Volume 2 Issue 1
March  2022
Turn off MathJax
Article Contents
Shuo Wang, Ming-Hua Li, Yan Jiang, Jin-Song Hu. Instability of solution-processed perovskite films: origin and mitigation strategies[J]. Materials Futures, 2023, 2(1): 012102. doi: 10.1088/2752-5724/acb838
Citation: Shuo Wang, Ming-Hua Li, Yan Jiang, Jin-Song Hu. Instability of solution-processed perovskite films: origin and mitigation strategies[J]. Materials Futures, 2023, 2(1): 012102. doi: 10.1088/2752-5724/acb838
Topical Review •
OPEN ACCESS

Instability of solution-processed perovskite films: origin and mitigation strategies

© 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 2, Number 1
  • Received Date: 2022-12-23
  • Accepted Date: 2023-02-01
  • Rev Recd Date: 2023-01-16
  • Publish Date: 2023-02-22
  • Perovskite solar cells (PSCs) are promising next-generation photovoltaics due to their unique optoelectronic properties and rapid rise in power conversion efficiency. However, the instability of perovskite materials and devices is a serious obstacle hindering technology commercialization. The quality of perovskite films, which is an important prerequisite for long-term stable PSCs, is determined by the quality of the precursor solution and the post-deposition treatment performed after perovskite formation. Herein, we review the origin of instability of solution-processed PSCs from the perspectives of the precursor solutions and the perovskite films. In addition, we summarize the recent strategies for improving the stability of the perovskite films. Finally, we pinpoint possible approaches to further advance their long-term stability.
  • loading
  • Conflict of interest

    The authors declare that they have no conflict of interest.

  • [1]
    Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J 2015 Electron-hole diffusion lengths > 175 m in solution-grown CH3NH3PbI3 single crystals Science 347 967 doi: 10.1126/science.aaa5760
    [2]
    Shi D, et al 2015 Solar cells. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals Science 347 519-22 doi: 10.1126/science.aaa2725
    [3]
    Lu H, Krishna A, Zakeeruddin S M, Grtzel M, Hagfeldt A 2020 Compositional and interface engineering of organic-inorganic lead halide perovskite solar cells iScience 23 101359 doi: 10.1016/j.isci.2020.101359
    [4]
    Burschka J, Pellet N, Moon S-J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grtzel M 2013 Sequential deposition as a route to high-performance perovskite-sensitized solar cells Nature 499 316-9 doi: 10.1038/nature12340
    [5]
    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I 2014 Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells Nat. Mater. 13 897-903 doi: 10.1038/nmat4014
    [6]
    Deng Y, Zheng X, Bai Y, Wang Q, Zhao J, Huang J 2018 Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules Nat. Energy 3 560-6 doi: 10.1038/s41560-018-0153-9
    [7]
    Lu M, Zhang Y, Wang S, Guo J, Yu W W, Rogach A L 2019 Metal halide perovskite lightemitting devices: promising technology for nextgeneration displays Adv. Funct. Mater. 29 1902008 doi: 10.1002/adfm.201902008
    [8]
    Yuant F, et al 2020 Color-pure red light-emitting diodes based on two-dimensional lead-free perovskites Sci. Adv. 6 eabb0253 doi: 10.1126/sciadv.abb0253
    [9]
    Tan Z-K, et al 2014 Bright light-emitting diodes based on organometal halide perovskite Nat. Nanotechnol. 9 687-92 doi: 10.1038/nnano.2014.149
    [10]
    Xia H-R, Li J, Sun W-T, Peng L-M 2014 Organohalide lead perovskite based photodetectors with much enhanced performance Chem. Commun. 50 13695-7 doi: 10.1039/C4CC05960C
    [11]
    Wang H, Kim D H 2011 Perovskite-based photodetectors: materials and devices Chem. Soc. Rev. 40 15-18 doi: 10.1039/C6CS00896H
    [12]
    Dou L, Yang Y M, You J, Hong Z, Chang W-H, Li G, Yang Y 2014 Solution-processed hybrid perovskite photodetectors with high detectivity Nat. Commun. 5 5404 doi: 10.1038/ncomms6404
    [13]
    Saidaminov M I, Adinolfi V, Comin R, Abdelhady A L, Peng W, Dursun I, Yuan M, Hoogland S, Sargent E H, Bakr O M 2015 Planar-integrated single-crystalline perovskite photodetectors Nat. Commun. 6 8724 doi: 10.1038/ncomms9724
    [14]
    Kim Y C, Kim K H, Son D-Y, Jeong D-N, Seo J-Y, Choi Y S, Han I T, Lee S Y, Park N-G 2017 Printable organometallic perovskite enables large-area, low-dose x-ray imaging Nature 550 87-91 doi: 10.1038/nature24032
    [15]
    He S, Qiu L, Ono L K, Qi Y 2020 How far are we from attaining 10-year lifetime for metal halide perovskite solar cells? Mater. Sci. Eng. R 140 100545 doi: 10.1016/j.mser.2020.100545
    [16]
    Li J, Han Z, Gu Y, Yu D, Liu J, Hu D, Xu X, Zeng H 2021 Perovskite single crystals: synthesis, optoelectronic properties, and application Adv. Funct. Mater. 31 2008684 doi: 10.1002/adfm.202008684
    [17]
    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 Organometal halide perovskites as visible-light sensitizers for photovoltaic cells J. Am. Chem. Soc. 131 6050-1 doi: 10.1021/ja809598r
    [18]
    Jiang Q, Chu Z, Wang P, Yang X, Liu H, Wang Y, Yin Z, Wu J, Zhang X, You J 2017 Planarstructure perovskite solar cells with efficiency beyond 21% Adv. Mater. 29 1703852 doi: 10.1002/adma.201703852
    [19]
    Bishop J E, Routledge T J, Lidzey D G 2018 Advances in spray-cast perovskite solar cells J. Phys. Chem. Lett. 9 1977-84 doi: 10.1021/acs.jpclett.8b00311
    [20]
    Park N-G, Zhu K 2020 Scalable fabrication and coating methods for perovskite solar cells and solar modules Nat. Rev. Mater. 5 333-50 doi: 10.1038/s41578-019-0176-2
    [21]
    Huang H-H, et al 2021 A simple one-step method with wide processing window for high-quality perovskite mini-module fabrication Joule 5 958-74 doi: 10.1016/j.joule.2021.02.012
    [22]
    Xiao Z, Dong Q, Bi C, Shao Y, Yuan Y, Huang J 2014 Solvent annealing of perovskiteinduced crystal growth for photovoltaicdevice efficiency enhancement Adv. Mater. 26 6503-9 doi: 10.1002/adma.201401685
    [23]
    Nie W, et al 2015 High-efficiency solution-processed perovskite solar cells with millimeter-scale grains Science 347 522-5 doi: 10.1126/science.aaa0472
    [24]
    Min H, et al 2021 Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes Nature 598 444-50 doi: 10.1038/s41586-021-03964-8
    [25]
    Ding Y, et al 2022 Single-crystalline TiO2 nanoparticles for stable and efficient perovskite modules Nat. Nanotechnol. 17 598-605 doi: 10.1038/s41565-022-01108-1
    [26]
