Volume 2 Issue 1
March  2022
Turn off MathJax
Article Contents
Chunxi Tian, Kun Qin, Liumin Suo. Concentrated electrolytes for rechargeable lithium metal batteries[J]. Materials Futures, 2023, 2(1): 012101. doi: 10.1088/2752-5724/acac68
Citation: Chunxi Tian, Kun Qin, Liumin Suo. Concentrated electrolytes for rechargeable lithium metal batteries[J]. Materials Futures, 2023, 2(1): 012101. doi: 10.1088/2752-5724/acac68
Topical Review •
OPEN ACCESS

Concentrated electrolytes for rechargeable lithium metal batteries

© 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 2, Number 1
  • Received Date: 2022-10-24
  • Accepted Date: 2022-12-17
  • Publish Date: 2023-01-24
  • Traditional lithium-ion batteries with graphite anodes have gradually been limited by the glass ceiling of energy density. As a result, lithium metal batteries (LMBs), regarded as the ideal alternative, have attracted considerable attention. However, lithium is highly reactive and susceptible to most electrolytes, resulting in poor cycle performance. In addition, lithium grows Li dendrites during charging, adversely affecting the safety of LMBs. Therefore, LMBs are more sensitive to the chemical composition of electrolytes and their relative ratios (concentrations). Recently, concentrated electrolytes have been widely demonstrated to be friendly to lithium metal anodes (LMAs). This review focuses on the progress of concentrated electrolytes in LMBs, including the solvation structure varying with concentration, unique functions in stabilizing the LMA, and their interfacial chemistry with LMA.

  • loading
  • [1]
    Zhamu A, Chen G, Liu C, Neff D, Fang Q, Yu Z, Xiong W, Wang Y, Wang X and Jang B Z 2011 Reviving rechargeable lithium metal batteries: enabling next-generation high-energy and high-power cells Energy Environ. Sci. 5 5701–7
    [2]
    Tarascon J-M and Armand M 2001 Issues and challenges facing rechargeable lithium batteries Nature 414 359–67
    [3]
    Ben L, Zhou J, Ji H, Yu H, Zhao W and Huang X 2021 Si nanoparticles seeded in carbon-coated Sn nanowires as an anode for high-energy and high-rate lithium-ion batteries Mater. Futures 1 015101
    [4]
    Tong B, Song Z, Wu H, Wang X, Feng W, Zhou Z and Zhang H 2022 Ion transport and structural design of lithium-ion conductive solid polymer electrolytes: a perspective Mater. Futures 1 042103
    [5]
    Fu J, Ji X, Chen J, Chen L, Fan X, Mu D and Wang C 2020 Lithium nitrate regulated sulfone electrolytes for lithium metal batteries Angew. Chem., Int. Ed. 59 22194–201
    [6]
    Lin D, Liu Y and Cui Y 2017 Reviving the lithium metal anode for high-energy batteries Nat. Nanotechnol. 12 194–206
    [7]
    Cohen Y S, Cohen Y and Aurbach D 2000 Micromorphological studies of lithium electrodes in alkyl carbonate solutions using in situ atomic force microscopy J. Phys. Chem. B 104 12282–91
    [8]
    Guo Y P, Li H Q and Zhai T Y 2017 Reviving lithium-metal anodes for next-generation high-energy batteries Adv. Mater. 29 1700007
    [9]
    Yamaki J-I, Tobishima S-I, Hayashi K, Keiichi Saito K, Nemoto Y and Arakawa M 1998 A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte J. Power Sources 74 219–27
    [10]
    Ding F et al 2013 Dendrite-free lithium deposition via self-healing electrostatic shield mechanism J. Am. Chem. Soc. 135 4450–6
    [11]
    Lin L D, Qin K, Zhang Q H, Gu L, Suo L M, Hu Y S, Li H, Huang X J and Chen L Q 2021 Li-rich Li2[Ni0.8Co0.1Mn0.1]O2 for anode-free lithium metal batteries Angew. Chem., Int. Ed. 60 8289–96
    [12]
