Citation: | Chenxi Zheng, Shijun Tang, Fangmei Wen, Jinxue Peng, Wu Yang, Zhongwei Lv, Yongmin Wu, Weiping Tang, Zhengliang Gong, Yong Yang. Reinforced cathode-garnet interface for high-capacity all-solid-state batteries[J]. Materials Futures, 2022, 1(4): 045103. doi: 10.1088/2752-5724/aca110 |
Garnet-type solid-state electrolytes (SSEs) are particularly attractive in the construction of all-solid-state lithium (Li) batteries due to their high ionic conductivity, wide electrochemical window and remarkable (electro)chemical stability. However, the intractable issues of poor cathode/garnet interface and general low cathode loading hinder their practical application. Herein, we demonstrate the construction of a reinforced cathode/garnet interface by spark plasma sintering, via co-sintering Li6.5La3Zr1.5Ta0.5O12 (LLZTO) electrolyte powder and LiCoO2/LLZTO composite cathode powder directly into a dense dual-layer with 5 wt% Li3BO3 as sintering additive. The bulk composite cathode with LiCoO2/LLZTO cross-linked structure is firmly welded to the LLZTO layer, which optimizes both Li-ion and electron transport. Therefore, the one-step integrated sintering process implements an ultra-low cathode/garnet interfacial resistance of 3.9 Ω cm2 (100 °C) and a high cathode loading up to 2.02 mAh cm−2. Moreover, the Li3BO3 reinforced LiCoO2/LLZTO interface also effectively mitigates the strain/stress of LiCoO2, which facilitates the achieving of superior cycling stability. The bulk-type Li|LLZTO|LiCoO2-LLZTO full cell with areal capacity of 0.73 mAh cm−2 delivers capacity retention of 81.7% after 50 cycles at 100 μA cm−2. Furthermore, we reveal that non-uniform Li plating/stripping leads to the formation of gaps and finally results in the separation of Li and LLZTO electrolyte during long-term cycling, which becomes the dominant capacity decay mechanism in high-capacity full cells. This work provides insight into the degradation of Li/SSE interface and a strategy to radically improve the electrochemical performance of garnet-based all-solid-state Li batteries.
[1] |
Zhao N, Khokhar W, Bi Z, Shi C, Guo X, Fan L Z and Nan C W 2019 Solid garnet batteries Joule 3 1190–9
|
[2] |
Manthiram A, Yu X and Wang S 2017 Lithium battery chemistries enabled by solid-state electrolytes Nat. Rev. Mater. 2 16103
|
[3] |
Gao Y, Sun S, Zhang X, Liu Y, Hu J, Huang Z, Gao M and Pan H 2021 Amorphous dual-layer coating: enabling high Li-ion conductivity of non-sintered garnet-type solid electrolyte Adv. Funct. Mater. 31 2009692
|
[4] |
Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y and Zhang J G 2014 Lithium metal anodes for rechargeable batteries Energy Environ. Sci. 7 513–37
|
[5] |
Murugan R, Thangadurai V and Weppner W 2007 Fast lithium ion conduction in garnet-type Li7La3Zr2O12 Angew. Chem., Int. Ed. 46 7778–81
|
[6] |
Shao Y et al 2018 Drawing a soft interface: an effective interfacial modification strategy for garnet-type solid-state Li batteries ACS Energy Lett. 3 1212–8
|
[7] |
Fu K K, Gong Y, Fu Z, Xie H, Yao Y, Liu B, Carter M, Wachsman E and Hu L 2017 Transient behavior of the metal interface in lithium metal-garnet batteries Angew. Chem., Int. Ed. 56 14942–7
|
[8] |
Han X et al 2017 Negating interfacial impedance in garnet-based solid-state Li metal batteries Nat. Mater. 16 572–9
|
[9] |
Huang Y, Chen B, Duan J, Yang F, Wang T, Wang Z, Yang W, Hu C, Luo W and Huang Y 2020 Graphitic carbon nitride (g-C3N4): an interface enabler for solid-state lithium metal batteries Angew. Chem., Int. Ed. 59 3699–704
|
[10] |
Tang S, Chen G, Ren F, Wang H, Yang W, Zheng C, Gong Z and Yang Y 2021 Modifying an ultrathin insulating layer to suppress lithium dendrite formation within garnet solid electrolytes J. Mater. Chem. A 9 3576–83
|
[11] |