    Yan C, et al 2018 Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment Nat. Energy 3 764-72 doi: 10.1038/s41560-018-0206-0
    [27]
    Ma C, Park N-G 2020 A realistic methodology for 30% efficient perovskite solar cells Chemistry 6 1254-64 doi: 10.1016/j.chempr.2020.04.013
    [28]
    Liu M, Johnston M B, Snaith H J 2013 Efficient planar heterojunction perovskite solar cells by vapour deposition Nature 501 395-8 doi: 10.1038/nature12509
    [29]
    Feng J, Jiao Y, Wang H, Zhu X, Sun Y, Du M, Cao Y, Yang D, Liu S F 2021 High-throughput large-area vacuum deposition for high-performance formamidine-based perovskite solar cells Energy Environ. Sci. 14 3035-43 doi: 10.1039/D1EE00634G
    [30]
    Jiang Y, Leyden M R, Qiu L, Wang S, Ono L K, Wu Z, Juarez-Perez E J, Qi Y 2018 Combination of hybrid CVD and cation exchange for upscaling Cssubstituted mixed cation perovskite solar cells with high efficiency and stability Adv. Funct. Mater. 28 1703835 doi: 10.1002/adfm.201703835
    [31]
    Jiang Y, et al 2019 NegligiblePbwaste and upscalable perovskite deposition technology for highoperationalstability perovskite solar modules Adv. Energy Mater. 9 1803047 doi: 10.1002/aenm.201803047
    [32]
    Jiang Y, He S, Qiu L, Zhao Y, Qi Y 2022 Perovskite solar cells by vapor deposition based and assisted methods Appl. Phys. Rev. 9 021305 doi: 10.1063/5.0085221
    [33]
    Khenkin M V, et al 2020 Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures Nat. Energy 5 35-49 doi: 10.1038/s41560-019-0529-5
    [34]
    Zhu Y, Hu M, Xu M, Zhang B, Huang F, Cheng Y-B, Lu J 2022 Bilayer metal halide perovskite for efficient and stable solar cells and modules Mater. Futures 1 042102 doi: 10.1088/2752-5724/ac9248
    [35]
    Boyd C C, Cheacharoen R, Leijtens T, McGehee M D 2019 Understanding degradation mechanisms and improving stability of perovskite photovoltaics Chem. Rev. 119 3418-51 doi: 10.1021/acs.chemrev.8b00336
    [36]
    Li F, Liu M 2017 Recent efficient strategies for improving the moisture stability of perovskite solar cells J. Mater. Chem. A 5 15447-59 doi: 10.1039/C7TA01325F
    [37]
    Yin W-J, Yang J-H, Kang J, Yan Y, Wei S-H 2015 Halide perovskite materials for solar cells: a theoretical review J. Mater. Chem. A 3 8926 doi: 10.1039/C4TA05033A
    [38]
    Wu J, Liu S-C, Li Z, Wang S, Xue D-J, Lin Y, Hu J-S 2021 Strain in perovskite solar cells: origins, impacts and regulation Natl Sci. Rev. 8 nwab047 doi: 10.1093/nsr/nwab047
    [39]
    Qiu Z, Li N, Huang Z, Chen Q, Zhou H 2020 Recent advances in improving phase stability of perovskite solar cells Small Methods 4 1900877 doi: 10.1002/smtd.201900877
    [40]
    Pareja-Rivera C, Sols-Cambero A L, Snchez-Torres M, Lima E, Solis-Ibarra D 2018 On the true composition of mixed-cation perovskite films ACS Energy Lett. 3 2366-7 doi: 10.1021/acsenergylett.8b01577
    [41]
    Zhang Y, Seo S, Lim S Y, Kim Y, Kim S-G, Lee D-K, Lee S-H, Shin H, Cheong H, Park N-G 2020 Achieving reproducible and high-efficiency (>21%) perovskite solar cells with a presynthesized FAPbI3 powder ACS Energy Lett. 5 360-6 doi: 10.1021/acsenergylett.9b02348
    [42]
    Shin G S, Zhang Y, Park N-G 2020 Stability of precursor solution for perovskite solar cell: mixture (FAI+PbI2) versus synthetic FAPbI3 crystal ACS Appl. Mater. Interfaces 12 15167-74 doi: 10.1021/acsami.9b23086
    [43]
    Kim G M, Ishii A, z S, Miyasaka T 2020 MAClassisted Ge doping of Pbhybrid perovskite: a universal route to stabilize high performance perovskite solar cells Adv. Energy Mater. 10 1903299-n/a. doi: 10.1002/aenm.201903299
    [44]
    Liu Z, et al 2017 Chemical reduction of intrinsic defects in thicker heterojunction planar perovskite solar cells Adv. Mater. 29 1606774 doi: 10.1002/adma.201606774
    [45]
    Chen S, Xiao X, Gu H, Huang J 2021 Iodine reduction for reproducible and high-performance perovskite solar cells and modules Sci. Adv. 7 eabe8130 doi: 10.1126/sciadv.abe8130
    [46]
    Kim J, et al 2020 Unveiling the relationship between the perovskite precursor solution and the resulting device performance J. Am. Chem. Soc. 142 6251-60 doi: 10.1021/jacs.0c00411
    [47]
    Chen C, Rao Y, Li Z, Wang X, Cui G, Wang W, Pang S 2021 Stabilizing formamidinium lead iodide perovskite precursor solution with phenylboric acid Sol. RRL 5 2000715 doi: 10.1002/solr.202000715
    [48]
    Qin M, et al 2018 Fusedring electron acceptor ITICTh: a novel stabilizer for halide perovskite precursor solution Adv. Energy Mater. 8 1703399 doi: 10.1002/aenm.201703399
    [49]
    Wu X, et al 2019 Stable triple cation perovskite precursor for highly efficient perovskite solar cells enabled by interaction with 18C6 stabilizer Adv. Funct. Mater. 30 1908613 doi: 10.1002/adfm.201908613
    [50]
    Juarez-Perez E J, Hawash Z, Raga S R, Ono L K, Qi Y 2016 Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry-mass spectrometry analysis Energy Environ. Sci. 9 3406 doi: 10.1039/C6EE02016J
    [51]
    Wang S, Jiang Y, Juarez-Perez E J, Ono L K, Qi Y 2016 Accelerated degradation of methylammonium lead iodide perovskites induced by exposure to iodine vapour Nat. Energy 2 1-8 doi: 10.1038/nenergy.2016.195
    [52]
    Chen S, et al 2020 General decomposition pathway of organic-inorganic hybrid perovskites through an intermediate superstructure and its suppression mechanism Adv. Mater. 32 2001107 doi: 10.1002/adma.202001107
    [53]
    Shi L, et al 2020 Gas chromatography-mass spectrometry analyses of encapsulated stable perovskite solar cells Science 368 eaba2412 doi: 10.1126/science.aba2412
    [54]
    An Y, Hidalgo J, Perini C A R, Castro-Mndez A-F, Vagott J N, Bairley K, Wang S, Li X, Correa-Baena J-P 2021 Structural stability of formamidinium- and cesium-based halide perovskites ACS Energy Lett. 6 1942-69 doi: 10.1021/acsenergylett.1c00354
    [55]
    Li Z, Yang M, Park J-S, Wei S-H, Berry J J, Zhu K 2016 Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys Chem. Mater. 28 284-92 doi: 10.1021/acs.chemmater.5b04107
    [56]
    Wang X, et al 2020 Perovskite solution aging: what happened and how to inhibit? Chemistry 6 1369-78 doi: 10.1016/j.chempr.2020.02.016
    [57]
    He X, Guo P, Wu J, Tu Y, Lan Z, Lin J, Huang M 2017 Hybrid perovskite by mixing formamidinium and methylammonium lead iodides for high-performance planar solar cells with efficiency of 19.41% Sol. Energy 157 853-9 doi: 10.1016/j.solener.2017.09.014
    [58]
