Volume 3 Issue 1
March  2024
Turn off MathJax
Article Contents
Hongyao Xie, Li-Dong Zhao. Origin of off-centering effect and the influence on heat transport in thermoelectrics[J]. Materials Futures, 2024, 3(1): 013501. doi: 10.1088/2752-5724/ad1ac0
Citation: Hongyao Xie, Li-Dong Zhao. Origin of off-centering effect and the influence on heat transport in thermoelectrics[J]. Materials Futures, 2024, 3(1): 013501. doi: 10.1088/2752-5724/ad1ac0
Perspective •
OPEN ACCESS

Origin of off-centering effect and the influence on heat transport in thermoelectrics

© 2024 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 3, Number 1
  • Received Date: 2023-12-26
  • Accepted Date: 2024-01-04
  • Publish Date: 2024-01-17
  • Recently, off-centering behavior has been discovered in a series of thermoelectric materials. This behavior indicates that the constituent atoms of the lattice displace from their coordination centers, leading to the locally distorted state and local symmetry breaking, while the material still retains its original crystallographic symmetry. This effect has been proved to be the root cause of ultralow thermal conductivity in off-centering materials, and is considered as an effective tool to regulate the thermal conductivity and improve the thermoelectric performance. Herein, we present a collection of recently discovered off-centering compounds, discuss their electronic origins and local coordination structures, and illuminate the underlying mechanism of the off-centering effect on phonon transport and thermal conductivity. This paper presents a comprehensive view of our current understanding to the off-centering effect, and provides a new idea for designing high performance thermoelectrics.

