Citation: | Nohjoon Lee, Jihoon Oh, Jang Wook Choi. Anode-less all-solid-state batteries: recent advances and future outlook[J]. Materials Futures, 2023, 2(1): 013502. doi: 10.1088/2752-5724/acb3e8 |
[1] |
Tarascon J M and Armand M 2001 Issues and challenges facing rechargeable lithium batteries Nature 414 359–67
|
[2] |
Janek J and Zeier W G 2016 A solid future for battery development Nat. Energy 1 16141
|
[3] |
Agubra V A and Fergus J W 2014 The formation and stability of the solid electrolyte interface on the graphite anode J. Power Sources 268 153–62
|
[4] |
Bar-Tow D, Peled E and Burstein L A 1999 Study of highly oriented pyrolytic graphite as a model for the graphite anode in li-ion batteries J. Electrochem. Soc. 146 824–32
|
[5] |
Peled E, Menachem C, Bar-Tow D and Melman A 1996 Improved graphite anode for lithium-ion batteries chemically: bonded solid electrolyte interface and nanochannel formation J. Electrochem. Soc. 143 L4–L7
|
[6] |
Mahmood N, Tang T and Hou Y 2016 Nanostructured anode materials for lithium ion batteries: progress, challenge and perspective Adv. Energy Mater. 6 1600374
|
[7] |
Oh P, Yun J, Choi J H, Saqib K S, Embleton T J, Park S, Lee C, Ali J, Ko K and Cho J 2022 Development of high energy anodes for all-solid-state lithium batteries based on sulfide electrolytes Angew. Chem., Int. Ed. 61 202201249
|
[8] |
Wu Y P, Rahm E and Holze R 2003 Carbon anode materials for lithium ion batteries J. Power Sources 114 228–36
|
[9] |
Choi J W and Aurbach D 2016 Promise and reality of post-lithium-ion batteries with high energy densities Nat. Rev. Mater. 1 16013
|
[10] |
Qian J, Adams B D, Zheng J, Xu W, Henderson W A, Wang J, Bowden M E, Xu S, Hu J and Zhang J-G 2016 Anode-free rechargeable lithium metal batteries Adv. Funct. Mater. 26 7094–102
|
[11] |
Tian Y, An Y, Wei C, Jiang H, Xiong S, Feng J and Qian Y 2020 Recently advances and perspectives of anode-free rechargeable batteries Nano Energy 78 105344
|
[12] |
Louli A J et al 2020 Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis Nat. Energy 5 693–702
|
[13] |
Weber R, Genovese M, Louli A J, Hames S, Martin C, Hill I G and Dahn J R 2019 Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte Nat. Energy 4 683–9
|
[14] |
Gond R, van Ekeren W, Mogensen R, Naylor A J and Younesi R 2021 Non-flammable liquid electrolytes for safe batteries Mater. Horiz. 8 2913–28
|
[15] |
Arbizzani C, Gabrielli G and Mastragostino M 2011 Thermal stability and flammability of electrolytes for lithium-ion batteries J. Power Sources 196 4801–5
|
[16] |
Zheng F, Kotobuki M, Song S, Lai M O and Lu L 2018 Review on solid electrolytes for all-solid-state lithium-ion batteries J. Power Sources 389 198–213
|
[17] |
Heubner C, Maletti S, Auer H, Hüttl J, Voigt K, Lohrberg O and Nikolowski K Partsch M and Michaelis A 2021 From lithium-metal toward anode-free solid-state batteries: current developments, issues, and challenges Adv. Funct. Mater. 31 2106608
|
[18] |
Chen S, Zhang J, Nie L, Hu X, Huang Y, Yu Y and Liu W 2021 All-solid-state batteries with a limited lithium metal anode at room temperature using a garnet-based electrolyte Adv. Mater. 33 2002325
|
[19] |
Lee J, Lee T, Char K, Kim K J and Choi J W 2021 Issues and advances in scaling up sulfide-based all-solid-state batteries Acc. Chem. Res 54 3390–402