    Gao X-X, Luo W, Zhang Y, Hu R, Zhang B, Zttel A, Feng Y, Nazeeruddin M K 2020 Stable and highefficiency methylammoniumfree perovskite solar cells Adv. Mater. 32 1905502 doi: 10.1002/adma.201905502
    [59]
    Jeong J, et al 2021 Pseudo-halide anion engineering for alpha-FAPbI3 perovskite solar cells Nature 592 381-5 doi: 10.1038/s41586-021-03406-5
    [60]
    Kim G, Min H, Lee K S, Lee D Y, Yoon S M, Seok S I 2020 Impact of strain relaxation on performance of alpha-formamidinium lead iodide perovskite solar cells Science 370 108-12 doi: 10.1126/science.abc4417
    [61]
    Min H, Kim M, Lee S-U, Kim H, Kim G, Choi K, Lee J H, Seok S I 2019 Efficient, stable solar cells by using inherent bandgap of -phase formamidinium lead iodide Science 366 749-53 doi: 10.1126/science.aay7044
    [62]
    Li B, Binks D, Cao G, Tian J 2019 Engineering halide perovskite crystals through precursor chemistry Small 15 1903613 doi: 10.1002/smll.201903613
    [63]
    Yoo J W, Jang J, Kim U, Lee Y, Ji S-G, Noh E, Hong S, Choi M, Seok S I 2021 Efficient perovskite solar mini-modules fabricated via bar-coating using 2-methoxyethanol-based formamidinium lead tri-iodide precursor solution Joule 5 2420-36 doi: 10.1016/j.joule.2021.08.005
    [64]
    Xiao M, Huang F, Huang W, Dkhissi Y, Zhu Y, Etheridge J, Gray-Weale A, Bach U, Cheng Y-B, Spiccia L 2014 A fast depositioncrystallization procedure for highly efficient lead iodide perovskite thinfilm solar cells Angew. Chem., Int. Ed. 53 9898-903 doi: 10.1002/anie.201405334
    [65]
    Zakutayev A, Caskey C M, Fioretti A N, Ginley D S, Vidal J, Stevanovic V, Tea E, Lany S 2014 Defect tolerant semiconductors for solar energy conversion J. Phys. Chem. Lett. 5 1117-25 doi: 10.1021/jz5001787
    [66]
    Han T-H, Tan S, Xue J, Meng L, Lee J-W, Yang Y 2019 Interface and defect engineering for metal halide perovskite optoelectronic devices Adv. Mater. 31 1803515 doi: 10.1002/adma.201803515
    [67]
    Niu G, Li W, Meng F, Wang L, Dong H, Qiu Y 2014 Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells J. Mater. Chem. A 2 705-10 doi: 10.1039/C3TA13606J
    [68]
    Conings B, et al 2015 Intrinsic thermal instability of methylammonium lead trihalide perovskite Adv. Energy Mater. 5 1500477 doi: 10.1002/aenm.201500477
    [69]
    Juarez-Perez E J, Ono L K, Qi Y 2019 Thermal degradation of formamidinium based lead halide perovskites into sym-triazine and hydrogen cyanide observed by coupled thermogravimetry mass spectrometry analysis J. Mater. Chem. A 7 16912 doi: 10.1039/C9TA06058H
    [70]
    Zhang H, Park N G 2022 Strain control to stabilize perovskite solar cells Angew. Chem., Int. Ed. 61 e202212268 doi: 10.1002/anie.202212268
    [71]
    Saidaminov M I, et al 2018 Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air Nat. Energy 3 648-54 doi: 10.1038/s41560-018-0192-2
    [72]
    Zhu C, et al 2019 Strain engineering in perovskite solar cells and its impacts on carrier dynamics Nat. Commun. 10 1-11 doi: 10.1038/s41467-018-07882-8
    [73]
    Xue D-J, et al 2020 Regulating strain in perovskite thin films through charge-transport layers Nat. Commun. 11 1-8 doi: 10.1038/s41467-020-15338-1
    [74]
    Qiu F-Z, Li M-H, Wang S, Jiang Y, Qi J-J, Hu J-S 2022 Strain relaxation and domain enlargement via phase transition towards efficient CsPbI2Br solar cells J. Mater. Chem. A 10 3513-21 doi: 10.1039/D1TA09180H
    [75]
    Chen Y, et al 2020 Strain engineering and epitaxial stabilization of halide perovskites Nature 577 209-15 doi: 10.1038/s41586-019-1868-x
    [76]
    Jiang Y, Juarez-Perez E J, Ge Q, Wang S, Leyden M R, Ono L K, Raga S R, Hu J, Qi Y 2016 Post-annealing of MAPbI3 perovskite films with methylamine for efficient perovskite solar cells Mater. Horiz. 3 548-55 doi: 10.1039/C6MH00160B
    [77]
    Rui Y, Jin Z, Fan X, Li W, Li B, Li T, Wang Y, Wang L, Liang J 2022 Defect passivation and electrical conductivity enhancement in perovskite solar cells using functionalized graphene quantum dots Mater. Futures 1 045101 doi: 10.1088/2752-5724/ac9707
    [78]
    Yuan Y, Huang J 2016 Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability Acc. Chem. Res. 49 286-93 doi: 10.1021/acs.accounts.5b00420
    [79]
    Zhang C-X, Shen T, Guo D, Tang L-M, Yang K, Deng H-X 2020 Reviewing and understanding the stability mechanism of halide perovskite solar cells InfoMat 2 1034-56 doi: 10.1002/inf2.12104
    [80]
    Barker A J, et al 2017 Defect-assisted photoinduced halide segregation in mixed-halide perovskite thin films ACS Energy Lett. 2 1416-24 doi: 10.1021/acsenergylett.7b00282
    [81]
    Ruth A, Brennan M C, Draguta S, Morozov Y V, Zhukovskyi M, Janko B, Zapol P, Kuno M 2018 Vacancy-mediated anion photosegregation kinetics in mixed halide hybrid perovskites: coupled kinetic Monte Carlo and optical measurements ACS Energy Lett. 3 2321-8 doi: 10.1021/acsenergylett.8b01369
    [82]
    Gao F, Zhao Y, Zhang X, You J 2020 Recent progresses on defect passivation toward efficient perovskite solar cells Adv. Energy Mater. 10 1902650 doi: 10.1002/aenm.201902650
    [83]
    Buin A, Pietsch P, Xu J, Voznyy O, Ip A H, Comin R, Sargent E H 2014 Materials processing routes to trap-free halide perovskites Nano Lett. 14 6281-6 doi: 10.1021/nl502612m
    [84]
    Liu N, Yam C 2018 First-principles study of intrinsic defects in formamidinium lead triiodide perovskite solar cell absorbers Phys. Chem. Chem. Phys. 20 6800-4 doi: 10.1039/C8CP00280K
    [85]
    Liang J, et al 2019 Defect-engineering-enabled high-efficiency all-inorganic perovskite solar cells Adv. Mater. 31 1903448 doi: 10.1002/adma.201903448
    [86]
    Chen Q, Zhou H, Song T-B, Luo S, Hong Z, Duan H-S, Dou L, Liu Y, Yang Y 2014 Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells Nano Lett. 14 4158-63 doi: 10.1021/nl501838y
    [87]
    Shao Y, Xiao Z, Bi C, Yuan Y, Huang J 2014 Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells Nat. Commun. 5 5784 doi: 10.1038/ncomms6784
    [88]
    Shi J, Li Y, Li Y, Li D, Luo Y, Wu H, Meng Q 2018 From ultrafast to ultraslow: charge-carrier dynamics of perovskite solar cells Joule 2 1-23 doi: 10.1016/j.joule.2018.04.010
    [89]
    Doherty T A S, et al 2020 Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites Nature 580 360-6 doi: 10.1038/s41586-020-2184-1
    [90]
    Ni Z, et al 2020 Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells Science 367 1352-8 doi: 10.1126/science.aba0893
    [91]
