Volume 2 Issue 4
December  2023
Turn off MathJax
Article Contents
Longtao Ren, Jun Liu, Abdul Hameed Pato, Yan Wang, Xiwen Lu, Imran Ali Chandio, Mingyue Zhou, Wen Liu, Haijun Xu, Xiaoming Sun. Rational design of nanoarray structures for lithium–sulfur batteries: recent advances and future prospects[J]. Materials Futures, 2023, 2(4): 042103. doi: 10.1088/2752-5724/ace7e4
Citation: Longtao Ren, Jun Liu, Abdul Hameed Pato, Yan Wang, Xiwen Lu, Imran Ali Chandio, Mingyue Zhou, Wen Liu, Haijun Xu, Xiaoming Sun. Rational design of nanoarray structures for lithium–sulfur batteries: recent advances and future prospects[J]. Materials Futures, 2023, 2(4): 042103. doi: 10.1088/2752-5724/ace7e4
Topical Review •
OPEN ACCESS

Rational design of nanoarray structures for lithium–sulfur batteries: recent advances and future prospects

© 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 2, Number 4
  • Received Date: 2023-04-23
  • Accepted Date: 2023-07-17
  • Publish Date: 2023-08-25
  • Lithium–sulfur (Li–S) batteries are considered as promising candidates for future-generation energy storage systems due to their prominent theoretical energy density. However, their application is still hindered by several critical issues, e.g., the low conductivity of sulfur species, the shuttling effects of soluble lithium polysulfides, volumetric expansion, sluggish redox kinetics, and uncontrollable Li dendritic formation. Considerable research efforts have been devoted to breaking through the obstacles that are preventing Li–S batteries from realizing practical application. Recently, benefiting from the no additives/binders, buffer of volume change, high sulfur loading and suppression of lithium dendrites, nanoarray (NA) structures have have emerged as efficient and durable electrodes in Li–S batteries. In this work, recent advances in the design, synthesis and application of NA structures in Li–S batteries are reviewed. First, the multifunctional merits and typical synthetic strategies of employing NA structure electrodes for Li–S batteries are outlined. Second, the applications of NA structures in Li–S batteries are discussed comprehensively. Finally, the challenge and rational design of NA structure for Li–S batteries are analyzed in depth, with the aim of providing promising orientations for the commercialization of high-energy-density Li–S batteries.
  • loading
  • [1]
    Wu F, Maier J and Yu Y 2020 Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries Chem. Soc. Rev. 49 1569–614
    [2]
    Liu J et al 2019 Pathways for practical high-energy long-cycling lithium metal batteries Nat. Energy 4 180–6
    [3]
    Huang Z, Zhang R, Zhang S, Li P, Li C and Zhi C 2022 Recent advances and future perspectives for aqueous zinc-ion capacitors Mater. Futures 1 022101
    [4]
    Zhao Y, Zhang P, Liang J, Xia X, Ren L, Song L, Liu W and Sun X 2022 Unlocking layered double hydroxide as a high-performance cathode material for aqueous zinc-ion batteries Adv. Mater. 34 2204320
    [5]
    Liu J, Ren L, Wang Y, Lu X, Zhou M and Liu W 2023 A highly-stable bifunctional NiCo2S4 nanoarray@carbon paper electrode for aqueous polysulfide/iodide redox flow battery J. Power Sources 561 232607
    [6]
    Tong B, Song Z, Wu H, Wang X, Feng W, Zhou Z and Zhang H 2022 Ion transport and structural design of lithium-ion conductive solid polymer electrolytes: a perspective Mater. Futures 1 042103
    [7]
    Fu S et al 2021 Ultrathin [110]-confined Li4Ti5O12 nanoflakes for high rate lithium storage Adv. Energy Mater. 11 2003270
    [8]
    Wu Y et al 2021 In-built ultraconformal interphases enable high-safety practical lithium batteries Energy Storage Mater. 43 248–57
    [9]
    Goodenough J B and Park K-S 2013 The Li-ion rechargeable battery: a perspective J. Am. Chem. Soc. 135 1167–76
    [10]
    Pang Q, Liang X, Kwok C Y and Nazar L F 2016 Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes Nat. Energy 1 16132
    [11]
    Manthiram A, Fu Y, Chung S, Zu C and Su Y 2014 Rechargeable lithium–sulfur batteries Chem. Rev. 114 11751–87
    [12]
    Ren L, Liu J, Zhao Y, Wang Y, Lu X, Zhou M, Zhang G, Liu W, Xu H and Sun X 2023 Regulating electronic structure of Fe–N4 single atomic catalyst via neighboring sulfur doping for high performance lithium–sulfur batteries Adv. Funct. Mater. 33 2210509
    [13]
    Seh Z W, Sun Y, Zhang Q and Cui Y 2016 Designing high-energy lithium–sulfur batteries Chem. Soc. Rev. 45 5605–34
    [14]
    Qiao L, Ren L, Zhang R, Chen J, Xu M, Liu J, Xu H, Liu W, Chang Z and Sun X 2021 Hollow carbon spheres embedded with VN quantum dots as an efficient cathode host for lithium–sulfur batteries Energy Fuels 35 10219–26
    [15]
    Zhang L, Qin X, Zhao S, Wang A, Luo J, Wang Z L, Kang F, Lin Z and Li B 2020 Advanced matrixes for binder-free nanostructured electrodes in lithium-ion batteries Adv. Mater. 32 1908445
    [16]