|
[20] |
Kim S, Park G, Lee S J, Seo S, Ryu K, Kim C H and Choi J W 2022 Lithium metal batteries: from fundamental research to industrialization Adv. Mater. 2206625
|
[21] |
Xu R C, Wang X L, Zhang S Z, Xia Y, Xia X H, Wu J B and Tu J P 2018 Rational coating of Li7P3S11 solid electrolyte on Mos2 electrode for all-solid-state lithium ion batteries J. Power Sources 374 107–12
|
[22] |
Deiseroth H-J, Kong S-T, Eckert H, Vannahme J, Reiner C, Zaiß T and Schlosser M 2008 Li6ps5x: a class of crystalline li-rich solids with an unusually high Li+ mobility Angew. Chem., Int. Ed. 47 755–8
|
[23] |
Kamaya N et al 2011 Lithium superionic conductor Nat. Mater. 10 682–6
|
[24] |
Zhang Z et al 2018 New horizons for inorganic solid state ion conductors Energy Environ. Sci. 11 1945–76
|
[25] |
Wang C, Yang T, Zhang W, Huang H, Gan Y, Xia Y, He X and Zhang J 2022 Hydrogen bonding enhanced SiO2/PEO composite electrolytes for solid-state lithium batteries J. Mater. Chem. A 10 3400–8
|
[26] |
Pang B, Gan Y, Xia Y, Huang H, He X and Zhang W 2022 Regulation of the interfaces between argyrodite solid electrolytes and lithium metal anode Front. Chem. 10 837978
|
[27] |
Zheng C, Zhang J, Xia Y, Huang H, Gan Y, Liang C, He X, Tao X and Zhang W 2021 Unprecedented self-healing effect of Li6PS5Cl-Based all-solid-state lithium battery Small 17 2101326
|
[28] |
Zhang J, Zheng C, Li L, Xia Y, Huang H, Gan Y, Liang C and He X Tao X and Zhang W 2020 Unraveling the intra and intercycle interfacial evolution of Li6Ps5CL-Based all-solid-state lithium batteries Adv. Energy Mater. 10 1903311
|
[29] |
Lee Y-G et al 2020 High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes Nat. Energy 5 299–308
|
[30] |
Nanda S, Gupta A and Manthiram A 2021 Anode-free full cells: a pathway to high-energy density lithium-metal batteries Adv. Energy Mater. 11 2000804
|
[31] |
Tamwattana O, Park H, Kim J, Hwang I, Yoon G, Hwang T-H, Kang Y-S, Park J, Meethong N and Kang K 2021 High-dielectric polymer coating for uniform lithium deposition in anode-free lithium batteries ACS Energy Lett. 6 4416–25
|
[32] |
Chen W, Salvatierra R V, Ren M, Chen J, Stanford M G and Tour J M 2020 Laser-induced silicon oxide for anode-free lithium metal batteries Adv. Mater. 32 2002850
|
[33] |
Jin S et al 2020 Solid–solution-based metal alloy phase for highly reversible lithium metal anode J. Am. Chem. Soc 142 8818–26
|
[34] |
Yan K, Lu Z, Lee H-W, Xiong F, Hsu P-C, Li Y, Zhao J, Chu S and Cui Y 2016 Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth Nat. Energy 1 16010
|
[35] |
Suzuki N, Yashiro N, Fujiki S, Omoda R, Shiratsuchi T, Watanabe T and Aihara Y 2021 Highly cyclable all-solid-state battery with deposition-type lithium metal anode based on thin carbon black layer Adv. Energy Sustain. Res. 2 2100066
|
[36] |
Oh J et al 2022 Elastic binder for high-performance sulfide-based all-solid-state batteries ACS Energy Lett. 7 1374–82
|
[37] |
Park S H, Jun D, Lee G H, Lee S G, Jung J E, Bae K Y, Son S and Lee Y J 2022 Designing 3d anode based on pore-size-dependent li deposition behavior for reversible li-free all-solid-state batteries Adv. Sci. 9 2203130
|
[38] |
