Volume 2 Issue 1
March  2022
Turn off MathJax
Article Contents
Shuo Wang, Minghua Li, Yan Jiang, Jinsong Hu. Instability of solution-processed perovskite films: origin and mitigation strategies[J]. Materials Futures, 2023, 2(1): 012102. doi: 10.1088/2752-5724/acb838
Citation: Shuo Wang, Minghua Li, Yan Jiang, Jinsong Hu. Instability of solution-processed perovskite films: origin and mitigation strategies[J]. Materials Futures, 2023, 2(1): 012102. doi: 10.1088/2752-5724/acb838
Topical Review •
OPEN ACCESS

Instability of solution-processed perovskite films: origin and mitigation strategies

© 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 2, Number 1
  • Received Date: 2022-12-23
  • Accepted Date: 2023-02-01
  • Publish Date: 2023-03-03
  • Perovskite solar cells (PSCs) are promising next-generation photovoltaics due to their unique optoelectronic properties and rapid rise in power conversion efficiency. However, the instability of perovskite materials and devices is a serious obstacle hindering technology commercialization. The quality of perovskite films, which is an important prerequisite for long-term stable PSCs, is determined by the quality of the precursor solution and the post-deposition treatment performed after perovskite formation. Herein, we review the origin of instability of solution-processed PSCs from the perspectives of the precursor solutions and the perovskite films. In addition, we summarize the recent strategies for improving the stability of the perovskite films. Finally, we pinpoint possible approaches to further advance their long-term stability.
  • loading
  • [1]
    Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L and Huang J 2015 Electron-hole diffusion lengths > 175 µm in solution-grown CH3NH3PbI3 single crystals Science 347 967
    [2]
    Shi D et al 2015 Solar cells. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals Science 347 519–22
    [3]
    Lu H, Krishna A, Zakeeruddin S M, Grätzel M and Hagfeldt A 2020 Compositional and interface engineering of organic-inorganic lead halide perovskite solar cells iScience 23 101359
    [4]
    Burschka J, Pellet N, Moon S-J, Humphry-Baker R, Gao P, Nazeeruddin M K and Grätzel M 2013 Sequential deposition as a route to high-performance perovskite-sensitized solar cells Nature 499 316–9
    [5]
    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S and Seok S I 2014 Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells Nat. Mater. 13 897–903
    [6]
    Deng Y, Zheng X, Bai Y, Wang Q, Zhao J and Huang J 2018 Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules Nat. Energy 3 560–6
    [7]
    Lu M, Zhang Y, Wang S, Guo J, Yu W W and Rogach A L 2019 Metal halide perovskite light-emitting devices: promising technology for next-generation displays Adv. Funct. Mater. 29 1902008
    [8]
    Yuant F et al 2020 Color-pure red light-emitting diodes based on two-dimensional lead-free perovskites Sci. Adv. 6 eabb0253
    [9]
    Tan Z-K et al 2014 Bright light-emitting diodes based on organometal halide perovskite Nat. Nanotechnol. 9 687–92
    [10]
    Xia H-R, Li J, Sun W-T and Peng L-M 2014 Organohalide lead perovskite based photodetectors with much enhanced performance Chem. Commun. 50 13695–7
    [11]
    Wang H and Kim D H 2011 Perovskite-based photodetectors: materials and devices Chem. Soc. Rev. 40 15–18
    [12]
    Dou L, Yang Y M, You J, Hong Z, Chang W-H, Li G and Yang Y 2014 Solution-processed hybrid perovskite photodetectors with high detectivity Nat. Commun. 5 5404
    [13]
    Saidaminov M I, Adinolfi V, Comin R, Abdelhady A L, Peng W, Dursun I, Yuan M, Hoogland S, Sargent E H and Bakr O M 2015 Planar-integrated single-crystalline perovskite photodetectors Nat. Commun. 6 8724
    [14]
    Kim Y C, Kim K H, Son D-Y, Jeong D-N, Seo J-Y, Choi Y S, Han I T, Lee S Y and Park N-G 2017 Printable organometallic perovskite enables large-area, low-dose x-ray imaging Nature 550 87–91
    [15]
    He S, Qiu L, Ono L K and Qi Y 2020 How far are we from attaining 10-year lifetime for metal halide perovskite solar cells? Mater. Sci. Eng. R 140 100545
    [16]
    Li J, Han Z, Gu Y, Yu D, Liu J, Hu D, Xu X and Zeng H 2021 Perovskite single crystals: synthesis, optoelectronic properties, and application Adv. Funct. Mater. 31 2008684
    [17]
    Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 Organometal halide perovskites as visible-light sensitizers for photovoltaic cells J. Am. Chem. Soc. 131 6050–1
    [18]
    Jiang Q, Chu Z, Wang P, Yang X, Liu H, Wang Y, Yin Z, Wu J, Zhang X and You J 2017 Planar-structure perovskite solar cells with efficiency beyond 21% Adv. Mater. 29 1703852
    [19]
    Bishop J E, Routledge T J and Lidzey D G 2018 Advances in spray-cast perovskite solar cells J. Phys. Chem. Lett. 9 1977–84
    [20]
    Park N-G and Zhu K 2020 Scalable fabrication and coating methods for perovskite solar cells and solar modules Nat. Rev. Mater. 5 333–50
    [21]
    Huang H-H et al 2021 A simple one-step method with wide processing window for high-quality perovskite mini-module fabrication Joule 5 958–74
    [22]
    Xiao Z, Dong Q, Bi C, Shao Y, Yuan Y and Huang J 2014 Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement Adv. Mater. 26 6503–9
    [23]
    Nie W et al 2015 High-efficiency solution-processed perovskite solar cells with millimeter-scale grains Science 347 522–5
    [24]
    Min H et al 2021 Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes Nature 598 444–50
    [25]
    Ding Y et al 2022 Single-crystalline TiO2 nanoparticles for stable and efficient perovskite modules Nat. Nanotechnol. 17 598–605
    [26]
    Yan C et al 2018 Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment Nat. Energy 3 764–72
    [27]
    Ma C and Park N-G 2020 A realistic methodology for 30% efficient perovskite solar cells Chemistry 6 1254–64
    [28]
    Liu M, Johnston M B and Snaith H J 2013 Efficient planar heterojunction perovskite solar cells by vapour deposition Nature 501 395–8
    [29]
    Feng J, Jiao Y, Wang H, Zhu X, Sun Y, Du M, Cao Y, Yang D and Liu S F 2021 High-throughput large-area vacuum deposition for high-performance formamidine-based perovskite solar cells Energy Environ. Sci. 14 3035–43
    [30]
    Jiang Y, Leyden M R, Qiu L, Wang S, Ono L K, Wu Z, Juarez-Perez E J and Qi Y 2018 Combination of hybrid CVD and cation exchange for upscaling Cs-substituted mixed cation perovskite solar cells with high efficiency and stability Adv. Funct. Mater. 28 1703835
    [31]
    Jiang Y et al 2019 Negligible-Pb-waste and upscalable perovskite deposition technology for high-operational-stability perovskite solar modules Adv. Energy Mater. 9 1803047
    [32]
    Jiang Y, He S, Qiu L, Zhao Y and Qi Y 2022 Perovskite solar cells by vapor deposition based and assisted methods Appl. Phys. Rev. 9 021305
    [33]
    Khenkin M V et al 2020 Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures Nat. Energy 5 35–49
    [34]
    Zhu Y, Hu M, Xu M, Zhang B, Huang F, Cheng Y-B and Lu J 2022 Bilayer metal halide perovskite for efficient and stable solar cells and modules Mater. Futures 1 042102
    [35]
    Boyd C C, Cheacharoen R, Leijtens T and McGehee M D 2019 Understanding degradation mechanisms and improving stability of perovskite photovoltaics Chem. Rev. 119 3418–51
    [36]
    Li F and Liu M 2017 Recent efficient strategies for improving the moisture stability of perovskite solar cells J. Mater. Chem. A 5 15447–59
    [37]
    Yin W-J, Yang J-H, Kang J, Yan Y and Wei S-H 2015 Halide perovskite materials for solar cells: a theoretical review J. Mater. Chem. A 3 8926
    [38]
    Wu J, Liu S-C, Li Z, Wang S, Xue D-J, Lin Y and Hu J-S 2021 Strain in perovskite solar cells: origins, impacts and regulation Natl Sci. Rev. 8 nwab047
    [39]
    Qiu Z, Li N, Huang Z, Chen Q and Zhou H 2020 Recent advances in improving phase stability of perovskite solar cells Small Methods 4 1900877
    [40]
    Pareja-Rivera C, Solís-Cambero A L, Sánchez-Torres M, Lima E and Solis-Ibarra D 2018 On the true composition of mixed-cation perovskite films ACS Energy Lett. 3 2366–7
    [41]
    Zhang Y, Seo S, Lim S Y, Kim Y, Kim S-G, Lee D-K, Lee S-H, Shin H, Cheong H and Park N-G 2020 Achieving reproducible and high-efficiency (>21%) perovskite solar cells with a presynthesized FAPbI3 powder ACS Energy Lett. 5 360–6
    [42]
    Shin G S, Zhang Y and Park N-G 2020 Stability of precursor solution for perovskite solar cell: mixture (FAI+PbI2) versus synthetic FAPbI3 crystal ACS Appl. Mater. Interfaces 12 15167–74
    [43]
    Kim G M, Ishii A, Öz S and Miyasaka T 2020 MACl-assisted Ge doping of Pb-hybrid perovskite: a universal route to stabilize high performance perovskite solar cells Adv. Energy Mater. 10 1903299–n/a.