    Zhang H, Ono L K, Tong G, Liu Y and Qi Y 2021 Long-life lithium-sulfur batteries with high areal capacity based on coaxial CNTs@TiN-TiO2 sponge Nat. Commun. 12 4738
    [17]
    Li J, Cai Y, Wu H, Yu Z, Yan X, Zhang Q, Gao T Z, Liu K, Jia X and Bao Z 2021 Polymers in lithium-ion and lithium metal batteries Adv. Energy Mater. 11 2003239
    [18]
    Ji X, Lee K T and Nazar L F 2009 A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries Nat. Mater. 8 500–6
    [19]
    Zheng M, Chi Y, Hu Q, Tang H, Jiang X, Zhang L, Zhang S, Pang H and Xu Q 2019 Carbon nanotube-based materials for lithium–sulfur batteries J. Mater. Chem. A 7 17204–41
    [20]
    Fang R, Chen K, Yin L, Sun Z, Li F and Cheng H M 2019 The regulating role of carbon nanotubes and graphene in lithium-ion and lithium–sulfur batteries Adv. Mater. 31 1800863
    [21]
    Duan H, Li K, Xie M, Chen J, Zhou H, Wu X, Ning G, Cooper A I and Li D 2021 Scalable synthesis of ultrathin polyimide covalent organic framework nanosheets for high-performance lithium–sulfur batteries J. Am. Chem. Soc. 143 19446–53
    [22]
    Chen C, Liang Q, Wang G, Liu D and Xiong X 2022 Grain-boundary-rich artificial SEI layer for high-rate lithium metal anodes Adv. Funct. Mater. 32 2107249
    [23]
    Huang J, Liu J, He J, Wu M, Qi S, Wang H, Li F and Ma J 2021 Optimizing electrode/electrolyte interphases and Li-ion flux/solvation for lithium-metal batteries with qua-functional heptafluorobutyric anhydride Angew. Chem. 133 20885–90
    [24]
    Li F, He J, Liu J, Wu M, Hou Y, Wang H, Qi S, Liu Q, Hu J and Ma J 2021 Gradient solid electrolyte interphase and lithium-ion solvation regulated by bisfluoroacetamide for stable lithium metal batteries Angew. Chem., Int. Ed. 60 6600–8
    [25]
    Ren L, Wang Q, Li Y, Hu C, Zhao Y, Qiao L, Zhou H, Liu W, Xu H and Sun X 2021 Catalytic separators with Co–N–C nanoreactors for high-performance lithium–sulfur batteries Inorg. Chem. Front. 8 3066–76
    [26]
    Hu Y, Chen W, Lei T, Jiao Y, Wang H, Wang X, Rao G, Wang X, Chen B and Xiong J 2020 Graphene quantum dots as the nucleation sites and interfacial regulator to suppress lithium dendrites for high-loading lithium–sulfur battery Nano Energy 68 104373
    [27]
    Fu S, Chen J, Wang X, He Q, Tong S and Wu M 2020 Free-standing crystalline@ amorphous core–shell nanoarrays for efficient energy storage Small 16 2000040
    [28]
    Chao D et al 2016 Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance Nat. Commun. 7 12122
    [29]
    Jiang J, Li Y, Liu J, Huang X, Yuan C and Lou X W 2012 Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage Adv. Mater. 24 5166–80
    [30]
    Jiang J, Li Y, Liu J and Huang X 2011 Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes Nanoscale 3 45–58
    [31]
    Chan C K, Zhang X F and Cui Y 2008 High capacity Li ion battery anodes using Ge nanowires Nano Lett. 8 307–9
    [32]
    Black R, Oh S H, Lee J-H, Yim T, Adams B and Nazar L F 2012 Screening for superoxide reactivity in Li-O2 batteries: effect on Li2O2/LiOH crystallization J. Am. Chem. Soc. 134 2902–5
    [33]
    Singh S K, Takeyasu K and Nakamura J 2019 Active sites and mechanism of oxygen reduction reaction electrocatalysis on nitrogen-doped carbon materials Adv. Mater. 31 1804297
    [34]
    Zhang J, Li P, Wang Z, Qiao J, Rooney D, Sun W and Sun K 2015 Three-dimensional graphene–Co3O4 cathodes for rechargeable Li–O2 batteries J. Mater. Chem. A 3 1504–10
    [35]
    Urbonaite S, Poux T and Novák P 2015 Progress towards commercially viable Li–S battery cells Adv. Energy Mater. 5 1500118
    [36]
    Fang R, Zhao S, Sun Z, Wang D, Cheng H and Li F 2017 More reliable lithium–sulfur batteries: status, solutions and prospects Adv. Mater. 29 1606823
    [37]
    Chen Y, Wang T, Tian H, Su D, Zhang Q and Wang G 2021 Advances in lithium–sulfur batteries: from academic research to commercial viability Adv. Mater. 33 2003666
    [38]
    Ni J and Li L 2020 Cathode architectures for rechargeable ion batteries: progress and perspectives Adv. Mater. 32 2000288
    [39]
    Liu F et al 2018 Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries Sci. Adv. 4 eaat5383
    [40]
    Chen X, He W, Ding L, Wang S and Wang H 2019 Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework Energy Environ. Sci. 12 938–44
    [41]
    Liu Z, Mo F, Li H, Zhu M, Wang Z, Liang G and Zhi C 2018 Advances in flexible and wearable energy-storage textiles Small Methods 2 1800124
    [42]
    Lin D, Liu Y and Cui Y 2017 Reviving the lithium metal anode for high-energy batteries Nat. Nanotechnol. 12 194–206
    [43]
    Zhong Y, Chen Y, Cheng Y, Fan Q, Zhao H, Shao H, Lai Y, Shi Z, Ke X and Guo Z 2019 Li alginate-based artificial SEI layer for stable lithium metal anodes ACS Appl. Mater. Interfaces 11 37726–31
    [44]