    Kato Y, Ono L K, Lee M V, Wang S, Raga S R, Qi Y 2015 Silver iodide formation in methyl ammonium lead iodide perovskite solar cells with silver top electrodes Adv. Mater. Interfaces 2 1500195 doi: 10.1002/admi.201500195
    [92]
    Yuan Y, Wang Q, Shao Y, Lu H, Li T, Gruverman A, Huang J 2016 Electricfielddriven reversible conversion between methylammonium lead triiodide perovskites and lead iodide at elevated temperatures Adv. Energy Mater. 6 1501803 doi: 10.1002/aenm.201501803
    [93]
    Li Z, et al 2017 Extrinsic ion migration in perovskite solar cells Energy Environ. Sci. 10 1234-42 doi: 10.1039/C7EE00358G
    [94]
    Domanski K, Correa-Baena J-P, Mine N, Nazeeruddin M K, Abate A, Saliba M, Tress W, Hagfeldt A, Gratzel M 2016 Not all that glitters is gold: metal-migration-induced degradation in perovskite solar cells ACS Nano 10 6306-14 doi: 10.1021/acsnano.6b02613
    [95]
    Jiang Y, Yang S-C, Jeangros Q, Pisoni S, Moser T, Buecheler S, Tiwari A N, Fu F 2020 Mitigation of vacuum and illumination-induced degradation in perovskite solar cells by structure engineering Joule 4 1087-103 doi: 10.1016/j.joule.2020.03.017
    [96]
    Masi S, Gualdrn-Reyes A F, Mora-Ser I 2020 Stabilization of black perovskite phase in FAPbI3 and CsPbI3 ACS Energy Lett. 5 1974-85 doi: 10.1021/acsenergylett.0c00801
    [97]
    Marronnier A, Roma G, Boyer-Richard S, Pedesseau L, Jancu J-M, Bonnassieux Y, Katan C, Stoumpos C C, Kanatzidis M G, Even J 2018 Anharmonicity and disorder in the black phases of cesium lead iodide used for stable inorganic perovskite solar cells ACS Nano 12 3477-86 doi: 10.1021/acsnano.8b00267
    [98]
    Chen T, Foley B J, Park C, Brown C M, Harriger L W, Lee J, Ruff J, Yoon M, Choi J J, Lee S-H 2016 Entropy-driven structural transition and kinetic trapping in formamidinium lead iodide perovskite Sci. Adv. 2 e1601650 doi: 10.1126/sciadv.1601650
    [99]
    Hoke E T, Slotcavage D J, Dohner E R, Bowring A R, Karunadasa H I, McGehee M D 2015 Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics Chem. Sci. 6 613-7 doi: 10.1039/C4SC03141E
    [100]
    Li W, et al 2017 Phase segregation enhanced ion movement in efficient inorganic CsPbIBr2 solar cells Adv. Energy Mater. 7 1700946 doi: 10.1002/aenm.201700946
    [101]
    Yoon S J, Kuno M, Kamat P V 2017 Shift happens. How halide ion defects influence photoinduced segregation in mixed halide perovskites ACS Energy Lett. 2 1507-14 doi: 10.1021/acsenergylett.7b00357
    [102]
    Lin Y, et al 2018 Excess charge-carrier induced instability of hybrid perovskites Nat. Commun. 9 1-9 doi: 10.1038/s41467-018-07438-w
    [103]
    Belisle R A, Bush K A, Bertoluzzi L, Gold-Parker A, Toney M F, McGehee M D 2018 Impact of surfaces on photoinduced halide segregation in mixed-halide perovskites ACS Energy Lett. 3 2694-700 doi: 10.1021/acsenergylett.8b01562
    [104]
    Brennan M C, Draguta S, Kamat P V, Kuno M 2018 Light-induced anion phase segregation in mixed halide perovskites ACS Energy Lett. 3 204-13 doi: 10.1021/acsenergylett.7b01151
    [105]
    Braly I L, Stoddard R J, Rajagopal A, Uhl A R, Katahara J K, Jen A K-Y, Hillhouse H W 2017 Current-induced phase segregation in mixed halide hybrid perovskites and its impact on two-terminal tandem solar cell design ACS Energy Lett. 2 1841-7 doi: 10.1021/acsenergylett.7b00525
    [106]
    Bischak C G, Hetherington C L, Wu H, Aloni S, Ogletree D F, Limmer D T, Ginsberg N S 2017 Origin of reversible photoinduced phase separation in hybrid perovskites Nano Lett. 17 1028-33 doi: 10.1021/acs.nanolett.6b04453
    [107]
    Chen Y, et al 2019 Impacts of alkaline on the defects property and crystallization kinetics in perovskite solar cells Nat. Commun. 10 1112 doi: 10.1038/s41467-019-09093-1
    [108]
    Lee S J, Heo J H, Im S H 2020 Large-scale synthesis of uniform PbI2(DMSO) complex powder by solvent extraction method for efficient metal halide perovskite solar cells ACS Appl. Mater. Interfaces 12 8233-9 doi: 10.1021/acsami.9b20493
    [109]
    Ran C, Gao W, Li N, Xia Y, Li Q, Wu Z, Zhou H, Chen Y, Wang M, Huang W 2019 Facet-dependent control of PbI2 colloids for over 20% efficient perovskite solar cells ACS Energy Lett. 4 358-67 doi: 10.1021/acsenergylett.8b02262
    [110]
    Long M, et al 2017 Large-grain formamidinium PbI3-xBrx for high-performance perovskite solar cells via intermediate halide exchange Adv. Energy Mater. 7 1601882 doi: 10.1002/aenm.201601882
    [111]
    Zhang W, et al 2015 Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells Nat. Commun. 6 10030 doi: 10.1038/ncomms10030
    [112]
    Min H, Kim G, Paik M J, Lee S, Yang W S, Jung M, Seok S I 2019 Stabilization of precursor solution and perovskite layer by addition of sulfur Adv. Energy Mater. 9 1803476 doi: 10.1002/aenm.201803476
    [113]
    Ming Y, Xu M, Liu S, Li D, Wang Q, Hou X, Hu Y, Rong Y, Han H 2019 Ethanol stabilized precursors for highly reproducible printable mesoscopic perovskite solar cells J. Power Sources 424 261-7 doi: 10.1016/j.jpowsour.2019.03.110
    [114]
    Chao L, Xia Y, Li B, Xing G, Chen Y, Huang W 2019 Room-temperature molten salt for facile fabrication of efficient and stable perovskite solar cells in ambient air Chemistry 5 995-1006 doi: 10.1016/j.chempr.2019.02.025
    [115]
    Noel N K, Habisreutinger S N, Wenger B, Klug M T, Hrantner M T, Johnston M B, Nicholas R J, Moore D T, Snaith H J 2017 A low viscosity, low boiling point, clean solvent system for the rapid crystallisation of highly specular perovskite films Energy Environ. Sci. 10 145-52 doi: 10.1039/C6EE02373H
    [116]
    Deng Y, Van Brackle C H, Dai X, Zhao J, Chen B, Huang J 2019 Tailoring solvent coordination for high-speed, room-temperature blading of perovskite photovoltaic films Sci. Adv. 5 eaax7537 doi: 10.1126/sciadv.aax7537
    [117]
    Noel N K, Congiu M, Ramadan A J, Fearn S, McMeekin D P, Patel J B, Johnston M B, Wenger B, Snaith H J 2017 Unveiling the influence of pH on the crystallization of hybrid perovskites, delivering low voltage loss photovoltaics Joule 1 328-43 doi: 10.1016/j.joule.2017.09.009
    [118]
    Li L, Chen Y, Liu Z, Chen Q, Wang X, Zhou H 2016 The additive coordination effect on hybrids perovskite crystallization and high-performance solar cell Adv. Mater. 28 9862-8 doi: 10.1002/adma.201603021
    [119]
    Son D-Y, Kim S-G, Seo J-Y, Lee S-H, Shin H, Lee D, Park N-G 2018 Universal approach toward hysteresis-free perovskite solar cell via defect engineering J. Am. Chem. Soc. 140 1358-64 doi: 10.1021/jacs.7b10430