    [44]
    Liu Z et al 2017 Chemical reduction of intrinsic defects in thicker heterojunction planar perovskite solar cells Adv. Mater. 29 1606774
    [45]
    Chen S, Xiao X, Gu H and Huang J 2021 Iodine reduction for reproducible and high-performance perovskite solar cells and modules Sci. Adv. 7 eabe8130
    [46]
    Kim J et al 2020 Unveiling the relationship between the perovskite precursor solution and the resulting device performance J. Am. Chem. Soc. 142 6251–60
    [47]
    Chen C, Rao Y, Li Z, Wang X, Cui G, Wang W and Pang S 2021 Stabilizing formamidinium lead iodide perovskite precursor solution with phenylboric acid Sol. RRL 5 2000715
    [48]
    Qin M et al 2018 Fused-ring electron acceptor ITIC-Th: a novel stabilizer for halide perovskite precursor solution Adv. Energy Mater. 8 1703399
    [49]
    Wu X et al 2019 Stable triple cation perovskite precursor for highly efficient perovskite solar cells enabled by interaction with 18C6 stabilizer Adv. Funct. Mater. 30 1908613
    [50]
    Juarez-Perez E J, Hawash Z, Raga S R, Ono L K and Qi Y 2016 Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry-mass spectrometry analysis Energy Environ. Sci. 9 3406
    [51]
    Wang S, Jiang Y, Juarez-Perez E J, Ono L K and Qi Y 2016 Accelerated degradation of methylammonium lead iodide perovskites induced by exposure to iodine vapour Nat. Energy 2 1–8
    [52]
    Chen S et al 2020 General decomposition pathway of organic-inorganic hybrid perovskites through an intermediate superstructure and its suppression mechanism Adv. Mater. 32 2001107
    [53]
    Shi L et al 2020 Gas chromatography-mass spectrometry analyses of encapsulated stable perovskite solar cells Science 368 eaba2412
    [54]
    An Y, Hidalgo J, Perini C A R, Castro-Méndez A-F, Vagott J N, Bairley K, Wang S, Li X and Correa-Baena J-P 2021 Structural stability of formamidinium- and cesium-based halide perovskites ACS Energy Lett. 6 1942–69
    [55]
    Li Z, Yang M, Park J-S, Wei S-H, Berry J J and Zhu K 2016 Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys Chem. Mater. 28 284–92
    [56]
    Wang X et al 2020 Perovskite solution aging: what happened and how to inhibit? Chemistry 6 1369–78
    [57]
    He X, Guo P, Wu J, Tu Y, Lan Z, Lin J and Huang M 2017 Hybrid perovskite by mixing formamidinium and methylammonium lead iodides for high-performance planar solar cells with efficiency of 19.41% Sol. Energy 157 853–9
    [58]
    Gao X-X, Luo W, Zhang Y, Hu R, Zhang B, Züttel A, Feng Y and Nazeeruddin M K 2020 Stable and high-efficiency methylammonium-free perovskite solar cells Adv. Mater. 32 1905502
    [59]
    Jeong J et al 2021 Pseudo-halide anion engineering for alpha-FAPbI3 perovskite solar cells Nature 592 381–5
    [60]
    Kim G, Min H, Lee K S, Lee D Y, Yoon S M and Seok S I 2020 Impact of strain relaxation on performance of alpha-formamidinium lead iodide perovskite solar cells Science 370 108–12
    [61]
    Min H, Kim M, Lee S-U, Kim H, Kim G, Choi K, Lee J H and Seok S I 2019 Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide Science 366 749–53
    [62]
    Li B, Binks D, Cao G and Tian J 2019 Engineering halide perovskite crystals through precursor chemistry Small 15 1903613
    [63]
    Yoo J W, Jang J, Kim U, Lee Y, Ji S-G, Noh E, Hong S, Choi M and Seok S I 2021 Efficient perovskite solar mini-modules fabricated via bar-coating using 2-methoxyethanol-based formamidinium lead tri-iodide precursor solution Joule 5 2420–36
    [64]
    Xiao M, Huang F, Huang W, Dkhissi Y, Zhu Y, Etheridge J, Gray-Weale A, Bach U, Cheng Y-B and Spiccia L 2014 A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells Angew. Chem., Int. Ed. 53 9898–903
    [65]
    Zakutayev A, Caskey C M, Fioretti A N, Ginley D S, Vidal J, Stevanovic V, Tea E and Lany S 2014 Defect tolerant semiconductors for solar energy conversion J. Phys. Chem. Lett. 5 1117–25
    [66]
    Han T-H, Tan S, Xue J, Meng L, Lee J-W and Yang Y 2019 Interface and defect engineering for metal halide perovskite optoelectronic devices Adv. Mater. 31 1803515
    [67]
    Niu G, Li W, Meng F, Wang L, Dong H and Qiu Y 2014 Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells J. Mater. Chem. A 2 705–10