  • loading
  • [1]
    Yan Q and Kanatzidis M G 2021 High-performance thermoelectrics and challenges for practical devices Nat. Mater. 21 503–13
    [2]
    He J and Tritt T M 2017 Advances in thermoelectric materials research: looking back and moving forward Science 357 eaak9997
    [3]
    Tang X, Li Z, Liu W, Zhang Q and Uher C 2022 A comprehensive review on Bi2Te3-based thin films: thermoelectrics and beyond Interdiscip. Mater. 1 88–115
    [4]
    Xiao Y and Zhao L-D 2020 Seeking new, highly effective thermoelectrics Science 367 1196–7
    [5]
    Pecunia V et al 2023 Roadmap on energy harvesting materials J. Phys. Mater. 6 042501
    [6]
    Xie H, Su X, Bailey T P, Zhang C, Liu W, Uher C, Tang X and Kanatzidis M G 2020 Anomalously large Seebeck coefficient of CuFeS2 derives from large asymmetry in the energy dependence of carrier relaxation time Chem. Mater. 32 2639–46
    [7]
    Tan G, Zhao L D and Kanatzidis M G 2016 Rationally designing high-performance bulk thermoelectric materials Chem. Rev. 116 12123–49
    [8]
    Snyder G J and Toberer E S 2008 Complex thermoelectric materials Nat. Mater. 7 105–14
    [9]
    Xie H, Su X, Hao S, Wolverton C, Uher C, Tang X and Kanatzidis M G 2020 Quasilinear dispersion in electronic band structure and high Seebeck coefficient in CuFeS2-based thermoelectric materials Phys. Rev. Mater. 4 025405
    [10]
    Luo Y et al 2020 High-performance thermoelectrics from cellular nanostructured Sb2Si2Te6 Joule 4 159–75
    [11]
    Goldsmid H J 2016 Introduction to Thermoelectricity (Springer)
    [12]
    He J, Kanatzidis M G and Dravid V P 2013 High performance bulk thermoelectrics via a panoscopic approach Mater. Today 16 166–76
    [13]
    Zheng Y et al 2015 Mechanically robust BiSbTe alloys with superior thermoelectric performance: a case study of stable hierarchical nanostructured thermoelectric materials Adv. Energy Mater. 5 1401391
    [14]
    Xie H, Su X, Zheng G, Zhu T, Yin K, Yan Y, Uher C, Kanatzidis M G and Tang X 2016 The role of Zn in chalcopyrite CuFeS2: enhanced thermoelectric properties of Cu1-xZnxFeS2 with in situ nanoprecipitates Adv. Energy Mater. 7 1601299
    [15]
    Xie H, Su X, Yan Y, Liu W, Chen L, Fu J, Yang J, Uher C and Tang X 2017 Thermoelectric performance of CuFeS2+2x composites prepared by rapid thermal explosion NPG Asia Mater. 9 e390
    [16]
    Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P and Kanatzidis M G 2012 High-performance bulk thermoelectrics with all-scale hierarchical architectures Nature 489 414–8
    [17]
    Zhao L D et al 2011 High performance thermoelectrics from earth-abundant materials: enhanced figure of merit in PbS by second phase nanostructures J. Am. Chem. Soc. 133 20476–87
    [18]
    Zhao L D, He J, Hao S, Wu C I, Hogan T P, Wolverton C, Dravid V P and Kanatzidis M G 2012 Raising the thermoelectric performance of p-type PbS with endotaxial nanostructuring and valence-band offset engineering using CdS and ZnS J. Am. Chem. Soc. 134 16327–36
    [19]
    Zhao W et al 2015 Multi-localization transport behaviour in bulk thermoelectric materials Nat. Commun. 6 6197
    [20]
    Duan B et al 2016 Electronegative guests in CoSb3 Energy Environ. Sci. 9 2090–8
    [21]
    Qin D, Shi W, Xue W, Qin H, Cao J, Cai W, Wang Y and Sui J 2020 Solubility study of Y in n-type YxCe0.15Co4Sb12 skutterudites and its effect on thermoelectric properties Mater. Today Phys. 13 100206
    [22]
    Meng X, Liu Z, Cui B, Qin D, Geng H, Cai W, Fu L, He J, Ren Z and Sui J 2017 Grain boundary engineering for achieving high thermoelectric performance in n-type skutterudites Adv. Energy Mater. 7 1602582
    [23]
    Fu J, Su X, Zheng Y, Xie H, Yan Y, Tang X and Uher C 2015 Thermoelectric properties of Ga/Ag codoped type-III Ba24Ge100 clathrates with in situ nanostructures ACS Appl. Mater. Interfaces 7 19172–8
    [24]
    Xie H et al 2019 Origin of intrinsically low thermal conductivity in talnakhite Cu17.6Fe17.6S32 thermoelectric material: correlations between lattice dynamics and thermal transport J. Am. Chem. Soc. 141 10905–14
    [25]
    Liu H, Shi X, Xu F, Zhang L, Zhang W, Chen L, Li Q, Uher C, Day T and Snyder G J 2012 Copper ion liquid-like thermoelectrics Nat. Mater. 11 422–5
    [26]
    Qiu P et al 2019 High-efficiency and stable thermoelectric module based on liquid-like materials Joule 3 1538–48
    [27]
    Yang D et al 2020 Blocking ion migration stabilizes the high thermoelectric performance in Cu2Se composites Adv. Mater. 32 e2003730
    [28]
    Bailey T P, Hui S, Xie H, Olvera A, Poudeu P F P, Tang X and Uher C 2016 Enhanced ZT and attempts to chemically stabilize Cu2Se via Sn doping J. Mater. Chem. A 4 17225–35
    [29]
    Jiang B, Wang W, Liu S, Wang Y, Wang C, Chen Y, Xie L, Huang M and He J 2022 High figure-of-merit and power generation in high-entropy GeTe-based thermoelectrics Science 377 208–13
    [30]
    Jiang B et al 2021 High-entropy-stabilized chalcogenides with high thermoelectric performance Science 371 830–4
    [31]
    Liu Y et al 2023 Unraveling the role of entropy in thermoelectrics: entropy-stabilized quintuple rock salt PbGeSnCd(x)Te(3+x) J. Am. Chem. Soc. 145 8677–88
    [32]
    Luo Y, Hao S, Cai S, Slade T J, Luo Z Z, Dravid V P, Wolverton C, Yan Q and Kanatzidis M G 2020 High thermoelectric performance in the new cubic semiconductor AgSnSbSe3 by high-entropy engineering J. Am. Chem. Soc. 142 15187–98
    [33]