    [120]
    Zhao W, Yao Z, Yu F, Yang D, Liu S F 2018 Alkali metal doping for improved CH3NH3PbI3 perovskite solar cells Adv. Sci. 5 1700131 doi: 10.1002/advs.201700131
    [121]
    Prochowicz D, et al 2019 Engineering of perovskite materials based on formamidinium and cesium hybridization for high-efficiency solar cells Chem. Mater. 31 1620-7 doi: 10.1021/acs.chemmater.8b04871
    [122]
    Abdi-Jalebi M, Andaji-Garmaroudi Z, Pearson A J, Divitini G, Cacovich S, Philippe B, Rensmo H, Ducati C, Friend R H, Stranks S D 2018 Potassium- and rubidium-passivated alloyed perovskite films: optoelectronic properties and moisture stability ACS Energy Lett. 3 2671-8 doi: 10.1021/acsenergylett.8b01504
    [123]
    Bu T, Li J, Zheng F, Chen W, Wen X, Ku Z, Peng Y, Zhong J, Cheng Y-B, Huang F 2018 Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module Nat. Commun. 9 4609 doi: 10.1038/s41467-018-07099-9
    [124]
    Zhao Y, et al 2018 Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells Nat. Commun. 9 1607 doi: 10.1038/s41467-018-04029-7
    [125]
    Saliba M, et al 2016 Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance Science 354 206-9 doi: 10.1126/science.aah5557
    [126]
    Saliba M, et al 2016 Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency Energy Environ. Sci. 9 1989 doi: 10.1039/C5EE03874J
    [127]
    Turren-Cruz S-H, Hagfeldt A, Saliba M 2018 Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture Science 362 449-53 doi: 10.1126/science.aat3583
    [128]
    Abdi-Jalebi M, et al 2018 Maximizing and stabilizing luminescence from halide perovskites with potassium passivation Nature 555 497-501 doi: 10.1038/nature25989
    [129]
    Wang L, et al 2019 A Eu3+-Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells Science 363 265-70 doi: 10.1126/science.aau5701
    [130]
    Wu Y, Wan L, Fu S, Zhang W, Li X, Fang J 2019 Liquid metal acetate assisting preparation of high-efficiency and stable inverted perovskite solar cells J. Mater. Chem. A 7 14136-44 doi: 10.1039/C9TA04192C
    [131]
    Xu W, Zheng L, Zhang X, Cao Y, Meng T, Wu D, Liu L, Hu W, Gong X 2018 Efficient perovskite solar cells fabricated by Co partially substituted hybrid perovskite Adv. Energy Mater. 8 1703178 doi: 10.1002/aenm.201703178
    [132]
    Li N, et al 2019 Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells Nat. Energy 4 408-15 doi: 10.1038/s41560-019-0382-6
    [133]
    Yang G, Zhang H, Li G, Fang G 2019 Stabilizer-assisted growth of formamdinium-based perovskites for highly efficient and stable planar solar cells with over 22% efficiency Nano Energy 63 103835 doi: 10.1016/j.nanoen.2019.06.031
    [134]
    Yoo J J, et al 2021 Efficient perovskite solar cells via improved carrier management Nature 590 587-93 doi: 10.1038/s41586-021-03285-w
    [135]
    Arora N, Dar M I, Hinderhofer A, Pellet N, Schreiber F, Zakeeruddin S M, Grtzel M 2017 Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20% Science 358 768-71 doi: 10.1126/science.aam5655
    [136]
    Lee J, Singh S, Kim S, Baik S 2020 Graphene interfacial diffusion barrier between CuSCN and Au layers for stable perovskite solar cells Carbon 157 731-40 doi: 10.1016/j.carbon.2019.10.101
    [137]
    Wang Y, Wu T, Barbaud J, Kong W, Cui D, Chen H, Yang X, Han L 2019 Stabilizing heterostructures of soft perovskite semiconductors Science 365 687-91 doi: 10.1126/science.aax8018
    [138]
    Kim D, et al 2020 Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites Science 368 155-60 doi: 10.1126/science.aba3433
    [139]
    Yang S, et al 2019 Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts Science 365 473-8 doi: 10.1126/science.aax3294
    [140]
    Parikh N, Tavakoli M M, Pandey M, Kalam A, Prochowicz D, Yadav P 2021 Role of the spacer cation in the growth and crystal orientation of two-dimensional perovskites Sustain. Energy Fuels 5 1255-79 doi: 10.1039/D0SE01469A
    [141]
    Zhang X, Yang T, Ren X, Zhang L, Zhao K, Liu S 2021 Film formation control for high performance Dion-Jacobson 2D perovskite solar cells Adv. Energy Mater. 11 2002733 doi: 10.1002/aenm.202002733
    [142]
    Zhang Y, et al 2019 Dynamical transformation of two-dimensional perovskites with alternating cations in the interlayer space for high-performance photovoltaics J. Am. Chem. Soc. 141 2684-94 doi: 10.1021/jacs.8b13104
    [143]
    Zhu X, et al 2018 Vapor-fumigation for record efficiency two-dimensional perovskite solar cells with superior stability Energy Environ. Sci. 11 3349-57 doi: 10.1039/C8EE02284D
    [144]
    Lv G, Li L, Lu D, Xu Z, Dong Y, Li Q, Chang Z, Yin W-J, Liu Y 2021 Multiple-noncovalent-interaction-stabilized layered Dion-Jacobson perovskite for efficient solar cells Nano Lett. 21 5788-97 doi: 10.1021/acs.nanolett.1c01505
    [145]
    Ke W, Mao L, Stoumpos C C, Hoffman J, Spanopoulos I, Mohite A D, Kanatzidis M G 2019 Compositional and solvent engineering in Dion-Jacobson 2D perovskites boosts solar cell efficiency and stability Adv. Energy Mater. 9 1803384 doi: 10.1002/aenm.201803384
    [146]
    Wu H, Lian X, Li J, Zhang Y, Zhou G, Wen X, Xie Z, Zhu H, Wu G, Chen H 2021 Merged interface construction toward ultra-low Voc loss in inverted two-dimensional Dion-Jacobson perovskite solar cells with efficiency over 18% J. Mater. Chem. A 9 12566-73 doi: 10.1039/D1TA02015C
    [147]
    Yang J, et al 2021 Stable 2D alternating cation perovskite solar cells with power conversion efficiency >19% via solvent engineering Sol. RRL 5 2100286 doi: 10.1002/solr.202100286
    [148]
    Lai H, Lu D, Xu Z, Zheng N, Xie Z, Liu Y 2020 Organicsaltassisted crystal growth and orientation of quasi2D Ruddlesden-Popper perovskites for solar cells with efficiency over 19% Adv. Mater. 32 2001470 doi: 10.1002/adma.202001470
    [149]
    Li Q, Dong Y, Lv G, Liu T, Lu D, Zheng N, Dong X, Xu Z, Xie Z, Liu Y 2021 Fluorinated aromatic formamidinium spacers boost efficiency of layered Ruddlesden-Popper perovskite solar cells ACS Energy Lett. 6 2072-80 doi: 10.1021/acsenergylett.1c00620
    [150]
    Fu W, Liu H, Shi X, Zuo L, Li X, Jen A K Y 2019 Tailoring the functionality of organic spacer cations for efficient and stable quasi2D perovskite solar cells Adv. Funct. Mater. 29 1900221 doi: 10.1002/adfm.201900221
    [151]
    Wu G, et al 2019 Fine multiphase alignments in 2D perovskite solar cells with efficiency over 17% via slow postannealing Adv. Mater. 31 1903889 doi: 10.1002/adma.201903889