    [68]
    Conings B et al 2015 Intrinsic thermal instability of methylammonium lead trihalide perovskite Adv. Energy Mater. 5 1500477
    [69]
    Juarez-Perez E J, Ono L K and Qi Y 2019 Thermal degradation of formamidinium based lead halide perovskites into sym-triazine and hydrogen cyanide observed by coupled thermogravimetry mass spectrometry analysis J. Mater. Chem. A 7 16912
    [70]
    Zhang H and Park N G 2022 Strain control to stabilize perovskite solar cells Angew. Chem., Int. Ed. 61 e202212268
    [71]
    Saidaminov M I et al 2018 Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air Nat. Energy 3 648–54
    [72]
    Zhu C et al 2019 Strain engineering in perovskite solar cells and its impacts on carrier dynamics Nat. Commun. 10 1–11
    [73]
    Xue D-J et al 2020 Regulating strain in perovskite thin films through charge-transport layers Nat. Commun. 11 1–8
    [74]
    Qiu F-Z, Li M-H, Wang S, Jiang Y, Qi J-J and Hu J-S 2022 Strain relaxation and domain enlargement via phase transition towards efficient CsPbI2Br solar cells J. Mater. Chem. A 10 3513–21
    [75]
    Chen Y et al 2020 Strain engineering and epitaxial stabilization of halide perovskites Nature 577 209–15
    [76]
    Jiang Y, Juarez-Perez E J, Ge Q, Wang S, Leyden M R, Ono L K, Raga S R, Hu J and Qi Y 2016 Post-annealing of MAPbI3 perovskite films with methylamine for efficient perovskite solar cells Mater. Horiz. 3 548–55
    [77]
    Rui Y, Jin Z, Fan X, Li W, Li B, Li T, Wang Y, Wang L and Liang J 2022 Defect passivation and electrical conductivity enhancement in perovskite solar cells using functionalized graphene quantum dots Mater. Futures 1 045101
    [78]
    Yuan Y and Huang J 2016 Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability Acc. Chem. Res. 49 286–93
    [79]
    Zhang C-X, Shen T, Guo D, Tang L-M, Yang K and Deng H-X 2020 Reviewing and understanding the stability mechanism of halide perovskite solar cells InfoMat 2 1034–56
    [80]
    Barker A J et al 2017 Defect-assisted photoinduced halide segregation in mixed-halide perovskite thin films ACS Energy Lett. 2 1416–24
    [81]
    Ruth A, Brennan M C, Draguta S, Morozov Y V, Zhukovskyi M, Janko B, Zapol P and Kuno M 2018 Vacancy-mediated anion photosegregation kinetics in mixed halide hybrid perovskites: coupled kinetic Monte Carlo and optical measurements ACS Energy Lett. 3 2321–8
    [82]
    Gao F, Zhao Y, Zhang X and You J 2020 Recent progresses on defect passivation toward efficient perovskite solar cells Adv. Energy Mater. 10 1902650
    [83]
    Buin A, Pietsch P, Xu J, Voznyy O, Ip A H, Comin R and Sargent E H 2014 Materials processing routes to trap-free halide perovskites Nano Lett. 14 6281–6
    [84]
    Liu N and Yam C 2018 First-principles study of intrinsic defects in formamidinium lead triiodide perovskite solar cell absorbers Phys. Chem. Chem. Phys. 20 6800–4
    [85]
    Liang J et al 2019 Defect-engineering-enabled high-efficiency all-inorganic perovskite solar cells Adv. Mater. 31 1903448
    [86]
    Chen Q, Zhou H, Song T-B, Luo S, Hong Z, Duan H-S, Dou L, Liu Y and Yang Y 2014 Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells Nano Lett. 14 4158–63
    [87]
    Shao Y, Xiao Z, Bi C, Yuan Y and Huang J 2014 Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells Nat. Commun. 5 5784
    [88]
    Shi J, Li Y, Li Y, Li D, Luo Y, Wu H and Meng Q 2018 From ultrafast to ultraslow: charge-carrier dynamics of perovskite solar cells Joule 2 1–23
    [89]
    Doherty T A S et al 2020 Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites Nature 580 360–6
    [90]
    Ni Z et al 2020 Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells Science 367 1352–8
    [91]
    Kato Y, Ono L K, Lee M V, Wang S, Raga S R and Qi Y 2015 Silver iodide formation in methyl ammonium lead iodide perovskite solar cells with silver top electrodes Adv. Mater. Interfaces 2 1500195
    [92]
    Yuan Y, Wang Q, Shao Y, Lu H, Li T, Gruverman A and Huang J 2016 Electric-field-driven reversible conversion between methylammonium lead triiodide perovskites and lead iodide at elevated temperatures Adv. Energy Mater. 6 1501803
    [93]