    Seo D M, Borodin O, Balogh D, O’Connell M, Ly Q, Han S-D, Passerini S and Henderson W A 2013 Electrolyte solvation and ionic association III. Acetonitrile-lithium salt mixtures–transport properties J. Electrochem. Soc. 160 A1061–70
    [13]
    Yamada Y 2017 Developing new functionalities of superconcentrated electrolytes for lithium-ion batteries Electrochemistry 85 559–65
    [14]
    Cao X et al 2019 Monolithic solid-electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization Nat. Energy 4 796–805
    [15]
    Xie J-D, Patra J, Rath P C, Liu W-J, Su C-Y, Lee S-W, Tseng C-J, Gandomi Y A and Chang J-K 2020 Highly concentrated carbonate electrolyte for Li-ion batteries with lithium metal and graphite anodes J. Power Sources 450 227657
    [16]
    Pham T D, Bin Faheem A and Lee -K-K 2021 Design of a LiF-rich solid electrolyte interphase layer through highly concentrated LiFSI-THF electrolyte for stable lithium metal batteries Small 17 2103375
    [17]
    Ding J F, Xu R, Yao N, Chen X, Xiao Y, Yao Y X, Yan C, Xie J and Huang J Q 2021 Non-solvating and low-dielectricity cosolvent for anion-derived solid electrolyte interphases in lithium metal batteries Angew. Chem., Int. Ed. 60 11442–7
    [18]
    Xu K 2004 Nonaqueous liquid electrolytes for lithium-based rechargeable batteries Chem. Rev. 104 4303–417
    [19]
    Borodin O et al 2017 Liquid structure with nano-heterogeneity promotes cationic transport in concentrated electrolytes ACS Nano 11 10462–71
    [20]
    Suo L, Hu Y-S, Li H, Armand M and Chen L 2013 A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries Nat. Commun. 4 1481
    [21]
    Borodin O, Self J, Persson K A, Wang C and Xu K 2020 Uncharted waters: super-concentrated electrolytes Joule 4 69–100
    [22]
    Zeng Z Q et al 2018 Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries Nat. Energy 3 674–81
    [23]
    Zheng J, Lochala J A, Kwok A, Deng Z D and Xiao J 2017 Research progress towards understanding the unique interfaces between concentrated electrolytes and electrodes for energy storage applications Adv. Sci. 4 1700032
    [24]
    Yamada Y and Yamada A 2015 Review-superconcentrated electrolytes for lithium batteries J. Electrochem. Soc. 162 A2406–23
    [25]
    Bogle X, Vazquez R, Greenbaum S, Cresce A V W and Xu K 2013 Understanding Li+–solvent interaction in nonaqueous carbonate electrolytes with 17O NMR J. Phys. Chem. Lett. 4 1664–8
    [26]
    Klassen B, Aroca R, Nazri M and Nazri G A 1998 Raman spectra and transport properties of lithium perchlorate in ethylene carbonate based binary solvent systems for lithium batteries J. Phys. Chem. B 102 4795–801
    [27]
    Fujii K, Wakamatsu H, Todorov Y, Yoshimoto N and Morita M 2016 Structural and electrochemical properties of Li ion solvation complexes in the salt-concentrated electrolytes using an aprotic donor solvent, N,N-dimethylformamide J. Phys. Chem. C 120 17196–204
    [28]
    Suo L, Fang Z, Hu Y-S and Chen L 2016 FT-Raman spectroscopy study of solvent-in-salt electrolytes Chin. Phys. B 25 016101
    [29]
    Wu C, Zhou Y, Zhu X, Zhan M, Yang H and Qian J 2021 Research progress on high concentration electrolytes for Li metal batteries Acta Phys. Chim. Sin. 37 2008044
    [30]
    Yamada Y, Chiang C H, Sodeyama K, Wang J, Tateyama Y and Yamada A 2015 Corrosion prevention mechanism of aluminum metal in superconcentrated electrolytes Chemelectrochem 2 1687–94
    [31]
    Wang J, Yamada Y, Sodeyama K, Chiang C H, Tateyama Y and Yamada A 2016 Superconcentrated electrolytes for a high-voltage lithium-ion battery Nat. Commun. 7 12032
    [32]
    Suo L, Xue W, Gobet M, Greenbaum S G, Wang C, Chen Y, Yang W, Li Y and Li J 2018 Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries Proc. Natl Acad. Sci. USA 115 1156–61