    [152]
    Tan S, et al 2019 Effect of high dipole moment cation on layered 2D organic-inorganic halide perovskite solar cells Adv. Energy Mater. 9 1803024 doi: 10.1002/aenm.201803024
    [153]
    Tsai H, et al 2016 High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells Nature 536 312-6 doi: 10.1038/nature18306
    [154]
    Ren H, et al 2020 Efficient and stable Ruddlesden-Popper perovskite solar cell with tailored interlayer molecular interaction Nat. Photon. 14 154-63 doi: 10.1038/s41566-019-0572-6
    [155]
    Liang C, et al 2021 Two-dimensional Ruddlesden-Popper layered perovskite solar cells based on phase-pure thin films Nat. Energy 6 38-45 doi: 10.1038/s41560-020-00721-5
    [156]
    Dong Y, Lu D, Xu Z, Lai H, Liu Y 2020 2thiopheneformamidiniumbased 2D Ruddlesden-Popper perovskite solar cells with efficiency of 16.72% and negligible hysteresis Adv. Energy Mater. 10 2000694 doi: 10.1002/aenm.202000694
    [157]
    Wang H, Qin Z, Xie J, Zhao S, Liu K, Guo X, Li G, Lu X, Yan K, Xu J 2020 Efficient slantwise aligned Dion-Jacobson phase perovskite solar cells based on trans1,4cyclohexanediamine Small 16 2003098 doi: 10.1002/smll.202003098
    [158]
    Wang H, Chan C C S, Chu M, Xie J, Zhao S, Guo X, Miao Q, Wong K S, Yan K, Xu J 2020 Interlayer crosslinked 2D perovskite solar cell with uniform phase distribution and increased exciton coupling Sol. RRL 4 1900578 doi: 10.1002/solr.201900578
    [159]
    Li F, Zhang J, Jo S, Qin M, Li Z, Liu T, Lu X, Zhu Z, Jen A K Y 2020 Vertical orientated Dion-Jacobson quasi2D perovskite film with improved photovoltaic performance and stability Small Methods 4 1900831 doi: 10.1002/smtd.201900831
    [160]
    Di L, Lv G, Xu Z, Dong Y, Ji X, Liu Y 2020 Thiophene-based two-dimensional Dion-Jacobson perovskite solar cells with over 15% efficiency J. Am. Chem. Soc. 142 11114-22 doi: 10.1021/jacs.0c03363
    [161]
    Soe C M M, et al 2017 New type of 2D perovskites with alternating cations in the interlayer space, (C(NH23)(CH3NH3nPbnI3n+1: structure, properties, and photovoltaic performance J. Am. Chem. Soc. 139 16297-309 doi: 10.1021/jacs.7b09096
    [162]
    Zhang Y, Chen J, Lian X, Qin M, Li J, Andersen T R, Lu X, Wu G, Li H, Chen H 2019 Highly efficient guanidiniumbased quasi 2D perovskite solar cells via a twostep posttreatment process Small Methods 3 1900375 doi: 10.1002/smtd.201900375
    [163]
    Wu J, et al 2019 A simple way to simultaneously release the interface stress and realize the inner encapsulation for highly efficient and stable perovskite solar cells Adv. Funct. Mater. 29 1905336 doi: 10.1002/adfm.201905336
    [164]
    Dou J, et al 2021 Synergistic effects of Eu-MOF on perovskite solar cells with improved stability Adv. Mater. 33 e2102947 doi: 10.1002/adma.202102947
    [165]
    Zhang H, et al 2021 Multifunctional crosslinkingenabled strainregulating crystallization for stable, efficient FAPbI3 based perovskite solar cells Adv. Mater. 33 2008487 doi: 10.1002/adma.202008487
    [166]
    Wang H, et al 2019 Interfacial residual stress relaxation in perovskite solar cells with improved stability Adv. Mater. 31 1904408 doi: 10.1002/adma.201904408
    [167]
    Wang S, Wang A, Deng X, Xie L, Xiao A, Li C, Xiang Y, Li T, Ding L, Hao F 2020 Lewis acid/base approach for efficacious defect passivation in perovskite solar cells J. Mater. Chem. A 8 12201-25 doi: 10.1039/D0TA03957H
    [168]
    Liu C, et al 2020 Tailoring C60 for efficient inorganic CsPbI2Br perovskite solar cells and modules Adv. Mater. 32 1907361 doi: 10.1002/adma.201907361
    [169]
    Zhang M, et al 2019 Reconfiguration of interfacial energy band structure for high-performance inverted structure perovskite solar cells Nat. Commun. 10 4593 doi: 10.1038/s41467-019-12613-8
    [170]
    Yang Z, Dou J, Kou S, Dang J, Ji Y, Yang G, Wu W-Q, Kuang D-B, Wang M 2020 Multifunctional phosphoruscontaining lewis acid and base passivation enabling efficient and moisturestable perovskite solar cells Adv. Funct. Mater. 30 1910710 doi: 10.1002/adfm.201910710
    [171]
    Dai Z, Yadavalli S K, Chen M, Abbaspourtamijani A, Qi Y, Padture N P 2021 Interfacial toughening with self-assembled monolayers enhances perovskite solar cell reliability Science 372 618-22 doi: 10.1126/science.abf5602
    [172]
    Fu X, et al 2021 Halogen-halogen bonds enable improved long-term operational stability of mixed-halide perovskite photovoltaics Chemistry 7 3131-43 doi: 10.1016/j.chempr.2021.08.009
    [173]
    Wu J, Fang Y, Zhang D, Zhang S, Wan J, Wen R, Zhou X, Fu N, Lin Y 2021 Efficient and stable perovskite solar cells based on a quasi-point-contact and rear-reflection structure with 22.5 efficiency J. Mater. Chem. A 9 14877-87 doi: 10.1039/D1TA02958D
    [174]
    Guo P, Ye Q, Liu C, Cao F, Yang X, Ye L, Zhao W, Wang H, Li L, Wang H 2020 Double barriers for moisture degradation: assembly of hydrolysable hydrophobic molecules for stable perovskite solar cells with high opencircuit voltage Adv. Funct. Mater. 30 2002639 doi: 10.1002/adfm.202002639
    [175]
    Wu C, et al 2018 Highlystable organolead halide perovskites synthesized through green selfassembly process Sol. RRL 2 1800052 doi: 10.1002/solr.201800052
    [176]
    Wang R, et al 2019 Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics Science 366 1509-13 doi: 10.1126/science.aay9698
    [177]
    Zhao Y, et al 2020 A polymerizationassisted grain growth strategy for efficient and stable perovskite solar cells Adv. Mater. 32 1907769 doi: 10.1002/adma.201907769
    [178]
    Xie L, Xie J, Wang S, Chen B, Yang C, Wang Z, Liu X, Chen J, Jia K, Hao F 2021 Fluorinated oligomer wrapped perovskite crystals for inverted MAPbI3 solar cells with 21% efficiency and enhanced stability ACS Appl. Mater. Interfaces 13 26093-101 doi: 10.1021/acsami.1c06216
    [179]
    Li X, Zhang W, Wang Y-C, Zhang W, Wang H-Q, Fang J 2018 In-situ cross-linking strategy for efficient and operationally stable methylammoniun lead iodide solar cells Nat. Commun. 9 3806-10 doi: 10.1038/s41467-018-06204-2
    [180]
    Wang R, et al 2019 Caffeine improves the performance and thermal stability of perovskite solar cells Joule 3 1464-77 doi: 10.1016/j.joule.2019.04.005
    [181]
    Xiong S, et al 2021 Direct observation on p- to n-type transformation of perovskite surface region during defect passivation driving high photovoltaic efficiency Joule 5 467-80 doi: 10.1016/j.joule.2020.12.009