    Li Z et al 2017 Extrinsic ion migration in perovskite solar cells Energy Environ. Sci. 10 1234–42
    [94]
    Domanski K, Correa-Baena J-P, Mine N, Nazeeruddin M K, Abate A, Saliba M, Tress W, Hagfeldt A and Gratzel M 2016 Not all that glitters is gold: metal-migration-induced degradation in perovskite solar cells ACS Nano 10 6306–14
    [95]
    Jiang Y, Yang S-C, Jeangros Q, Pisoni S, Moser T, Buecheler S, Tiwari A N and Fu F 2020 Mitigation of vacuum and illumination-induced degradation in perovskite solar cells by structure engineering Joule 4 1087–103
    [96]
    Masi S, Gualdrón-Reyes A F and Mora-Seró I 2020 Stabilization of black perovskite phase in FAPbI3 and CsPbI3 ACS Energy Lett. 5 1974–85
    [97]
    Marronnier A, Roma G, Boyer-Richard S, Pedesseau L, Jancu J-M, Bonnassieux Y, Katan C, Stoumpos C C, Kanatzidis M G and Even J 2018 Anharmonicity and disorder in the black phases of cesium lead iodide used for stable inorganic perovskite solar cells ACS Nano 12 3477–86
    [98]
    Chen T, Foley B J, Park C, Brown C M, Harriger L W, Lee J, Ruff J, Yoon M, Choi J J and Lee S-H 2016 Entropydriven structural transition and kinetic trapping in formamidinium lead iodide perovskite Sci. Adv. 2 e1601650
    [99]
    Hoke E T, Slotcavage D J, Dohner E R, Bowring A R, Karunadasa H I and McGehee M D 2015 Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics Chem. Sci. 6 613–7
    [100]
    Li W et al 2017 Phase segregation enhanced ion movement in efficient inorganic CsPbIBr2 solar cells Adv. Energy Mater. 7 1700946
    [101]
    Yoon S J, Kuno M and Kamat P V 2017 Shift happens. How halide ion defects influence photoinduced segregation in mixed halide perovskites ACS Energy Lett. 2 1507–14
    [102]
    Lin Y et al 2018 Excess charge-carrier induced instability of hybrid perovskites Nat. Commun. 9 1–9
    [103]
    Belisle R A, Bush K A, Bertoluzzi L, Gold-Parker A, Toney M F and McGehee M D 2018 Impact of surfaces on photoinduced halide segregation in mixed-halide perovskites ACS Energy Lett. 3 2694–700
    [104]
    Brennan M C, Draguta S, Kamat P V and Kuno M 2018 Light-induced anion phase segregation in mixed halide perovskites ACS Energy Lett. 3 204–13
    [105]
    Braly I L, Stoddard R J, Rajagopal A, Uhl A R, Katahara J K, Jen A K-Y and Hillhouse H W 2017 Current-induced phase segregation in mixed halide hybrid perovskites and its impact on two-terminal tandem solar cell design ACS Energy Lett. 2 1841–7
    [106]
    Bischak C G, Hetherington C L, Wu H, Aloni S, Ogletree D F, Limmer D T and Ginsberg N S 2017 Origin of reversible photoinduced phase separation in hybrid perovskites Nano Lett. 17 1028–33
    [107]
    Chen Y et al 2019 Impacts of alkaline on the defects property and crystallization kinetics in perovskite solar cells Nat. Commun. 10 1112
    [108]
    Lee S J, Heo J H and Im S H 2020 Large-scale synthesis of uniform PbI2(DMSO) complex powder by solvent extraction method for efficient metal halide perovskite solar cells ACS Appl. Mater. Interfaces 12 8233–9
    [109]
    Ran C, Gao W, Li N, Xia Y, Li Q, Wu Z, Zhou H, Chen Y, Wang M and Huang W 2019 Facet-dependent control of PbI2 colloids for over 20% efficient perovskite solar cells ACS Energy Lett. 4 358–67
    [110]
    Long M et al 2017 Large-grain formamidinium PbI3−xBrx for high-performance perovskite solar cells via intermediate halide exchange Adv. Energy Mater. 7 1601882
    [111]
    Zhang W et al 2015 Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells Nat. Commun. 6 10030
    [112]
    Min H, Kim G, Paik M J, Lee S, Yang W S, Jung M and Seok S I 2019 Stabilization of precursor solution and perovskite layer by addition of sulfur Adv. Energy Mater. 9 1803476
    [113]
    Ming Y, Xu M, Liu S, Li D, Wang Q, Hou X, Hu Y, Rong Y and Han H 2019 Ethanol stabilized precursors for highly reproducible printable mesoscopic perovskite solar cells J. Power Sources 424 261–7
    [114]
    Chao L, Xia Y, Li B, Xing G, Chen Y and Huang W 2019 Room-temperature molten salt for facile fabrication of efficient and stable perovskite solar cells in ambient air Chemistry 5 995–1006
    [115]