Lee S, Lee K S, Kim S, Yoon K, Han S, Lee M H, Ko Y, Noh J H, Kim W and Kang K 2022 Design of a lithiophilic and electron-blocking interlayer for dendrite-free lithium-metal solid-state batteries Sci. Adv. 8 eabg0153
|
[12] |
Huo H, Chen Y, Li R, Zhao N, Luo J, Pereira da Silva J G, Mücke R, Kaghazchi P, Guo X and Sun X 2020 Design of a mixed conductive garnet/Li interface for dendrite-free solid lithium metal batteries Energy Environ. Sci. 13 127–34
|
[13] |
Huo H, Chen Y, Zhao N, Lin X, Luo J, Yang X, Liu Y, Guo X and Sun X 2019 In-situ formed Li2CO3-free garnet/Li interface by rapid acid treatment for dendrite-free solid-state batteries Nano Energy 61 119–25
|
[14] |
Ruan Y, Lu Y, Huang X, Su J, Sun C, Jin J and Wen Z 2019 Acid induced conversion towards a robust and lithiophilic interface for Li–Li7La3Zr2O12 solid-state batteries J. Mater. Chem. A 7 14565–74
|
[15] |
Duan H et al 2020 Building an air stable and lithium deposition regulable garnet interface from moderate-temperature conversion chemistry Angew. Chem., Int. Ed. 59 12069–75
|
[16] |
Cai M, Jin J, Xiu T, Song Z, Badding M E and Wen Z 2022 In-situ constructed lithium-salt lithiophilic layer inducing bi-functional interphase for stable LLZO/Li interface Energy Storage Mater. 47 61–69
|
[17] |
Park K, Yu B C, Jung J W, Li Y, Zhou W, Gao H, Son S and Goodenough J B 2016 Electrochemical nature of the cathode interface for a solid-state lithium-ion battery: interface between LiCoO2 and garnet-Li7La3Zr2O12 Chem. Mater. 28 8051–9
|
[18] |
Ren Y, Liu T, Shen Y, Lin Y and Nan C W 2016 Chemical compatibility between garnet-like solid state electrolyte Li6.75La3Zr1.75Ta0.25O12 and major commercial lithium battery cathode materials J. Materiomics 2 256–64
|
[19] |
Yu C Y, Choi J, Han J, Lee E and Kim J-H 2022 Phase stability of garnet solid-electrolyte interfacing with various cathodes in all solid-state batteries J. Electrochem. Soc. 169 020520
|
[20] |
Zhang L, Zhuang Q, Zheng R, Wang Z, Sun H, Arandiyan H, Wang Y, Liu Y and Shao Z 2022 Recent advances of Li7La3Zr2O12-based solid-state lithium batteries towards high energy density Energy Storage Mater. 49 299–338
|
[21] |
Mücke R, Finsterbusch M, Kaghazchi P, Fattakhova-Rohlfing D and Guillon O 2021 Modelling electro-chemical induced stresses in all-solid-state batteries: anisotropy effects in cathodes and cell design optimisation J. Power Sources 489 229430
|
[22] |
Ihrig M et al 2022 Study of LiCoO2/Li7La3Zr2O12: taInterface degradation in all-solid-state lithium batteries ACS Appl. Mater. Interfaces 14 11288–99
|
[23] |
Zhu Y, He X and Mo Y 2016 First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries J. Mater. Chem. A 4 3253–66
|
[24] |
Menetrier M, Saadoune I, Levasseur S and Delmas C 1999 The insulator-metal transition upon lithium deintercalation from LiCoO2: electronic properties and 7Li NMR study J. Mater. Chem. 9 1135–40
|
[25] |
Antolini E and Ferretti M 1995 Synthesis and thermal stability of LiCoO2 J. Solid State Chem. 117 1–7
|
[26] |
Hubaud A A, Schroeder D J, Ingram B J, Okasinski J S and Vaughey J T 2015 Thermal expansion in the garnet-type solid electrolyte (Li7−xAlx/3)La3Zr2O12 as a function of Al content J. Alloys Compd. 644 804–7
|
[27] |
Cheng E J, Taylor N J, Wolfenstine J and Sakamoto J 2018 Elastic properties of lithium cobalt oxide (LiCoO2) J. Asian Ceram. Soc. 5 113–7
|
[28] |
Sastre J, Chen X, Aribia A, Tiwari A N and Romanyuk Y E 2020 Fast charge transfer across the Li7La3Zr2O12 solid electrolyte/LiCoO2 cathode interface enabled by an interphase-engineered all-thin-film architecture ACS Appl. Mater. Interfaces 12 36196–207
|
[29] |
Ren Y and Wachsman E D 2022 All solid-state Li/LLZO/LCO battery enabled by alumina interfacial coating J. Electrochem. Soc. 169 040529
|
[30] |