    [182]
    Li E, Liu C, Lin H, Xu X, Liu S, Zhang S, Yu M, Cao X-M, Wu Y, Zhu W-H 2021 Bonding strength regulates anchoringbased selfassembly monolayers for efficient and stable perovskite solar cells Adv. Funct. Mater. 31 2103847 doi: 10.1002/adfm.202103847
    [183]
    Zhang H, Wu Y, Shen C, Li E, Yan C, Zhang W, Tian H, Han L, Zhu W-H 2019 Efficient and stable chemical passivation on perovskite surface via bidentate anchoring Adv. Energy Mater. 9 1803573 doi: 10.1002/aenm.201803573
    [184]
    Gao L, Huang S, Chen L, Li X, Ding B, Huang S, Yang G 2018 Excellent stability of perovskite solar cells by passivation engineering Sol. RRL 2 1800088 doi: 10.1002/solr.201800088
    [185]
    Wang S, He Z, Yang J, Li T, Pu X, Han J, Cao Q, Gao B, Li X 2021 Tailoring the mercaptan ligands for high performance inverted perovskite solar cells with efficiency exceeding 21% J. Energy Chem. 60 169-77 doi: 10.1016/j.jechem.2020.12.035
    [186]
    Chen H, Liu T, Zhou P, Li S, Ren J, He H, Wang J, Wang N, Guo S 2019 Efficient bifacial passivation with crosslinked thioctic acid for highperformance methylammonium lead iodide perovskite solar cells Adv. Mater. 32 1905661 doi: 10.1002/adma.201905661
    [187]
    Liu L, et al 2018 Grain-boundary atches by in situ conversion to enhance perovskite solar cells stability Adv. Mater. 30 1800544 doi: 10.1002/adma.201800544
    [188]
    Guo P, Ye Q, Yang X, Zhang J, Xu F, Shchukin D, Wei B, Wang H 2019 Surface & grain boundary co-passivation by fluorocarbon based bifunctional molecules for perovskite solar cells with efficiency over 21% J. Mater. Chem. A 7 2497-506 doi: 10.1039/C8TA11524A
    [189]
    Yang S, Dai J, Yu Z, Shao Y, Zhou Y, Xiao X, Zeng X C, Huang J 2019 Tailoring passivation molecular structures for extremely small open-circuit voltage loss in perovskite solar cells J. Am. Chem. Soc. 141 5781-7 doi: 10.1021/jacs.8b13091
    [190]
    Li L, Jin X, Liu N, Chen Q, Zhang W-B, Zhou H 2018 Efficient moisture-resistant perovskite solar cell with nanostructure featuring 3D amine motif Sol. RRL 2 1800069 doi: 10.1002/solr.201800069
    [191]
    Chen R, Wang Y, Nie S, Shen H, Hui Y, Peng J, Wu B, Yin J, Li J, Zheng N 2021 Sulfonate-assisted surface iodide management for high-performance perovskite solar cells and modules J. Am. Chem. Soc. 143 10624-32 doi: 10.1021/jacs.1c03419
    [192]
    Cao Q, et al 2021 Efficient and stable inverted perovskite solar cells with very high fill factors via incorporation of star-shaped polymer Sci. Adv. 7 eabg0633 doi: 10.1126/sciadv.abg0633
    [193]
    Choi K, Lee J, Kim H I, Park C W, Kim G-W, Choi H, Park S, Park S A, Park T 2018 Thermally stable, planar hybrid perovskite solar cells with high efficiency Energy Environ. Sci. 11 3238-47 doi: 10.1039/C8EE02242A
    [194]
    Zheng X, et al 2018 Dual functions of crystallization control and defect passivation enabled by sulfonic zwitterions for stable and efficient perovskite solar cells Adv. Mater. 30 1803428 doi: 10.1002/adma.201803428
    [195]
    Lee S-H, Jeong S, Seo S, Shin H, Ma C, Park N-G 2021 Acid dissociation constant: a criterion for selecting passivation agents in perovskite solar cells ACS Energy Lett. 6 1612-21 doi: 10.1021/acsenergylett.1c00452
    [196]
    Lv Y, Song X, Yin Y, Feng Y, Ma H, Hao C, Jin S, Shi Y 2020 Hexylammonium iodide derived two-dimensional perovskite as interfacial passivation layer in efficient two-dimensional/three-dimensional perovskite solar cells ACS Appl. Mater. Interfaces 12 698-705 doi: 10.1021/acsami.9b17930
    [197]
    Proppe A H, et al 2021 Multication perovskite 2D/3D interfaces form via progressive dimensional reduction Nat. Commun. 12 3472 doi: 10.1038/s41467-021-23616-9
    [198]
    Liu T, et al 2021 Spacer engineering using aromatic formamidinium in 2D/3D hybrid perovskites for highly efficient solar cells ACS Nano 15 7811-20 doi: 10.1021/acsnano.1c02191
    [199]
    Li F, et al 2020 Regulating surface termination for efficient inverted perovskite solar cells with greater than 23% efficiency J. Am. Chem. Soc. 142 20134-42 doi: 10.1021/jacs.0c09845
    [200]
    Zhuang J, et al 2019 Interfacial passivation for perovskite solar cells: the effects of the functional group in phenethylammonium iodide ACS Energy Lett. 4 2913-21 doi: 10.1021/acsenergylett.9b02375
    [201]
    Proppe A H, Wei M, Chen B, Quintero-Bermudez R, Kelley S O, Sargent E H 2019 Photochemically cross-linked quantum well ligands for 2D/3D perovskite photovoltaics with improved photovoltage and stability J. Am. Chem. Soc. 141 14180-9 doi: 10.1021/jacs.9b05083
    [202]
    Jang Y-W, Lee S, Yeom K M, Jeong K, Choi K, Choi M, Noh J H 2021 Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth Nat. Energy 6 63-71 doi: 10.1038/s41560-020-00749-7
    [203]
    Xue J, et al 2021 Reconfiguring the band-edge states of photovoltaic perovskites by conjugated organic cations Science 371 636-40 doi: 10.1126/science.abd4860
    [204]
    Wang S, Li Z, Zhang Y, Liu X, Han J, Li X, Liu Z, Liu S, Choy W C H 2019 Watersoluble triazolium ionicliquidinduced surface selfassembly to enhance the stability and efficiency of perovskite solar cells Adv. Funct. Mater. 29 1900417 doi: 10.1002/adfm.201900417
    [205]
    Jung E H, Jeon N J, Park E Y, Moon C S, Shin T J, Yang T-Y, Noh J H, Seo J 2019 Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene) Nature 567 511-5 doi: 10.1038/s41586-019-1036-3
    [206]
    Jung M, Shin T J, Seo J, Kim G, Seok S I 2018 Structural features and their functions in surfactant-armoured methylammonium lead iodide perovskites for highly efficient and stable solar cells Energy Environ. Sci. 11 2188-197 doi: 10.1039/C8EE00995C
    [207]
    Zheng X, et al 2020 Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells Nat. Energy 5 131-40 doi: 10.1038/s41560-019-0538-4
    [208]
    Wang H, et al 2020 Ligand-modulated excess PbI2 nanosheets for highly efficient and stable perovskite solar cells Adv. Mater. 32 2000865 doi: 10.1002/adma.202000865
    [209]
    Wu W-Q, Zhong J-X, Liao 4 J-F, Zhang C, Zhou Y, Feng W, Ding L, Wang L, Kuang D-B 2020 Spontaneous surface/interface ligand-anchored functionalization for extremely high fill factor over 86% in perovskite solar cells Nano Energy 75 104929 doi: 10.1016/j.nanoen.2020.104929
    [210]
    Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z, You J 2019 Surface passivation of perovskite film for efficient solar cells Nat. Photon. 13 460-6 doi: 10.1038/s41566-019-0398-2