    Noel N K, Habisreutinger S N, Wenger B, Klug M T, Hörantner M T, Johnston M B, Nicholas R J, Moore D T and Snaith H J 2017 A low viscosity, low boiling point, clean solvent system for the rapid crystallisation of highly specular perovskite films Energy Environ. Sci. 10 145–52
    [116]
    Deng Y, Van Brackle C H, Dai X, Zhao J, Chen B and Huang J 2019 Tailoring solvent coordination for high-speed, room-temperature blading of perovskite photovoltaic films Sci. Adv. 5 eaax7537
    [117]
    Noel N K, Congiu M, Ramadan A J, Fearn S, McMeekin D P, Patel J B, Johnston M B, Wenger B and Snaith H J 2017 Unveiling the influence of pH on the crystallization of hybrid perovskites, delivering low voltage loss photovoltaics Joule 1 328–43
    [118]
    Li L, Chen Y, Liu Z, Chen Q, Wang X and Zhou H 2016 The additive coordination effect on hybrids perovskite crystallization and high-performance solar cell Adv. Mater. 28 9862–8
    [119]
    Son D-Y, Kim S-G, Seo J-Y, Lee S-H, Shin H, Lee D and Park N-G 2018 Universal approach toward hysteresis-free perovskite solar cell via defect engineering J. Am. Chem. Soc. 140 1358–64
    [120]
    Zhao W, Yao Z, Yu F, Yang D and Liu S F 2018 Alkali metal doping for improved CH3NH3PbI3 perovskite solar cells Adv. Sci. 5 1700131
    [121]
    Prochowicz D et al 2019 Engineering of perovskite materials based on formamidinium and cesium hybridization for high-efficiency solar cells Chem. Mater. 31 1620–7
    [122]
    Abdi-Jalebi M, Andaji-Garmaroudi Z, Pearson A J, Divitini G, Cacovich S, Philippe B, Rensmo H, Ducati C, Friend R H and Stranks S D 2018 Potassium- and rubidium-passivated alloyed perovskite films: optoelectronic properties and moisture stability ACS Energy Lett. 3 2671–8
    [123]
    Bu T, Li J, Zheng F, Chen W, Wen X, Ku Z, Peng Y, Zhong J, Cheng Y-B and Huang F 2018 Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module Nat. Commun. 9 4609
    [124]
    Zhao Y et al 2018 Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells Nat. Commun. 9 1607
    [125]
    Saliba M et al 2016 Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance Science 354 206–9
    [126]
    Saliba M et al 2016 Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency Energy Environ. Sci. 9 1989
    [127]
    Turren-Cruz S-H, Hagfeldt A and Saliba M 2018 Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture Science 362 449–53
    [128]
    Abdi-Jalebi M et al 2018 Maximizing and stabilizing luminescence from halide perovskites with potassium passivation Nature 555 497–501
    [129]
    Wang L et al 2019 A Eu3+-Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells Science 363 265–70
    [130]
    Wu Y, Wan L, Fu S, Zhang W, Li X and Fang J 2019 Liquid metal acetate assisting preparation of high-efficiency and stable inverted perovskite solar cells J. Mater. Chem. A 7 14136–44
    [131]
    Xu W, Zheng L, Zhang X, Cao Y, Meng T, Wu D, Liu L, Hu W and Gong X 2018 Efficient perovskite solar cells fabricated by Co partially substituted hybrid perovskite Adv. Energy Mater. 8 1703178
    [132]
    Li N et al 2019 Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells Nat. Energy 4 408–15
    [133]
    Yang G, Zhang H, Li G and Fang G 2019 Stabilizer-assisted growth of formamdinium-based perovskites for highly efficient and stable planar solar cells with over 22% efficiency Nano Energy 63 103835
    [134]
    Yoo J J et al 2021 Efficient perovskite solar cells via improved carrier management Nature 590 587–93
    [135]
    Arora N, Dar M I, Hinderhofer A, Pellet N, Schreiber F, Zakeeruddin S M and Grätzel M 2017 Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20% Science 358 768–71
    [136]
    Lee J, Singh S, Kim S and Baik S 2020 Graphene interfacial diffusion barrier between CuSCN and Au layers for stable perovskite solar cells Carbon 157 731–40
    [137]
    Wang Y, Wu T, Barbaud J, Kong W, Cui D, Chen H, Yang X and Han L 2019 Stabilizing heterostructures of soft perovskite semiconductors Science 365 687–91
    [138]
    Kim D et al 2020 Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites Science 368 155–60
    [139]
    Yang S et al 2019 Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts Science 365 473–8
    [140]
