential benefits of enhanced safety, energy density, and cycle life. However, the complexity within the composite cathode determines that fabricating an ideal electrode needs to link chemistry (atomic scale), materials (microscopic/mesoscopic scale), and electrode system (macroscopic scale). Therefore, understanding solid-state composite cathodes covering multiple scales is of vital importance for the development of practical SSBs. In this review, the challenges and basic knowledge of composite cathodes from the atomic scale to the macroscopic scale in SSBs are outlined with a special focus on the interfacial structure, charge transport, and mechanical degradation. Based on these dilemmas, emerging strategies to design a high-performance composite cathode and advanced characterization techniques are summarized. Moreover, future perspectives toward composite cathodes are discussed, aiming to facilitate the develop energy-dense SSBs.