    Li N W, Shi Y, Yin Y X, Zeng X X, Li J Y, Li C J, Wan L J, Wen R and Guo Y G 2018 A flexible solid electrolyte interphase layer for long-life lithium metal anodes Angew. Chem. 130 1521–5
    [45]
    Zhang Y et al 2017 High-capacity, low-tortuosity, and channel-guided lithium metal anode Proc. Natl Acad. Sci. 114 3584–9
    [46]
    Zheng Z, Su Q, Zhang Q, Hu X, Yin Y, Wen R, Ye H, Wang Z and Guo Y 2019 Low volume change composite lithium metal anodes Nano Energy 64 103910
    [47]
    Duan H, Yin Y, Shi Y, Wang P, Zhang X, Yang C, Shi J, Wen R, Guo Y and Wan L 2018 Dendrite-free Li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers J. Am. Chem. Soc. 140 82–85
    [48]
    Liu S, Xia X, Zhong Y, Deng S, Yao Z, Zhang L, Cheng X B, Wang X, Zhang Q and Tu J 2018 3D TiC/C core/shell nanowire skeleton for dendrite-free and long-life lithium metal anode Adv. Energy Mater. 8 1702322
    [49]
    Zheng Z, Ye H and Guo Z 2020 Recent progress in designing stable composite lithium anodes with improved wettability Adv. Sci. 7 2002212
    [50]
    Li Y-N, Wang C-Y, Gao R-M, Cao F-F and Ye H 2021 Recent smart lithium anode configurations for high-energy lithium metal batteries Energy Storage Mater. 38 262–75
    [51]
    Lin D, Liu Y, Pei A and Cui C 2017 Nanoscale perspective: materials designs and understandings in lithium metal anodes Nano Res. 10 4003–26
    [52]
    Gu J, Chen H, Shi Y, Cao Z, Du Z, Li B and Yang S 2022 Eliminating lightning-rod effect of lithium anodes via sine-wave analogous MXene layers Adv. Energy Mater. 12 2201181
    [53]
    Gao X, Zhang H, Li Q, Yu X, Hong Z, Zhang X, Liang C and Lin Z 2016 Hierarchical NiCo2O4 hollow microcuboids as bifunctional electrocatalysts for overall water-splitting Angew. Chem., Int. Ed. 55 6290–4
    [54]
    Hou J, Wu Y, Zhang B, Cao S, Li Z and Sun L 2019 Rational design of nanoarray architectures for electrocatalytic water splitting Adv. Funct. Mater. 29 1808367
    [55]
    Huang Y, Quan L, Liu T, Chen Q, Cai D and Zhan H 2018 Construction of MOF-derived hollow Ni–Zn–Co–S nanosword arrays as binder-free electrodes for asymmetric supercapacitors with high energy density Nanoscale 10 14171–81
    [56]
    Deng S, Zhong Y, Zeng Y, Wang Y, Wang X, Lu X, Xia X and Tu J 2018 Hollow TiO2@Co9S8 core–branch arrays as bifunctional electrocatalysts for efficient oxygen/hydrogen production Adv. Sci. 5 1700772
    [57]
    Zhu C, Wang H and Guan C 2020 Recent progress on hollow array architectures and their applications in electrochemical energy storage Nanoscale Horiz. 5 1188–99
    [58]
    Lee J, Llerena Zambrano B, Woo J, Yoon K and Lee T 2020 Recent advances in 1D stretchable electrodes and devices for textile and wearable electronics: materials, fabrications, and applications Adv. Mater. 32 1902532
    [59]
    Lu X, Wang H, Liu X, Song Z, Jiang N, Xie F, Zheng Q and Lin D 2020 Functional separators prepared via in-situ growth of hollow CoSO4 hydrate arrays on pristine polypropylene membrane for high performance lithium–sulfur batteries J. Alloys Compd. 838 155618
    [60]
    Guo B, Bandaru S, Dai C, Chen H, Zhang Y, Xu Q, Bao S, Chen M and Xu M 2018 Self-supported FeCo2S4 nanotube arrays as binder-free cathodes for lithium–sulfur batteries ACS Appl. Mater. Interfaces 10 43707–15
    [61]
    Dai C, Lim J M, Wang M, Hu L, Chen Y, Chen Z, Chen H, Bao S J, Shen B and Li Y 2018 Honeycomb-like spherical cathode host constructed from hollow metallic and polar Co9S8 tubules for advanced lithium–sulfur batteries Adv. Funct. Mater. 28 1704443
    [62]
    Tang W, Wang X, Xie D, Xia X, Gu C and Tu J 2018 Hollow metallic 1T MoS2 arrays grown on carbon cloth: a freestanding electrode for sodium ion batteries J. Mater. Chem. A 6 18318–24
    [63]
    Shao Y, El-Kady M F, Sun J, Li Y, Zhang Q, Zhu M, Wang H, Dunn B and Kaner R B 2018 Design and mechanisms of asymmetric supercapacitors Chem. Rev. 118 9233–80
    [64]
    Chen X, Yang H, Liu G, Gao F, Dai M, Hu Y, Chen H, Cao W, Hu P and Hu W 2018 Hollow spherical nanoshell arrays of 2D layered semiconductor for high-performance photodetector device Adv. Funct. Mater. 28 1705153
    [65]
    Hu C et al 2019 An entangled cobalt–nitrogen–carbon nanotube array electrode with synergetic confinement and electrocatalysis of polysulfides for stable Li–S batteries ACS Appl. Energy Mater. 2 2904–12
    [66]
    Wang S et al 2021 Insight into MoS2–MoN heterostructure to accelerate polysulfide conversion toward high-energy-density lithium–sulfur batteries Adv. Energy Mater. 11 2003314
    [67]
    Wang S et al 2019 Efficient trapping and catalytic conversion of polysulfides by VS4 nanosites for Li–S batteries ACS Energy Lett. 4 755–62
    [68]
    Xu X, Yang Q, Wattanatorn N, Zhao C, Chiang N, Jonas S J and Weiss P S 2017 Multiple-patterning nanosphere lithography for fabricating periodic three-dimensional hierarchical nanostructures ACS Nano 11 10384–91
    [69]