    Luo Y, Xu T, Ma Z, Zhang D, Guo Z, Jiang Q, Yang J, Yan Q and Kanatzidis M G 2021 Cubic AgMnSbTe3 semiconductor with a high thermoelectric performance J. Am. Chem. Soc. 143 13990–8
    [34]
    Boˇzin E S, Malliakas C D, Souvatzis P, Proffen T, Spaldin N A, Kanatzidis M G and Billinge S J L 2010 Entropically stabilized local dipole formation in lead chalcogenides Science 330 1660–3
    [35]
    Luo -Z-Z et al 2018 Soft phonon modes from off-center Ge atoms lead to ultralow thermal conductivity and superior thermoelectric performance in n-type PbSe–GeSe Energy Environ. Sci. 11 3220–30
    [36]
    Cai S et al 2020 Discordant nature of Cd in PbSe: off-centering and core–shell nanoscale CdSe precipitates lead to high thermoelectric performance Energy Environ. Sci. 13 200–11
    [37]
    Xie H, Bozin E S, Li Z, Abeykoon M, Banerjee S, Male J P, Snyder G J, Wolverton C, Billinge S J L and Kanatzidis M G 2022 Hidden local symmetry breaking in silver diamondoid compounds is root cause of ultralow thermal conductivity Adv. Mater. 34 e2202255
    [38]
    Xie H, Hao S, Bao J, Slade T J, Snyder G J, Wolverton C and Kanatzidis M G 2020 All-inorganic halide perovskites as potential thermoelectric materials: dynamic cation off-centering induces ultralow thermal conductivity J. Am. Chem. Soc. 142 9553–63
    [39]
    Xie H 2022 The role of off-centering behavior and acoustic-optical phonon coupling in heat transport Mater. Lab 1 220051
    [40]
    Xie H, Li Z, Liu Y, Zhang Y, Uher C, Dravid V P, Wolverton C and Kanatzidis M G 2023 Silver atom off-centering in diamondoid solid solutions causes crystallographic distortion and suppresses lattice thermal conductivity J. Am. Chem. Soc. 145 3211–20
    [41]
    Xie H et al 2022 High thermoelectric performance in chalcopyrite Cu1-xAgxGaTe2-ZnTe: nontrivial band structure and dynamic doping effect J. Am. Chem. Soc. 144 9113–25
    [42]
    Laing C C, Weiss B E, Pal K, Quintero M A, Xie H, Zhou X, Shen J, Chung D Y, Wolverton C and Kanatzidis M G 2022 ACuZrQ3 (A = Rb,Cs;Q = S,Se, Te): direct bandgap semiconductors and metals with ultralow thermal conductivity Chem. Mater. 34 8389–402
    [43]
    Bozin E S, Yin W G, Koch R J, Abeykoon M, Hor Y S, Zheng H, Lei H C, Petrovic C, Mitchell J F and Billinge S J L 2019 Local orbital degeneracy lifting as a precursor to an orbital-selective Peierls transition Nat. Commun. 10 3638
    [44]
    Li Z, Xie H, Hao S, Xia Y, Su X, Kanatzidis M G, Wolverton C and Tang X 2021 Optical phonon dominated heat transport: a first-principles thermal conductivity study of BaSnS2 Phys. Rev. B 104 245209
    [45]
    Li Z, Xie H, Xia Y, Hao S, Pal K, Kanatzidis M G, Wolverton C and Tang X 2022 Weak-bonding elements lead to high thermoelectric performance in BaSnS3 and SrSnS3: a first-principles study Chem. Mater. 34 1289–301
    [46]
    Delaire O et al 2011 Giant anharmonic phonon scattering in PbTe Nat. Mater. 10 614–9
    [47]
    Xie H, Hao S, Cai S, Bailey T P, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2020 Ultralow thermal conductivity in diamondoid lattices: high thermoelectric performance in chalcopyrite Cu0.8+yAg0.2In1−yTe2 Energy Environ. Sci. 13 3693–705
    [48]
    Xie H et al 2021 Ultralow thermal conductivity in diamondoid structures and high thermoelectric performance in (Cu1-xAgx)(In1-yGay)Te2 J. Am. Chem. Soc. 143 5978–89
    [49]
    Waghmare U V, Spaldin N A, Kandpal H C and Seshadri R 2003 First-principles indicators of metallicity and cation off-centricity in the IV-VI rocksalt chalcogenides of divalent Ge, Sn, and Pb Phys. Rev. B 67 125111
    [50]
    Bozin E S, Xie H, Abeykoon A M M, Everett S M, Tucker M G, Kanatzidis M G and Billinge S 2023 Local Sn dipolar-character displacements behind the low thermal conductivity in SnSe thermoelectric Phys. Rev. Lett. 131 036101
    [51]
    Knox K R, Bozin E S, Malliakas C D, Kanatzidis M G and Billinge S J L 2014 Local off-centering symmetry breaking in the high-temperature regime of SnTe Phys. Rev. B 89 014102
    [52]
    Banik A, Ghosh T, Arora R, Dutta M, Pandey J, Acharya S, Soni A, Waghmare U V and Biswas K 2019 Engineering ferroelectric instability to achieve ultralow thermal conductivity and high thermoelectric performance in Sn1−xGexTe Energy Environ. Sci. 12 589–95
    [53]
    Dutta M, Pal K, Etter M, Waghmare U V and Biswas K 2021 Emphanisis in cubic (SnSe)0.5(AgSbSe2)0.5: dynamical off-centering of anion leads to low thermal conductivity and high thermoelectric performance J. Am. Chem. Soc. 143 16839–48
    [54]
    Dutta M, Prasad M V D, Pandey J, Soni A, Waghmare U V and Biswas K 2022 Local symmetry breaking suppresses thermal conductivity in crystalline solids Angew. Chem. 61 e202200071
    [55]
    Fabini D H et al 2016 Dynamic stereochemical activity of the Sn(2+) lone pair in perovskite CsSnBr3 J. Am. Chem. Soc. 138 11820–32
    [56]
    Xie H, Su X, Hao S, Zhang C, Zhang Z, Liu W, Yan Y, Wolverton C, Tang X and Kanatzidis M G 2019 Large thermal conductivity drops in the diamondoid lattice of CuFeS2 by discordant atom doping J. Am. Chem. Soc. 141 18900–9
    [57]
    Hodges J M et al 2018 Chemical insights into PbSe-x%HgSe: high power factor and improved thermoelectric performance by alloying with discordant atoms J. Am. Chem. Soc. 140 18115–23
  • 加载中

Catalog

    Figures(1)

    Article Metrics

    Article Views(72) PDF downloads(33)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return