    [211]
    Zheng X, Chen B, Dai J, Fang Y, Bai Y, Lin Y, Wei H, Zeng X C, Huang J 2017 Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations Nat. Energy 2 17102 doi: 10.1038/nenergy.2017.102
    [212]
    Chen Y, et al 2020 Self-elimination of intrinsic defects improves the low-temperature performance of perovskite photovoltaics Joule 4 1961-76 doi: 10.1016/j.joule.2020.07.006
    [213]
    Zai H, et al 2021 Sandwiched electrode buffer for efficient and stable perovskite solar cells with dual back surface fields Joule 5 2148-63 doi: 10.1016/j.joule.2021.06.001
    [214]
    Lin Y H, et al 2020 A piperidinium salt stabilizes efficient metal-halide perovskite solar cells Science 369 96-102 doi: 10.1126/science.aba1628
    [215]
    Bai S, et al 2019 Planar perovskite solar cells with long-term stability using ionic liquid additives Nature 571 245-50 doi: 10.1038/s41586-019-1357-2
    [216]
    Li N, et al 2021 Liquid medium annealing for fabricating durable perovskite solar cells with improved reproducibility Science 373 561-7 doi: 10.1126/science.abh3884
    [217]
    Chen S, Liu Y, Xiao X, Yu Z, Deng Y, Dai X, Ni Z, Huang J 2020 Identifying the soft nature of defective perovskite surface layer and its removal using a facile mechanical approach Joule 4 2661-74 doi: 10.1016/j.joule.2020.10.014
    [218]
    Lin Y, et al 2021 Revealing defective nanostructured surfaces and their impact on the intrinsic stability of hybrid perovskites Energy Environ. Sci. 14 1563-72 doi: 10.1039/D1EE00116G
    [219]
    Liu Y, et al 2020 Stabilization of highly efficient and stable phasepure FAPbI3 perovskite solar cells by molecularly tailored 2Doverlayers Angew. Chem., Int. Ed. 59 15688-94 doi: 10.1002/anie.202005211
    [220]
    Alanazi A Q, et al 2019 Atomic-level microstructure of efficient formamidinium-based perovskite solar cells stabilized by 5-ammonium valeric acid iodide revealed by multi-nuclear and two-dimensional solid-state NMR J. Am. Chem. Soc. 141 17659-69 doi: 10.1021/jacs.9b07381
    [221]
    Zhang T, Xu Q, Xu F, Fu Y, Wang Y, Yan Y, Zhang L, Zhao Y 2019 Spontaneous low-temperature crystallization of -FAPbI3 for highly efficient perovskite solar cells Sci. Bull. 64 1608-16 doi: 10.1016/j.scib.2019.08.029
    [222]
    Liu T, et al 2018 Stable formamidiniumbased perovskite solar cells via in situ grain encapsulation Adv. Energy Mater. 8 1800232 doi: 10.1002/aenm.201800232
    [223]
    Liu G, Zheng H, Xu X, Xu S, Zhang X, Pan X, Dai S 2019 Introduction of hydrophobic ammonium salts with halogen functional groups for highefficiency and stable 2D/3D perovskite solar cells Adv. Funct. Mater. 29 1807565 doi: 10.1002/adfm.201807565
    [224]
    Qiu F-Z, Li M-H, Wang S, Sun J-Y, Jiang Y, Qi J-J, Hu J-S 2021 Regulating the crystalline phase of intermediate films enables FA1-xMAxPbI3 perovskite solar cells with efficiency over 22% J. Mater. Chem. A 9 24064-70 doi: 10.1039/D1TA06410J
    [225]
    Kim M, et al 2019 Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells Joule 3 2179-92 doi: 10.1016/j.joule.2019.06.014
    [226]
    Xie F, Chen C-C, Wu Y, Li X, Cai M, Liu X, Yang X, Han L 2017 Vertical recrystallization for highly efficient and stable formamidinium-based inverted-structure perovskite solar cells Energy Environ. Sci. 10 1942-9 doi: 10.1039/C7EE01675A
    [227]
    Lu H, et al 2020 Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells Science 370 eabb8985 doi: 10.1126/science.abb8985
    [228]
    Park B-W, et al 2021 Stabilization of formamidinium lead triiodide -phase with isopropylammonium chloride for perovskite solar cells Nat. Energy 6 419-28 doi: 10.1038/s41560-021-00802-z
    [229]
    Hui W, et al 2021 Stabilizing black-phase formamidinium perovskite formation at room temperature and high humidity Science 371 1359-64 doi: 10.1126/science.abf7652
    [230]
    Akin S, Akman E, Sonmezoglu S 2020 FAPbI3based perovskite solar cells employing hexylbased ionic liquid with an efficiency over 20% and excellent longterm stability Adv. Funct. Mater. 30 2002964 doi: 10.1002/adfm.202002964
    [231]
    Meng L, You J, Yang Y 2018 Addressing the stability issue of perovskite solar cells for commercial applications Nat. Commun. 9 5265 doi: 10.1038/s41467-018-07255-1
    [232]
    Jiang Y, Qi Y 2021 Metal halide perovskite-based flexible tandem solar cells: next-generation flexible photovoltaic technology Mater. Chem. Front. 5 4833-50 doi: 10.1039/D1QM00279A
    [233]
    Li M-H, Qiu F-Z, Wang S, Jiang Y, Hu J-S 2022 Hole transporting materials in inorganic CsPbI3-xBrx solar cells: fundamentals, criteria and opportunities Mater. Today 52 250-68 doi: 10.1016/j.mattod.2021.11.017
    [234]
    Li Y, Cooper J K, Liu W, Sutter-Fella C M, Amani M, Beeman J W, Javey A, Ager J W, Liu Y, Toma F M 2016 Defective TiO2 with high photoconductive gain for efficient and stable planar heterojunction perovskite solar cells Nat. Commun. 7 1-7 doi: 10.1038/ncomms12446
    [235]
    Hou Y, et al 2017 A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells Science 358 1192-7 doi: 10.1126/science.aao5561
    [236]
    Chen W, et al 2022 Monolithic perovskite/organic tandem solar cells with 23.6% efficiency enabled by reduced voltage losses and optimized interconnecting layer Nat. Energy 7 229-37 doi: 10.1038/s41560-021-00966-8
    [237]
    Shi L, et al 2017 Accelerated lifetime testing of organic-inorganic perovskite solar cells encapsulated by polyisobutylene ACS Appl. Mater. Interfaces 9 25073-81 doi: 10.1021/acsami.7b07625
    [238]
    Ma S, et al 2020 1000 h operational lifetime perovskite solar cells by ambient melting encapsulation Adv. Energy Mater. 10 1902472 doi: 10.1002/aenm.201902472
    [239]
    Yang T-Y, Jeon N J, Shin H-W, Shin S S, Kim Y Y, Seo J 2019 Achieving longterm operational stability of perovskite solar cells with a stabilized efficiency exceeding 20% after 1000 h Adv. Sci. 6 1900528 doi: 10.1002/advs.201900528
    [240]
    Jiang Y, Qiu L, Juarez-Perez E J, Ono L K, Hu Z, Liu Z, Wu Z, Meng L, Wang Q, Qi Y 2019 Reduction of lead leakage from damaged lead halide perovskite solar modules using self-healing polymer-based encapsulation Nat. Energy 4 585-93 doi: 10.1038/s41560-019-0406-2
  • 加载中

Catalog

    Figures(21)  / Tables(6)

    Article Metrics

    Article Views(337) PDF downloads(115)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return