    [33]
    Yamada Y, Wang J H, Ko S, Watanabe E and Yamada A 2019 Advances and issues in developing salt-concentrated battery electrolytes Nat. Energy 4 269–80
    [34]
    Ren X et al 2019 High-concentration ether electrolytes for stable high-voltage lithium metal batteries ACS Energy Lett. 4 896
    [35]
    Fan X et al 2018 Highly fluorinated interphases enable high-voltage Li-metal batteries Chem 4 174–85
    [36]
    Ko J and Yoon Y S 2019 Recent progress in LiF materials for safe lithium metal anode of rechargeable batteries: is LiF the key to commercializing Li metal batteries? Ceram. Int. 45 30–49
    [37]
    Arakawa M, Tobishima S-I, Nemoto Y, Ichimura M and Yamaki J-I 1993 Lithium electrode cycleability and morphology dependence on current density J. Power Sources 43 27–35
    [38]
    Wang Z, Sun Z, Li J, Shi Y, Sun C, An B, Cheng H-M and Li F 2021 Insights into the deposition chemistry of Li ions in nonaqueous electrolyte for stable Li anodes Chem. Soc. Rev. 50 3178–210
    [39]
    Yan C, Xu R, Xiao Y, Ding J-F, Xu L, Li B-Q and Huang J-Q 2020 Toward critical electrode/electrolyte interfaces in rechargeable batteries Adv. Funct. Mater. 30 1909887
    [40]
    Thuy Duong P, Bin Faheem A, Kim J, Oh H M and Lee K-K 2022 Practical high-voltage lithium metal batteries enabled by tuning the solvation structure in weakly solvating electrolyte Small 18 2107492
    [41]
    Yamada Y and Yamada A 2017 Superconcentrated electrolytes to create new interfacial chemistry in non-aqueous and aqueous rechargeable batteries Chem. Lett. 46 1056–64
    [42]
    Yamada Y, Furukawa K, Sodeyama K, Kikuchi K, Yaegashi M, Tateyama Y and Yamada A 2014 Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries J. Am. Chem. Soc. 136 5039–46
    [43]
    Ren X et al 2020 Role of inner solvation sheath within salt-solvent complexes in tailoring electrode/electrolyte interphases for lithium metal batteries Proc. Natl Acad. Sci. USA 117 28603–13
    [44]
    Wood S M, Fang C, Dufek E J, Nagpure S C, Sazhin S V, Liaw B and Meng Y S 2018 Predicting calendar aging in lithium metal secondary batteries: the impacts of solid electrolyte interphase composition and stability Adv. Energy Mater. 8 1801427
    [45]
    Xie J-D, Liu W-J, Li C, Patra J, Gandomi Y A, Dong Q-F and Chang J-K 2019 Superior Coulombic efficiency of lithium anodes for rechargeable batteries utilizing high-concentration ether electrolytes Electrochim. Acta 319 625–33
    [46]
    Chen S, Zheng J, Mei D, Han K S, Engelhard M H, Zhao W, Xu W, Liu J and Zhang J-G 2018 High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes Adv. Mater. 30 1706102
    [47]
    Qiu F, Li X, Deng H, Wang D, Mu X, He P and Zhou H 2019 A concentrated ternary-salts electrolyte for high reversible Li metal battery with slight excess Li Adv. Energy Mater. 9 1803372
    [48]
    Peng Z et al 2020 High-power lithium metal batteries enabled by high-concentration acetonitrile-based electrolytes with vinylene carbonate additive Adv. Funct. Mater. 30 2001285
    [49]
    Alvarado J et al 2018 A carbonate-free, sulfone-based electrolyte for high-voltage Li-ion batteries Mater. Today 21 341–53
    [50]
    Li J, Downie L E, Ma L, Qiu W D and Dahn J R 2015 Study of the failure mechanisms of LiNi0.8Mn0.1Co0.1O2 cathode material for lithium ion batteries J. Electrochem. Soc. 162 A1401–8
    [51]
    Jia M M, Zhang C, Guo Y W, Peng L S, Zhang X Y, Qian W W, Zhang L and Zhang S J 2022 Advanced nonflammable localized high-concentration electrolyte for high energy density lithium battery Energy Environ. Mater. 5 1294–302