    Xia X, Tu J, Mai Y, Wang X, Gu C and Zhao X 2011 Self-supported hydrothermal synthesized hollow Co3O4 nanowire arrays with high supercapacitor capacitance J. Mater. Chem. 21 9319–25
    [70]
    Tang Z, Zhang G, Zhang H, Wang L, Shi H, Wei D and Duan H 2018 MOF-derived N-doped carbon bubbles on carbon tube arrays for flexible high-rate supercapacitors Energy Storage Mater. 10 75–84
    [71]
    Li F, Xu R, Li Y, Liang F, Zhang D, Fu W and Lv X 2019 N-doped carbon coated NiCo2S4 hollow nanotube as bifunctional electrocatalyst for overall water splitting Carbon 145 521–8
    [72]
    Liu Z, Zhao W, Kumar P, Li X, Al Wahedi Y, Mkhoyan K A, Tsapatsis M and Stein A 2018 Direct synthesis and pseudomorphic transformation of mixed metal oxide nanostructures with non-close-packed hollow sphere arrays Angew. Chem. 130 15933–7
    [73]
    Zhou G, Wang D, Li F, Hou P, Yin L, Liu C, Lu G Q M, Gentle I R and Cheng H 2012 A flexible nanostructured sulphur–carbon nanotube cathode with high rate performance for Li–S batteries Energy Environ. Sci. 5 8901–6
    [74]
    Li S, Xia X, Wang X and Tu J 2016 Free-standing sulfur cathodes composited with carbon nanorods arrays for Li–S batteries application Mater. Res. Bull. 83 474–80
    [75]
    Yin P et al 2016 Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts Angew. Chem. 128 10958–63
    [76]
    Wang X et al 2016 Directly converting Fe-doped metal–organic frameworks into highly active and stable Fe-NC catalysts for oxygen reduction in acid Nano Energy 25 110–9
    [77]
    Yi F Y, Zhang R, Wang H, Chen L F, Han L, Jiang H L and Xu Q 2017 Metal–organic frameworks and their composites: synthesis and electrochemical applications Small Methods 1 1700187
    [78]
    Yang X et al 2018 Multi-functional nanowall arrays with unrestricted Li+ transport channels and an integrated conductive network for high-areal-capacity Li–S batteries J. Mater. Chem. A 6 22958–65
    [79]
    Wang Z et al 2019 Self-supported and flexible sulfur cathode enabled via synergistic confinement for high-energy-density lithium–sulfur batteries Adv. Mater. 31 1902228
    [80]
    He J, Chen Y and Manthiram A 2018 Vertical Co9S8 hollow nanowall arrays grown on a Celgard separator as a multifunctional polysulfide barrier for high-performance Li–S batteries Energy Environ. Sci. 11 2560–8
    [81]
    Zhang W, Yan X, Tong X, Yang J, Miao L, Sun Y and Peng L 2016 Synthesis of nickel sulfide monolayer hollow spheres arrays as cathode materials for alkaline batteries Mater. Lett. 178 120–3
    [82]
    Poongodi S, Kumar P S, Mangalaraj D, Ponpandian N, Meena P, Masuda Y and Lee C 2017 Electrodeposition of WO3 nanostructured thin films for electrochromic and H2S gas sensor applications J. Alloys Compd. 719 71–81
    [83]
    Zhuo S, Shi Y, Liu L, Li R, Shi L, Anjum D H, Han Y and Wang P 2018 Dual-template engineering of triple-layered nanoarray electrode of metal chalcogenides sandwiched with hydrogen-substituted graphdiyne Nat. Commun. 9 3132
    [84]
    Zhao Y, Mu S, Sun W, Liu Q, Li Y, Yan Z, Huo Z and Liang W 2016 Growth of copper oxide nanocrystals in metallic nanotubes for high performance battery anodes Nanoscale 8 19994–20000
    [85]
    Niu C et al 2015 General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis Nat. Commun. 6 7402
    [86]
    Elias J, Lévy-Clément C, Bechelany M, Michler J, Wang G-Y, Wang Z and Philippe L 2010 Hollow urchin-like ZnO thin films by electrochemical deposition Adv. Mater. 22 1607–12
    [87]
    Xia X, Chao D, Qi X, Xiong Q, Zhang Y, Tu J, Zhang H and Fan H J 2013 Controllable growth of conducting polymers shell for constructing high-quality organic/inorganic core/shell nanostructures and their optical-electrochemical properties Nano Lett. 13 4562–8
    [88]
    Li B, Li S, Liu J, Wang B and Yang S 2015 Vertically aligned sulfur–graphene nanowalls on substrates for ultrafast lithium–sulfur batteries Nano Lett. 15 3073–9
    [89]
    Yuan S, Huang X L, Ma D L, Wang H G, Meng F Z and Zhang X B 2014 Engraving copper foil to give large-scale binder-free porous CuO arrays for a high-performance sodium-ion battery anode Adv. Mater. 26 2273–9
    [90]
    Zuo W, Zhu W, Zhao D, Sun Y, Li Y, Liu J and Lou X W D 2016 Bismuth oxide: a versatile high-capacity electrode material for rechargeable aqueous metal-ion batteries Energy Environ. Sci. 9 2881–91
    [91]
    Liu J, Song K, van Aken P A, Maier J and Yu Y 2014 Self-supported Li4Ti5O12–C nanotube arrays as high-rate and long-life anode materials for flexible Li-ion batteries Nano Lett. 14 2597–603
    [92]
    Liu S, Hong X, Wang D, Li Y, Xu J, Zheng C and Xie K 2018 Hollow carbon spheres with nanoporous shells and tailored chemical interfaces as sulfur host for long cycle life of lithium sulfur batteries Electrochim. Acta 279 10–18
    [93]