    Parikh N, Tavakoli M M, Pandey M, Kalam A, Prochowicz D and Yadav P 2021 Role of the spacer cation in the growth and crystal orientation of two-dimensional perovskites Sustain. Energy Fuels 5 1255–79
    [141]
    Zhang X, Yang T, Ren X, Zhang L, Zhao K and Liu S 2021 Film formation control for high performance Dion–Jacobson 2D perovskite solar cells Adv. Energy Mater. 11 2002733
    [142]
    Zhang Y et al 2019 Dynamical transformation of two-dimensional perovskites with alternating cations in the interlayer space for high-performance photovoltaics J. Am. Chem. Soc. 141 2684–94
    [143]
    Zhu X et al 2018 Vapor-fumigation for record efficiency two-dimensional perovskite solar cells with superior stability Energy Environ. Sci. 11 3349–57
    [144]
    Lv G, Li L, Lu D, Xu Z, Dong Y, Li Q, Chang Z, Yin W-J and Liu Y 2021 Multiple-noncovalent-interaction-stabilized layered Dion-Jacobson perovskite for efficient solar cells Nano Lett. 21 5788–97
    [145]
    Ke W, Mao L, Stoumpos C C, Hoffman J, Spanopoulos I, Mohite A D and Kanatzidis M G 2019 Compositional and solvent engineering in Dion-Jacobson 2D perovskites boosts solar cell efficiency and stability Adv. Energy Mater. 9 1803384
    [146]
    Wu H, Lian X, Li J, Zhang Y, Zhou G, Wen X, Xie Z, Zhu H, Wu G and Chen H 2021 Merged interface construction toward ultra-low Voc loss in inverted two-dimensional Dion–Jacobson perovskite solar cells with efficiency over 18% J. Mater. Chem. A 9 12566–73
    [147]
    Yang J et al 2021 Stable 2D alternating cation perovskite solar cells with power conversion efficiency >19% via solvent engineering Sol. RRL 5 2100286
    [148]
    Lai H, Lu D, Xu Z, Zheng N, Xie Z and Liu Y 2020 Organic-salt-assisted crystal growth and orientation of quasi-2D Ruddlesden–Popper perovskites for solar cells with efficiency over 19% Adv. Mater. 32 2001470
    [149]
    Li Q, Dong Y, Lv G, Liu T, Lu D, Zheng N, Dong X, Xu Z, Xie Z and Liu Y 2021 Fluorinated aromatic formamidinium spacers boost efficiency of layered Ruddlesden-Popper perovskite solar cells ACS Energy Lett. 6 2072–80
    [150]
    Fu W, Liu H, Shi X, Zuo L, Li X and Jen A K Y 2019 Tailoring the functionality of organic spacer cations for efficient and stable quasi-2D perovskite solar cells Adv. Funct. Mater. 29 1900221
    [151]
    Wu G et al 2019 Fine multi-phase alignments in 2D perovskite solar cells with efficiency over 17% via slow post-annealing Adv. Mater. 31 1903889
    [152]
    Tan S et al 2019 Effect of high dipole moment cation on layered 2D organic–inorganic halide perovskite solar cells Adv. Energy Mater. 9 1803024
    [153]
    Tsai H et al 2016 High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells Nature 536 312–6
    [154]
    Ren H et al 2020 Efficient and stable Ruddlesden–Popper perovskite solar cell with tailored interlayer molecular interaction Nat. Photon. 14 154–63
    [155]
    Liang C et al 2021 Two-dimensional Ruddlesden–Popper layered perovskite solar cells based on phase-pure thin films Nat. Energy 6 38–45
    [156]
    Dong Y, Lu D, Xu Z, Lai H and Liu Y 2020 2-thiopheneformamidinium-based 2D Ruddlesden–Popper perovskite solar cells with efficiency of 16.72% and negligible hysteresis Adv. Energy Mater. 10 2000694
    [157]
    Wang H, Qin Z, Xie J, Zhao S, Liu K, Guo X, Li G, Lu X, Yan K and Xu J 2020 Efficient slantwise aligned Dion–Jacobson phase perovskite solar cells based on trans-1,4-cyclohexanediamine Small 16 2003098
    [158]
    Wang H, Chan C C S, Chu M, Xie J, Zhao S, Guo X, Miao Q, Wong K S, Yan K and Xu J 2020 Interlayer cross-linked 2D perovskite solar cell with uniform phase distribution and increased exciton coupling Sol. RRL 4 1900578
    [159]
    Li F, Zhang J, Jo S, Qin M, Li Z, Liu T, Lu X, Zhu Z and Jen A K Y 2020 Vertical orientated Dion–Jacobson quasi-2D perovskite film with improved photovoltaic performance and stability Small Methods 4 1900831
    [160]
    Di L, Lv G, Xu Z, Dong Y, Ji X and Liu Y 2020 Thiophene-based two-dimensional Dion-Jacobson perovskite solar cells with over 15% efficiency J. Am. Chem. Soc. 142 11114–22
    [161]