    [52]
    Moon H, Cho S J, Yu D E and Lee S Y 2022 Nitrile electrolyte strategy for 4.9 V-class lithium-metal batteries operating in flame Energy Environ. Mater. 1–9
    [53]
    Lin S and Zhao J 2019 Bifunctional lithium carboxylate for stabilizing both lithium-metal anode and high-voltage cathode in ether electrolyte ACS Appl. Mater. Interfaces 11 39715–21
    [54]
    Wang X et al 2021 Hybrid electrolyte with dual-anion-aggregated solvation sheath for stabilizing high-voltage lithium-metal batteries Adv. Mater. 33 2007945
    [55]
    Liu W, Li J X, Li W T, Xu H Y, Zhang C and Qiu X P 2020 Inhibition of transition metals dissolution in cobalt-free cathode with ultrathin robust interphase in concentrated electrolyte Nat. Commun. 11 3629
    [56]
    Mikhaylik Y V and Akridge J R 2004 Polysulfide shuttle study in the Li/S battery system J. Electrochem. Soc. 151 A1969–76
    [57]
    Shin E S, Kim K, Oh S H and Cho W I 2013 Polysulfide dissolution control: the common ion effect Chem. Commun. 49 2004–6
    [58]
    Kim H, Wu F X, Lee J T, Nitta N, Lin H T, Oschatz M, Cho W I, Kaskel S, Borodin O and Yushin G 2015 In situ formation of protective coatings on sulfur cathodes in lithium batteries with LiFSI-based organic electrolytes Adv. Energy Mater. 5 1401792
    [59]
    Kanamura K, Okagawa T and Takehara Z 1995 Electrochemical oxidation of propylene carbonate (containing various salts) on aluminium electrodes J. Power Sources 57 119–23
    [60]
    Piao N, Wang L and He X 2021 Anodic stabilities of various metals as the current collector in high concentration electrolytes for lithium batteries J. Electrochem. Soc. 168 030509
    [61]
    Chen S et al 2018 High-efficiency lithium metal batteries with fire-retardant electrolytes Joule 2 1548–58
    [62]
    Matsumoto K, Inoue K, Nakahara K, Yuge R, Noguchi T and Utsugi K 2013 Suppression of aluminum corrosion by using high concentration LiTFSI electrolyte J. Power Sources 231 234–8
    [63]
    McOwen D W, Seo D M, Borodin O, Vatamanu J, Boyle P D and Henderson W A 2014 Concentrated electrolytes: decrypting electrolyte properties and reassessing Al corrosion mechanisms Energy Environ. Sci. 7 416–26
    [64]
    Luo C, Li Y, Sun W, Xiao P, Liu S, Wang D and Zheng C 2022 Revisiting the corrosion mechanism of LiFSI based electrolytes in lithium metal batteries Electrochim. Acta 419 140353
    [65]
    Cho S-J, Yu D-E, Pollard T P, Moon H, Jang M, Borodin O and Lee S-Y 2020 Nonflammable lithium metal full cells with ultra-high energy density based on coordinated carbonate electrolytes Iscience 23 100844
    [66]
    Zhang T, Li Y, Chen N, Wen Z, Shang Y, Zhao Y, Yan M, Guan M, Wu F and Chen R 2021 Regulating the solvation structure of nonflammable electrolyte for dendrite-free Li-metal batteries ACS Appl. Mater. Interfaces 13 681–7
    [67]
    Swiderska-Mocek A, Jakobczyk P, Rudnicka E and Lewandowski A 2020 Flammability parameters of lithium-ion battery electrolytes J. Mol. Liq. 318 113986
    [68]
    Aurbach D, Talyosef Y, Markovsky B, Markevich E, Zinigrad E, Asraf L, Gnanaraj J S and Kim H-J 2004 Design of electrolyte solutions for Li and Li-ion batteries: a review Electrochim. Acta 50 247–54
    [69]
    Ravdel B, Abraham K M, Gitzendanner R, DiCarlo J, Lucht B and Campion C 2003 Thermal stability of lithium-ion battery electrolytes J. Power Sources 119 805–10
    [70]
    Mynam M, Ravikumar B and Rai B 2019 Molecular dynamics study of propylene carbonate based concentrated electrolyte solutions for lithium ion batteries J. Mol. Liq. 278 97–104
    [71]