    Hernández-Rentero C, Córdoba R, Moreno N, Caballero A, Morales J, Olivares-Marín M and Gómez-Serrano V 2018 Low-cost disordered carbons for Li/S batteries: a high-performance carbon with dual porosity derived from cherry pits Nano Res. 11 89–100
    [94]
    Liang J, Sun Z, Li F and Cheng H 2016 Carbon materials for Li–S batteries: functional evolution and performance improvement Energy Storage Mater. 2 76–106
    [95]
    Zheng G, Yang Y, Cha J J, Hong S S and Cui Y 2011 Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries Nano Lett. 11 4462–7
    [96]
    Reddy A L M, Shaijumon M M, Gowda S R and Ajayan P M 2009 Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries Nano Lett. 9 1002–6
    [97]
    Park S-K, Lee J, Hwang T, Jang B and Piao Y 2017 Scalable synthesis of honeycomb-like ordered mesoporous carbon nanosheets and their application in lithium–sulfur batteries ACS Appl. Mater. Interfaces 9 2430–8
    [98]
    Ni J and Li L 2018 Self-supported 3D array electrodes for sodium microbatteries Adv. Funct. Mater. 28 1704880
    [99]
    Zhou G, Paek E, Hwang G S and Manthiram A 2015 Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge Nat. Commun. 6 7760
    [100]
    Jin C, Zhang W, Zhuang Z, Wang J, Huang H, Gan Y, Xia Y, Liang C, Zhang J and Tao X 2017 Enhanced sulfide chemisorption using boron and oxygen dually doped multi-walled carbon nanotubes for advanced lithium–sulfur batteries J. Mater. Chem. A 5 632–40
    [101]
    Song J, Yu Z, Gordin M L and Wang D 2016 Advanced sulfur cathode enabled by highly crumpled nitrogen-doped graphene sheets for high-energy-density lithium–sulfur batteries Nano Lett. 16 864–70
    [102]
    Liang C, Dudney N J and Howe J Y 2009 Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery Chem. Mater. 21 4724–30
    [103]
    Wei Seh Z, Li W, Cha J J, Zheng G, Yang Y, McDowell M T, Hsu P-C and Cui Y 2013 Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries Nat. Commun. 4 1331
    [104]
    Mei S, Jafta C J, Lauermann I, Ran Q, Kärgell M, Ballauff M and Lu Y 2017 Porous Ti4O7 particles with interconnected-pore structure as a high-efficiency polysulfide mediator for lithium–sulfur batteries Adv. Funct. Mater. 27 1701176
    [105]
    Li Z, Guan B Y, Zhang J and Lou X W D 2017 A compact nanoconfined sulfur cathode for high-performance lithium-sulfur batteries Joule 1 576–87
    [106]
    Rehman S, Tang T, Ali Z, Huang X and Hou Y 2017 Integrated design of MnO2@carbon hollow nanoboxes to synergistically encapsulate polysulfides for empowering lithium sulfur batteries Small 13 1700087
    [107]
    Luo D et al 2019 Synergistic engineering of defects and architecture in binary metal chalcogenide toward fast and reliable lithium–sulfur batteries Adv. Energy Mater. 9 1900228
    [108]
    Ji X, Evers S, Black R and Nazar L F 2011 Stabilizing lithium–sulphur cathodes using polysulphide reservoirs Nat. Commun. 2 325
    [109]
    Liang X, Kwok C Y, Lodi-Marzano F, Pang Q, Cuisinier M, Huang H, Hart C J, Houtarde D, Kaup K and Sommer H 2016 Tuning transition metal oxide–sulfur interactions for long life lithium sulfur batteries: the “Goldilocks” principle Adv. Energy Mater. 6 1501636
    [110]
    Fan Q, Liu W, Weng Z, Sun Y and Wang H 2015 Ternary hybrid material for high-performance lithium–sulfur battery J. Am. Chem. Soc. 137 12946–53
    [111]
    Zhao C, Shen C, Xin F, Sun Z and Han W 2014 Prussian blue-derived Fe2O3/sulfur composite cathode for lithium–sulfur batteries Mater. Lett. 137 52–55
    [112]
    Cheng H, Wang S, Tao D and Wang M 2014 Sulfur/Co3O4 nanotube composite with high performances as cathode materials for lithium sulfur batteries Funct. Mater. Lett. 7 1450020
    [113]
    Liang X, Hart C, Pang Q, Garsuch A, Weiss T and Nazar L F 2015 A highly efficient polysulfide mediator for lithium–sulfur batteries Nat. Commun. 6 5682
    [114]
    Wang S et al 2019 Designing a highly efficient polysulfide conversion catalyst with paramontroseite for high-performance and long-life lithium–sulfur batteries Nano Energy 57 230–40
    [115]
    Chang Z, Dou H, Ding B, Wang J, Wang Y, Hao X and MacFarlane D R 2017 Co3O4 nanoneedle arrays as a multifunctional “super-reservoir” electrode for long cycle life Li–S batteries J. Mater. Chem. A 5 250–7
    [116]
    Guo J, Zhao S, Shen Y, Shao G and Zhang F 2020 “Room-like” TiO2 array as a sulfur host for lithium−sulfur batteries: combining advantages of array and closed structures ACS Sustain. Chem. Eng. 8 7609–16
    [117]
    Yuan Z, Peng H, Hou T, Huang J, Chen C, Wang D, Cheng X, Wei F and Zhang Q 2016 Powering lithium–sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts Nano Lett. 16 519–27
    [118]
    Chen T et al 2017 Metallic and polar Co9S8 inlaid carbon hollow nanopolyhedra as efficient polysulfide mediator for lithium−sulfur batteries Nano Energy 38 239–48
    [119]
    Wang H, Zhang Q, Yao H, Liang Z, Lee H-W, Hsu P-C, Zheng G and Cui Y 2014 High electrochemical selectivity of edge versus terrace sites in two-dimensional layered MoS2 materials Nano Lett. 14 7138–44