Lee J et al 2022 Room-temperature anode-less all-solid-state batteries via the conversion reaction of metal fluorides Adv. Mater. 34 2203580
|
[39] |
Bates J B, Dudney N J, Gruzalski G R, Zuhr R A, Choudhury A, Luck C F and Robertson J D 1993 Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries J. Power Sources 43 103–10
|
[40] |
Inaguma Y, Liquan C, Itoh M, Nakamura T, Uchida T, Ikuta H and Wakihara M 1993 High ionic conductivity in lithium lanthanum titanate Solid State Commun. 86 689–93
|
[41] |
Fu J 1997 Fast Li+ ion conducting glass-ceramics in the system Li2O-Al2O3-TiO2-P2O5 Solid State Ion. 104 191–4
|
[42] |
Fu J 1997 Superionic conductivity of glass-ceramics in the system Li2O- Al2O3-TiO2-P2O5 Solid State Ion. 96 195–200
|
[43] |
Murugan R, Thangadurai V and Weppner W 2007 Fast lithium ion conduction in garnet-Type Li7La3Zr2O12 Angew. Chem., Int. Ed. 46 7778–81
|
[44] |
Neudecker B J, Dudney N J and Bates J B 2000 Lithium-free” thin-film battery with in situ plated Li anode J. Electrochem. Soc. 147 517
|
[45] |
Wang M J, Carmona E, Gupta A, Albertus P and Sakamoto J 2020 Enabling “lithium-free” manufacturing of pure lithium metal solid-state batteries through in situ plating Nat. Commun. 11 5201
|
[46] |
Kravchyk K V, Zhang H, Okur F and Kovalenko M V 2022 Li–garnet solid-state batteries with LLZO scaffolds Acc. Mater. Res. 3 411–5
|
[47] |
Faglioni F, Merinov B V, Goddard W A and Kozinsky B 2018 Factors affecting cyclic durability of all-solid-state lithium batteries using poly(ethylene oxide)-based polymer electrolytes and recommendations to achieve improved performance Phys. Chem. Chem. Phys 20 26098–104
|
[48] |
Xia Y, Fujieda T, Tatsumi K, Prosini P P and Sakai T 2001 Thermal and electrochemical stability of cathode materials in solid polymer electrolyte J. Power Sources 92 234–43
|
[49] |
Seidl L, Grissa R, Zhang L, Trabesinger S and Battaglia C 2022 Unraveling the voltage-dependent oxidation mechanisms of poly(ethylene oxide)-based solid electrolytes for solid-state batteries Adv. Mater. Interfaces 9 2100704
|
[50] |
Assegie A A, Cheng J-H, Kuo L-M, Su W-N and Hwang B-J 2018 Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery Nanoscale 10 6125–38
|
[51] |
He F, Tang W, Zhang X, Deng L and Luo J 2021 High energy density solid state lithium metal batteries enabled by sub-5·m solid polymer electrolytes Adv. Mater. 33 2105329
|
[52] |
Zegeye T A, Su W-N, Fenta F W, Zeleke T S, Jiang S-K and Hwang B J 2020 Ultrathin Li6.75La3Zr1.75Ta0.25O12-based composite solid electrolytes laminated on anode and cathode surfaces for anode-free lithium metal batteries ACS Appl. Energy Mater. 3 11713–23
|
[53] |
J-G Z 2019 Anode-Less Nat. Energy 4 637–8
|
[54] |
Xiao J et al 2020 Understanding and applying coulombic efficiency in lithium metal batteries Nat. Energy 5 561–8
|
[55] |
Yan K, Wang J, Zhao S, Zhou D, Sun B, Cui Y and Wang G 2019 Temperature-dependent nucleation and growth of dendrite-free lithium metal anodes Angew. Chem., Int. Ed. 58 11364–8
|
[56] |
Wang M J, Choudhury R and Sakamoto J 2019 Characterizing the Li-solid-electrolyte interface dynamics as a function of stack pressure and current density Joule 3 2165–78
|
[57] |
Banerjee A, Wang X, Fang C, Wu E A and Meng Y S 2020 Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes Chem. Rev. 120 6878–933
|