    Wang J H, Yamada Y, Sodeyama K, Watanabe E, Takada K, Tateyama Y and Yamada A 2018 Fire-extinguishing organic electrolytes for safe batteries Nat. Energy 3 22–29
    [72]
    Bouibes A, Takenaka N, Saha S and Nagaoka M 2019 Microscopic origin of the solid electrolyte interphase formation in fire-extinguishing electrolyte: formation of pure inorganic layer in high salt concentration J. Phys. Chem. Lett. 10 5949–55
    [73]
    Hou J X et al 2020 Thermal runaway of lithium-ion batteries employing LiN(SO2F)(2)-based concentrated electrolytes Nat. Commun. 11 5100
    [74]
    Shiga T, Kato Y, Kondo H and Okuda C-A 2017 Self-extinguishing electrolytes using fluorinated alkyl phosphates for lithium batteries J. Mater. Chem. A 5 5156–62
    [75]
    Xiao J et al 2020 Understanding and applying Coulombic efficiency in lithium metal batteries Nat. Energy 5 561–8
    [76]
    Hobold G M, Lopez J, Guo R, Minafra N, Banerjee A, Meng Y S, Shao-Horn Y and Gallant B M 2021 Moving beyond 99.9% Coulombic efficiency for lithium anodes in liquid electrolytes Nat. Energy 6 951–60
    [77]
    Zhang J G, Xu W, Xiao J, Cao X and Liu J 2020 Lithium metal anodes with nonaqueous electrolytes Chem. Rev. 120 13312–48
    [78]
    Huang C J et al 2021 Decoupling the origins of irreversible coulombic efficiency in anode-free lithium metal batteries Nat. Commun. 12 1452
    [79]
    Qian J F, Adams B D, Zheng J M, Xu W, Henderson W A, Wang J, Bowden M E, Xu S C, Hu J Z and Zhang J G 2016 Anode-free rechargeable lithium metal batteries Adv. Funct. Mater. 26 7094–102
    [80]
    Alvarado J et al 2019 Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes Energy Environ. Sci. 12 780–94
    [81]
    Liu P, Ma Q, Fang Z, Ma J, Hu Y S, Zhou Z B, Li H, Huang X J and Chen L Q 2016 Concentrated dual-salt electrolytes for improving the cycling stability of lithium metal anodes Chin. Phys. B 25 078203
    [82]
    Ma Q et al 2016 Improved cycling stability of lithium-metal anode with concentrated electrolytes based on lithium (fluorosulfonyl)(trifluoromethanesulfonyl)imide Chemelectrochem 3 531–6
    [83]
    Qiu F L, Ren S Y, Zhang X P, He P and Zhou H S 2021 A high efficiency electrolyte enables robust inorganic-organic solid electrolyte interfaces for fast Li metal anode Sci. Bull. 66 897–903
    [84]
    Jin H, Liu H Y, Cheng H, Zhang P and Wang M 2020 The synergistic effect of lithium bis(fluorosulfonyl)imide and lithium nitrate for high-performance lithium metal anode J. Electroanal. Chem. 874 114484
    [85]
    Zhang X Q, Chen X, Hou L P, Li B Q, Cheng X B, Huang J Q and Zhang Q 2019 Regulating anions in the solvation sheath of lithium ions for stable lithium metal batteries ACS Energy Lett. 4 411–6
    [86]
    Kang D W, Moon J, Choi H-Y, Shin H-C and Kim B G 2021 Stable cycling and uniform lithium deposition in anode-free lithium-metal batteries enabled by a high-concentration dual-salt electrolyte with high LiNO3 content J. Power Sources 490 229504
    [87]
    Fang Z, Ma P A, Liu P, Ma J, Hu Y S, Zhou Z B, Li H, Huang X J and Chen L Q 2017 Novel concentrated Li (FSO2)(n-C4F9SO2)N-based ether electrolyte for superior stability of metallic lithium anode ACS Appl. Mater. Interfaces 9 4282–9
    [88]
    Qian J, Henderson W A, Xu W, Bhattacharya P, Engelhard M, Borodin O and Zhang J-G 2015 High rate and stable cycling of lithium metal anode Nat. Commun. 6 6362
    [89]
    Ning J, Duan K, Wang K, Liu J, Wang S and Zhang J 2022 Boosting practical high voltage lithium metal batteries by butyronitrile in ether electrolytes via coordination, hydrolysis of C equivalent to N and relatively mild concentration strategy J. Energy Chem. 67 290–9