    [120]
    Lei T, Chen W, Huang J, Yan C, Sun H, Wang C, Zhang W, Li Y and Xiong J 2017 Multi-functional layered WS2 nanosheets for enhancing the performance of lithium–sulfur batteries Adv. Energy Mater. 7 1601843
    [121]
    Sun T, Huang C, Shu H, Luo L, Liang Q, Chen M, Su J and Wang X 2020 Porous NiCo2S4 nanoneedle arrays with highly efficient electrocatalysis anchored on carbon cloths as self-supported hosts for high-loading Li–S batteries ACS Appl. Mater. Interfaces 12 57975–86
    [122]
    Wang J, Zhao Y, Li G, Luo D, Liu J, Zhang Y, Wang X, Shui L and Chen Z 2021 Aligned sulfur-deficient ZnS1-x nanotube arrays as efficient catalyzer for high-performance lithium/sulfur batteries Nano Energy 84 105891
    [123]
    Ye Z, Jiang Y, Li L, Wu F and Chen R 2022 Synergetic anion vacancies and dense heterointerfaces into bimetal chalcogenide nanosheet arrays for boosting electrocatalysis sulfur conversion Adv. Mater. 34 2109552
    [124]
    Abdelkader A A, Rodene D D, Norouzi N, Alzharani A, Weeraratne K S, Gupta R B and El-Kaderi H M 2020 Multifunctional electrocatalytic cathodes derived from metal–organic frameworks for advanced lithium-sulfur batteries Chem. Eur. J. 26 13896–903
    [125]
    Huang S, von Lim Y, Zhang X, Wang Y, Zheng Y, Kong D, Ding M, Yang S A and Yang H Y 2018 Regulating the polysulfide redox conversion by iron phosphide nanocrystals for high-rate and ultrastable lithium–sulfur battery Nano Energy 51 340–8
    [126]
    Luo Y, Luo N, Kong W, Wu H, Wang K, Fan S, Duan W and Wang J 2018 Multifunctional interlayer based on molybdenum diphosphide catalyst and carbon nanotube film for lithium–sulfur batteries Small 14 1702853
    [127]
    Xiao K, Chen Z, Liu Z, Zhang L, Cai X, Song C, Fan Z, Chen X, Liu J and Shen Z X 2020 N-doped carbon sheets arrays embedded with CoP nanoparticles as high-performance cathode for Li–S batteries via triple synergistic effects J. Power Sources 455 227959
    [128]
    Shen J et al 2019 Mechanistic understanding of metal phosphide host for sulfur cathode in high-energy-density lithium–sulfur batteries ACS Nano 13 8986–96
    [129]
    Hao B, Li H, Lv W, Zhang Y, Niu S, Qi Q, Xiao S, Li J, Kang F and Yang Q 2019 Reviving catalytic activity of nitrides by the doping of the inert surface layer to promote polysulfide conversion in lithium–sulfur batteries Nano Energy 60 305–11
    [130]
    Zha C, Zhu X, Deng J, Zhou Y, Li Y, Chen J, Ding P, Hu Y, Li Y and Chen H 2020 Facet-tailoring five-coordinated Ti sites and structure-optimizing electron transfer in a bifunctional cathode with titanium nitride nanowire array to boost the performance of Li2S6-based lithium–sulfur batteries Energy Storage Mater. 26 40–45
    [131]
    Zhong Y, Chao D, Deng S, Zhan J, Fang R, Xia Y, Wang Y, Wang X, Xia X and Tu J 2018 Confining sulfur in integrated composite scaffold with highly porous carbon fibers/vanadium nitride arrays for high-performance lithium–sulfur batteries Adv. Funct. Mater. 28 1706391
    [132]
    Cai D, Zhuang Y, Fei B, Zhang C, Wang Y, Chen Q and Zhan H 2022 Self-supported VN arrays coupled with N-doped carbon nanotubes embedded with Co nanoparticles as a multifunctional sulfur host for lithium–sulfur batteries J. Chem. Eng. 430 132931
    [133]
    Xiao K, Wang J, Chen Z, Qian Y, Liu Z, Zhang L, Chen X, Liu J, Fan X and Shen Z X 2019 Improving polysulfides adsorption and redox kinetics by the Co4N nanoparticle/N-doped carbon composites for lithium–sulfur batteries Small 15 1901454
    [134]
    Fang D, Wang Y, Qian C, Liu X, Wang X, Chen S and Zhang S 2019 Synergistic regulation of polysulfides conversion and deposition by MOF-derived hierarchically ordered carbonaceous composite for high-energy lithium–sulfur batteries Adv. Funct. Mater. 29 1900875
    [135]
    Sun Z et al 2020 Catalytic polysulfide conversion and physiochemical confinement for lithium–sulfur batteries Adv. Energy Mater. 10 1904010
    [136]
    Qin B, Cai Y, Si X, Li C, Cao J, Fei W, Xie H and Qi J 2021 All-in-one sulfur host: smart controls of architecture and composition for accelerated liquid–solid redox conversion in lithium–sulfur batteries ACS Appl. Mater. Interfaces 13 39424–34
    [137]
    Niu S et al 2020 Freestanding agaric-like molybdenum carbide/graphene/N-doped carbon foam as effective polysulfide anchor and catalyst for high performance lithium sulfur batteries Energy Storage Mater. 33 73–81
    [138]
    Wang M, Fan L, Wu X, Qiu Y, Guan B, Wang Y, Zhang N and Sun K 2019 Metallic NiSe2 nanoarrays towards ultralong life and fast Li2S oxidation kinetics of Li–S batteries J. Mater. Chem. A 7 15302–8
    [139]
    Zheng H, Li Y, Liu H, Yin X and Li Y 2011 Construction of heterostructure materials toward functionality Chem. Soc. Rev. 40 4506–24
    [140]