    Soe C M M et al 2017 New type of 2D perovskites with alternating cations in the interlayer space, (C(NH2)3)(CH3NH3)nPbnI3n+1: structure, properties, and photovoltaic performance J. Am. Chem. Soc. 139 16297–309
    [162]
    Zhang Y, Chen J, Lian X, Qin M, Li J, Andersen T R, Lu X, Wu G, Li H and Chen H 2019 Highly efficient guanidinium-based quasi 2D perovskite solar cells via a two-step post-treatment process Small Methods 3 1900375
    [163]
    Wu J et al 2019 A simple way to simultaneously release the interface stress and realize the inner encapsulation for highly efficient and stable perovskite solar cells Adv. Funct. Mater. 29 1905336
    [164]
    Dou J et al 2021 Synergistic effects of Eu-MOF on perovskite solar cells with improved stability Adv. Mater. 33 e2102947
    [165]
    Zhang H et al 2021 Multifunctional crosslinking-enabled strain-regulating crystallization for stable, efficient α-FAPbI3 -based perovskite solar cells Adv. Mater. 33 2008487
    [166]
    Wang H et al 2019 Interfacial residual stress relaxation in perovskite solar cells with improved stability Adv. Mater. 31 1904408
    [167]
    Wang S, Wang A, Deng X, Xie L, Xiao A, Li C, Xiang Y, Li T, Ding L and Hao F 2020 Lewis acid/base approach for efficacious defect passivation in perovskite solar cells J. Mater. Chem. A 8 12201–25
    [168]
    Liu C et al 2020 Tailoring C60 for efficient inorganic CsPbI2Br perovskite solar cells and modules Adv. Mater. 32 1907361
    [169]
    Zhang M et al 2019 Reconfiguration of interfacial energy band structure for high-performance inverted structure perovskite solar cells Nat. Commun. 10 4593
    [170]
    Yang Z, Dou J, Kou S, Dang J, Ji Y, Yang G, Wu W-Q, Kuang D-B and Wang M 2020 Multifunctional phosphorus-containing lewis acid and base passivation enabling efficient and moisture-stable perovskite solar cells Adv. Funct. Mater. 30 1910710
    [171]
    Dai Z, Yadavalli S K, Chen M, Abbaspourtamijani A, Qi Y and Padture N P 2021 Interfacial toughening with self-assembled monolayers enhances perovskite solar cell reliability Science 372 618–22
    [172]
    Fu X et al 2021 Halogen-halogen bonds enable improved long-term operational stability of mixed-halide perovskite photovoltaics Chemistry 7 3131–43
    [173]
    Wu J, Fang Y, Zhang D, Zhang S, Wan J, Wen R, Zhou X, Fu N and Lin Y 2021 Efficient and stable perovskite solar cells based on a quasi-point-contact and rear-reflection structure with 22.5 efficiency J. Mater. Chem. A 9 14877–87
    [174]
    Guo P, Ye Q, Liu C, Cao F, Yang X, Ye L, Zhao W, Wang H, Li L and Wang H 2020 Double barriers for moisture degradation: assembly of hydrolysable hydrophobic molecules for stable perovskite solar cells with high open-circuit voltage Adv. Funct. Mater. 30 2002639
    [175]
    Wu C et al 2018 Highly-stable organo-lead halide perovskites synthesized through green self-assembly process Sol. RRL 2 1800052
    [176]
    Wang R et al 2019 Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics Science 366 1509–13
    [177]
    Zhao Y et al 2020 A polymerization-assisted grain growth strategy for efficient and stable perovskite solar cells Adv. Mater. 32 1907769
    [178]
    Xie L, Xie J, Wang S, Chen B, Yang C, Wang Z, Liu X, Chen J, Jia K and Hao F 2021 Fluorinated oligomer wrapped perovskite crystals for inverted MAPbI3 solar cells with 21% efficiency and enhanced stability ACS Appl. Mater. Interfaces 13 26093–101
    [179]
    Li X, Zhang W, Wang Y-C, Zhang W, Wang H-Q and Fang J 2018 In-situ cross-linking strategy for efficient and operationally stable methylammoniun lead iodide solar cells Nat. Commun. 9 3806–10
    [180]
    Wang R et al 2019 Caffeine improves the performance and thermal stability of perovskite solar cells Joule 3 1464–77
    [181]
    Xiong S et al 2021 Direct observation on p- to n-type transformation of perovskite surface region during defect passivation driving high photovoltaic efficiency Joule 5 467–80
    [182]
    Li E, Liu C, Lin H, Xu X, Liu S, Zhang S, Yu M, Cao X-M, Wu Y and Zhu W-H 2021 Bonding strength regulates anchoring-based self-assembly monolayers
  • 加载中

Catalog

    Figures(1)

    Article Metrics

    Article Views(198) PDF downloads(102)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return