    [90]
    Park K, Jo Y, Koo B, Lee H and Lee H 2022 Wide temperature cycling of Li-metal batteries with hydrofluoroether dilution of high-concentration electrolyte Chem. Eng. J. 427 131889
    [91]
    Cao R G, Chen J Z, Han K S, Xu W, Mei D H, Bhattacharya P, Engelhard M H, Mueller K T, Liu J and Zhang J G 2016 Effect of the anion activity on the stability of Li metal anodes in lithium-sulfur batteries Adv. Funct. Mater. 26 3059–66
    [92]
    Jiao S H et al 2018 Stable cycling of high-voltage lithium metal batteries in ether electrolytes Nat. Energy 3 739–46
    [93]
    Philip M A, Haasch R T, Kim J, Yang J Z, Yang R, Kochetkov I R, Nazar L F and Gewirth A A 2021 Enabling high capacity and Coulombic efficiency for Li-NCM811 cells using a highly concentrated electrolyte Batter. Supercaps 4 294–303
    [94]
    Wang W, Zhang J, Yang Q, Wang S, Wang W and Li B 2020 Stable cycling of high-voltage lithium-metal batteries enabled by high-concentration FEC-based electrolyte ACS Appl. Mater. Interfaces 12 22901–9
    [95]
    Xue W et al 2020 FSI-inspired solvent and “full fluorosulfonyl” electrolyte for 4 V class lithium-metal batteries Energy Environ. Sci. 13 212–20
    [96]
    Louli A J et al 2020 Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis Nat. Energy 5 693–702
    [97]
    Zhang K, An Y, Wei C, Qian Y, Zhang Y and Feng J 2021 High-safety and dendrite-free lithium metal batteries enabled by building a stable interface in a nonflammable medium-concentration phosphate electrolyte ACS Appl. Mater. Interfaces 13 50869–77
    [98]
    Ren X et al 2018 Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries Chem 4 1877–92
    [99]
    Wan C, Xu S, Hu M Y, Cao R, Qian J, Qin Z, Liu J, Mueller K T, Zhang J-G and Hu J Z 2017 Multinuclear NMR study of the solid electrolyte interface formed in lithium metal batteries ACS Appl. Mater. Interfaces 9 14741–8
    [100]
    Han J G, Kim K, Lee Y and Choi N S 2019 Scavenging materials to stabilize LiPF6-containing carbonate-based electrolytes for Li-ion batteries Adv. Mater. 31 1804822
    [101]
    Jie Y, Liu X, Lei Z, Wang S, Chen Y, Huang F, Cao R, Zhang G and Jiao S 2020 Enabling high-voltage lithium metal batteries by manipulating solvation structure in ester electrolyte Angew. Chem., Int. Ed. 59 3505–10
    [102]
    Zhang X-Q, Chen X, Cheng X-B, Li B-Q, Shen X, Yan C, Huang J-Q and Zhang Q 2018 Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes Angew. Chem., Int. Ed. 57 5301–5
    [103]
    Wang H et al 2022 Regulating interfacial structure enables high-voltage dilute ether electrolytes Cell Rep. Phys. Sci. 3 100919
    [104]
    Lin S, Hua H, Lai P and Zhao J 2021 A multifunctional dual-salt localized high-concentration electrolyte for fast dynamic high-voltage lithium battery in wide temperature range Adv. Energy Mater. 11 2101775
    [105]
    Li X, Zheng J M, Ren X D, Engelhard M H, Zhao W G, Li Q Y, Zhang J G and Xu W 2018 Dendrite-free and performance-enhanced lithium metal batteries through optimizing solvent compositions and adding combinational additives Adv. Energy Mater. 8 1703022
    [106]
    Xu Y B, Wu H P, He Y, Chen Q S, Zhang J G, Xu W and Wang C M 2020 Atomic to nanoscale origin of vinylene carbonate enhanced cycling stability of lithium metal anode revealed by cryo-transmission electron microscopy Nano Lett. 20 418–25
    [107]
    Fan X L et al 2018 Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries Nat. Nanotechnol. 13 715
  • 加载中

Catalog

    Figures(1)

    Article Metrics

    Article Views(415) PDF downloads(352)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return