    Song Y, Zhao W, Kong L, Zhang L, Zhu X, Shao Y, Ding F, Zhang Q, Sun J and Liu Z 2018 Synchronous immobilization and conversion of polysulfides on a VO2–VN binary host targeting high sulfur load Li–S batteries Energy Environ. Sci. 11 2620–30
    [141]
    Wang Z, Yu K, Feng Y, Qi R, Ren J and Zhu Z 2019 VO2 (p)-V2C (MXene) grid structure as a lithium polysulfide catalytic host for high-performance Li–S battery ACS Appl. Mater. Interfaces 11 44282–92
    [142]
    Fang D et al 2021 Combination of heterostructure with oxygen vacancies in Co@CoO1-x nanosheets array for high-performance lithium sulfur batteries J. Chem. Eng. 411 128546
    [143]
    Zhang H, Zhao Z, Hou Y-N, Tang Y, Liang J, Liu X, Zhang Z, Wang X and Qiu J 2019 Highly stable lithium–sulfur batteries based on p–n heterojunctions embedded on hollow sheath carbon propelling polysulfides conversion J. Mater. Chem. A 7 9230–40
    [144]
    Ye H and Lee J Y 2020 Solid additives for improving the performance of sulfur cathodes in lithium–sulfur batteries–adsorbents, mediators, and catalysts Small Methods 4 1900864
    [145]
    Wang Q, Wen Z, Yang J, Jin J, Huang X, Wu X and Han J 2016 Electronic and ionic co-conductive coating on the separator towards high-performance lithium–sulfur batteries J. Power Sources 306 347–53
    [146]
    Huang J, Zhang Q and Wei F 2015 Multi-functional separator/interlayer system for high-stable lithium–sulfur batteries: progress and prospects Energy Storage Mater. 1 127–45
    [147]
    Li S, Zhang W, Zheng J, Lv M, Song H and Du L 2021 Inhibition of polysulfide shuttles in Li–S batteries: modified separators and solid-state electrolytes Adv. Energy Mater. 11 2000779
    [148]
    Liu X, Huang J Q, Zhang Q and Mai L 2017 Nanostructured metal oxides and sulfides for lithium–sulfur batteries Adv. Mater. 29 1601759
    [149]
    Li M, Wei J, Ren L, Zhao Y, Shang Z, Zhou D, Liu W, Luo L and Sun X 2021 Superwetting behaviors at the interface between electrode and electrolyte Cell Rep. Phys. Sci. 2 100374
    [150]
    Xiao Z et al 2021 Empowering polypropylene separator with enhanced polysulfide adsorption and reutilization ability for high-performance Li-S batteries Mater. Res. Bull. 134 111108
    [151]
    Shi M et al 2022 A Mott–Schottky heterogeneous layer for Li–S batteries: enabling both high stability and commercial-sulfur utilization Adv. Energy Mater. 12 2103657
    [152]
    Kong Z, Lin Y, Hu J, Wang Y and Zhan L 2022 Phosphorus doped hierarchical porous carbon nanosheet array as an electrocatalyst to enhance polysulfides anchoring and conversion J. Chem. Eng. 436 132719
    [153]
    Deng C, Wang Z, Wang S, Yu J, Martin D J, Nanjundan A K and Yamauchi Y 2019 Double-layered modified separators as shuttle suppressing interlayers for lithium–sulfur batteries ACS Appl. Mater. Interfaces 11 541–9
    [154]
    Huang S, Wang Y, Hu J, von Lim Y, Kong D, Guo L, Kou Z, Chen Y and Yang H Y 2019 In situ-grown compressed NiCo2S4 barrier layer for efficient and durable polysulfide entrapment npg Asia Mater. 11 55
    [155]
    Wang Q, Liu B, Shen Y, Wu J, Zhao Z, Zhong C and Hu W 2021 Confronting the challenges in lithium anodes for lithium metal batteries Adv. Sci. 8 2101111
    [156]
    Ren L, Cao X, Wang Y, Zhou M, Liu W, Xu H, Zhou H and Sun X 2023 3D porous and Li-rich Sn–Li alloy scaffold with mixed ionic-electronic conductivity for dendritefree lithium metal anodes J. Alloys Compd. 947 169362
    [157]
    Wang Q et al 2023 Ultrathin composite Li electrode for high-performance Li metal batteries: a review from synthetic chemistry Adv. Funct. Mater. 33 2213648
    [158]
    Jinli Q, Longtao R, Xin C, Yajun Z, Haijun X, Wen L and Xiaoming S 2020 Porous copper foam co-operation with thiourea for dendrite-free lithium metal anode Acta Phys.-Chim. Sin. 37 2009020
    [159]
    Wang Y, Ren L, Liu J, Lu X, Wang Q, Zhou M, Liu W and Sun X 2022 In situ construction of composite artificial solid electrolyte interphase for high-performance lithium metal batteries ACS Appl. Mater. Interfaces 14 50982–91
    [160]
    Yang C, Yin Y, Zhang S, Li N and Guo Y 2015 Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes Nat. Commun. 6 8058
    [161]
    Luo Z, Li S, Yang L, Tian Y, Xu L, Zou G, Hou H, Wei W, Chen L and Ji X 2021 Interfacially redistributed charge for robust lithium metal anode Nano Energy 87 106212
    [162]
    Xu P et al 2020 High reversible Li plating and stripping by in-situ construction a multifunctional lithium-pinned array Energy Storage Mater. 28 188–95
    [163]
    Chen Y, Elangovan A, Zeng D, Zhang Y, Ke H, Li J, Sun Y and Cheng H 2020 Vertically aligned carbon nanofibers on Cu foil as a 3D current collector for reversible Li plating/stripping toward high-performance Li–S batteries Adv. Funct. Mater. 30 1906444
    [164]
    Zhang C, Lv W, Zhou G, Huang Z, Zhang Y, Lyu R, Wu H, Yun Q, Kang F and Yang Q H 2018 Vertically aligned lithiophilic CuO nanosheets on a Cu collector to stabilize lithium deposition for lithium metal batteries Adv. Energy Mater. 8 1703404