Kato T, Hamanaka T, Yamamoto K, Hirayama T, Sagane F, Motoyama M and Iriyama Y 2014 In-situ Li7La3Zr2O12/ LiCoO2 interface modification for advanced all-solid-state battery J. Power Sources 260 292–8
|
[31] |
Han F, Yue J, Chen C, Zhao N, Fan X, Ma Z, Gao T, Wang F, Guo X and Wang C 2018 Interphase engineering enabled all-ceramic lithium battery Joule 2 497–508
|
[32] |
Guo H, Shen F, Guo W, Zeng D, Yin Y and Han X 2021 LiCoO2/Li6.75La3Zr1.75Nb0.25O12 interface modification enables all-solid-state battery Mater. Lett. 301 130302
|
[33] |
Balasubramaniam R, Nam C W, Aravindan V, Eum D, Kang K and Lee Y S 2021 Interfacial engineering in a cathode composite based on garnet-type solid-state Li-Ion battery with high voltage cycling ChemElectroChem 8 570–6
|
[34] |
Tsai C-L et al 2019 A garnet structure-based all-solid-state Li battery without interface modification: resolving incompatibility issues on positive electrodes Sustain. Energy Fuels 3 280–91
|
[35] |
Liu T, Zhang Y, Zhang X, Wang L, Zhao S X, Lin Y H, Shen Y, Luo J, Li L and Nan C W 2018 Enhanced electrochemical performance of bulk type oxide ceramic lithium batteries enabled by interface modification J. Mater. Chem. A 6 4649–57
|
[36] |
Liu T, Ren Y, Shen Y, Zhao S X, Lin Y and Nan C W 2016 Achieving high capacity in bulk-type solid-state lithium ion battery based on Li6.75La3Zr1.75Ta0.25O12 electrolyte: interfacial resistance J. Power Sources 324 349–57
|
[37] |
Liu T, Zhang Y, Chen R, Zhao S X, Lin Y, Nan C W and Shen Y 2017 Non-successive degradation in bulk-type all-solid-state lithium battery with rigid interfacial contact Electrochem. Commun. 79 1–4
|
[38] |
Kim K J and Rupp J L M 2020 All ceramic cathode composite design and manufacturing towards low interfacial resistance for garnet-based solid-state lithium batteries Energy Environ. Sci. 13 4930–45
|
[39] |
Ihrig M et al 2021 Low temperature sintering of fully inorganic all-solid-state batteries—impact of interfaces on full cell performance J. Power Sources 482 228905
|
[40] |
Bram M et al 2020 Application of electric current-assisted sintering techniques for the processing of advanced materials Adv. Eng. Mater. 22 2000051
|
[41] |
Laptev A M, Zheng H, Bram M, Finsterbusch M and Guillon O 2019 High-pressure field assisted sintering of half-cell for all-solid-state battery Mater. Lett. 247 155–8
|
[42] |
Feng W, Lai Z, Dong X, Li P, Wang Y and Xia Y 2020 Garnet-based all-ceramic lithium battery enabled by Li2985B0005OCl solder iScience 23 101071
|
[43] |
Il’ina E, Pershina S, Antonov B and Pankratov A 2021 Impact of Li3BO3 Addition on solid electrode-solid electrolyte interface in all-solid-state batteries Materials 14 7099
|
[44] |
Han X et al 2021 All solid thick oxide cathodes based on low temperature sintering for high energy solid batteries Energy Environ. Sci. 14 5044–56
|
[45] |
Kim K H, Iriyama Y, Yamamoto K, Kumazaki S, Asaka T, Tanabe K, Fisher C A J, Hirayama T, Murugan R and Ogumi Z 2011 Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery J. Power Sources 196 764–7
|
[46] |
Takahara H, Takeuchi T, Tabuchi M, Kageyama H, Kobayashi Y, Kurisu Y, Kondo S and Kanno R 2004 All-solid-state lithium secondary battery using oxysulfide glass—addition and coating of carbon to positive electrode J. Electrochem. Soc. 151 A1539–44
|
[47] |
Carson G A, Nassir M H and Langell M A 1996 Epitaxial growth of Co3O4 on CoO (100) J. Vac. Sci. Technol. A 14 1637–42
|
[48] |
Xu J, Wu J, Luo L, Chen X, Qin H, Dravid V, Mi S and Jia C 2015 Co3O4 nanocubes homogeneously assembled on few-layer graphene for high energy density lithium-ion batteries J. Power Sources 274 816–22
|
[49] |
Ohta S, Kobayashi T, Seki J and Asaoka T 2012 Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte J. Power Sources 202 332–5
|
![]() |
![]() |