    [165]
    Xie D, Li H, Diao W, Jiang R, Tao F, Sun H, Wu X and Zhang J 2021 Spatial confinement of vertical arrays of lithiophilic SnS2 nanosheets enables conformal Li nucleation/growth towards dendrite-free Li metal anode Energy Storage Mater. 36 504–13
    [166]
    Yan C, Cheng X, Zhao C, Huang J, Yang S and Zhang Q 2016 Lithium metal protection through in-situ formed solid electrolyte interphase in lithium–sulfur batteries: the role of polysulfides on lithium anode J. Power Sources 327 212–20
    [167]
    Bhargav A, He J, Gupta A and Manthiram A 2020 Lithiumsulfur batteries: attaining the critical metrics Joule 4 285–91
    [168]
    Bonnick P and Muldoon J 2020 The Dr Jekyll and Mr Hyde of lithium sulfur batteries Energy Environ. Sci. 13 4808–33
    [169]
    Liu B, Fang R, Xie D, Zhang W, Huang H, Xia Y, Wang X, Xia X and Tu J 2018 Revisiting scientific issues for industrial applications of lithium–sulfur batteries Energy Environ. Mater. 1 196–208
    [170]
    Hu G, Sun Z, Shi C, Fang R, Chen J, Hou P, Liu C, Cheng H M and Li F 2017 A sulfur-rich copolymer@CNT hybrid cathode with dual-confinement of polysulfides for high-performance lithium–sulfur batteries Adv. Mater. 29 1603835
    [171]
    Wen X, Lu X, Xiang K, Xiao L, Liao H, Chen W, Zhou W and Chen H 2019 Nitrogen/sulfur co-doped ordered carbon nanoarrays for superior sulfur hosts in lithium–sulfur batteries J. Colloid Interface Sci. 554 711–21
    [172]
    Li J, Chen Y, Zhang S, Xie W, Xu S-M, Wang G and Shao M 2020 Coordinating adsorption and catalytic activity of polysulfide on hierarchical integrated electrodes for high-performance flexible Li–S batteries ACS Appl. Mater. Interfaces 12 49519–29
    [173]
    Yan Y, Lei T, Jiao Y, Wu C and Xiong J 2018 TiO2 nanowire array as a polar absorber for high-performance lithium–sulfur batteries Electrochim. Acta 264 20–25
    [174]
    Liu Y, Sun C, Zhang L, Zheng P, Meng Q, Zhang C, Ye X, Jiang J and Li C M 2022 High S filling and binder-free cathodes enabled by thick arrayed nanoframeworks and subtle interfacial engineering ACS Appl. Energy Mater. 5 1313–21
    [175]
    Chen S, Zhang J, Wang Z, Nie L, Hu X, Yu Y and Liu W 2021 Electrocatalytic NiCo2O4 nanofiber arrays on carbon cloth for flexible and high-loading lithium–sulfur batteries Nano Lett. 21 5285–92
    [176]
    Zhou J, Yang X, Zhang Y, Jia J, He X, Yu L, Pan Y, Liao J, Sun M and He J 2021 Interconnected NiCo2O4 nanosheet arrays grown on carbon cloth as a host, adsorber and catalyst for sulfur species enabling high-performance Li–S batteries Nanoscale Adv. 3 1690–8
    [177]
    Shan X, Guo Z, Zou Y and Zhao L 2021 Reduced graphene oxide-coated zinc–cobalt oxide nanosheet arrays with N-doped carbon anchored on carbon cloths as cathode materials for high-sulfur-loading Li–S batteries ACS Appl. Nano Mater. 4 11526–36
    [178]
    Cao Z, Guo J, Jia J, Zhang Z, Yin Y, Yang M and Yang S 2022 In situ self-boosting catalytic synthesizing free-standing N,S rich transition metal sulfide/hierarchical CNF-CNT architectures enable high-performance lithium–sulfur batteries Electrochim. Acta 422 140549
    [179]
    Zhang X, Wei Y, Wang B, Wang M, Zhang Y, Wang Q and Wu H 2019 Construction of electrocatalytic and heat-resistant self-supporting electrodes for high-performance lithium–sulfur batteries Nano-Micro Lett. 11 1–17
    [180]
    Xiong M, Qian J, Yang K, Chen Z, Mei T, Wang J, Li J, Yu L and Wang X 2020 Efficient polysulfide anchor: brain coral-like WS2 nanosheets J. Mater. Sci. 55 12031–40
    [181]
    Jin J, Cai W, Cai J, Shao Y, Song Y, Xia Z, Zhang Q and Sun J 2020 MOF-derived hierarchical CoP nanoflakes anchored on vertically erected graphene scaffolds as self-supported and flexible hosts for lithium–sulfur batteries J. Mater. Chem. A 8 3027–34
    [182]
    Wang Z, Yu K, Gong S, Du E and Zhu Z 2020 Vanadium based carbide–oxide heterogeneous V2O5@V2C nanotube arrays for high-rate and long-life lithium–sulfur batteries Nanoscale 12 18950–64
    [183]
    Qiu S, Wang C, Jiang Z, Zhang L, Gu L, Wang K, Gao J, Zhu X and Wu G 2020 Rational design of MXene@TiO2 nanoarray enabling dual lithium polysulfide chemisorption towards high-performance lithium–sulfur batteries Nanoscale 12 16678–84
    [184]
    Wang M, Fan L, Tian D, Wu X, Qiu Y, Zhao C, Guan B, Wang Y, Zhang N and Sun K 2018 Rational design of hierarchical SnO2/1T-MoS2 nanoarray electrode for ultralong-life Li–S batteries ACS Energy Lett. 3 1627–33
    [185]
    Qiu Y et al 2021 Constructed conductive CoSe2 nanoarrays as efficient electrocatalyst for high-performance Li–S battery Rare Met. 40 3147–55
  • 加载中

Catalog

    Figures(1)

    Article Metrics

    Article Views(115) PDF downloads(69)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return