Volume 1 Issue 4
December  2022
Turn off MathJax
Article Contents
Kangqiao Cheng, Wei Xie, Shuo Zou, Huanpeng Bu, Jin-Ke Bao, Zengwei Zhu, Hanjie Guo, Chao Cao, Yongkang Luo. La2Rh3+δSb4: a new ternary superconducting rhodium-antimonide[J]. Materials Futures, 2022, 1(4): 045201. doi: 10.1088/2752-5724/ac972f
Citation: Kangqiao Cheng, Wei Xie, Shuo Zou, Huanpeng Bu, Jin-Ke Bao, Zengwei Zhu, Hanjie Guo, Chao Cao, Yongkang Luo. La2Rh3+δSb4: a new ternary superconducting rhodium-antimonide[J]. Materials Futures, 2022, 1(4): 045201. doi: 10.1088/2752-5724/ac972f
Paper •
OPEN ACCESS

La2Rh3+δSb4: a new ternary superconducting rhodium-antimonide

© 2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 1, Number 4
  • Received Date: 2022-08-18
  • Accepted Date: 2022-10-02
  • Rev Recd Date: 2022-09-28
  • Publish Date: 2022-10-17
  • Rhodium-containing compounds offer a fertile playground to explore novel materials with superconductivity (SC) and other fantastic electronic correlation effects. A new ternary rhodium-antimonide La2Rh3+δSb4 (δ1/8) has been synthesized by a Bi-flux method. It crystallizes in the orthorhombic Pr2Ir3Sb4-like structure, with the space group Pnma (No. 62). The crystalline structure appears as stacking the two-dimensional RhSb4- and RhSb5-polyhedra networks along b axis, and the La atoms embed in the cavities of these networks. Band structure calculations confirm it as a multi-band metal with a van-Hove singularity like feature at the Fermi level, whose density of states are mainly of Rh-4d and Sb-5p characters. The calculations also imply that the redundant Rh acts as charge dopant. SC is observed in this material with onset transition at Tcon0.8K. Ultra-low temperature magnetic susceptibility and specific heat measurements suggest that it is an s-wave type-II superconductor. Our work may also imply that the broad Ln2Tm3+δSb4 (Ln = rare earth, Tm = Rh, Ir) family may host new material bases where new superconductors, quantum magnetism and other electronic correlation effects could be found.
  • loading
  • [1]
    Perry R S, Baumberger F, Balicas L, Kikugawa N, Ingle N J C, Rost A, Mercure J F, Maeno Y, Shen Z X, Mackenzie A P 2006 Sr2RhO4: a new, clean correlated electron metal New. J. Phys. 8 175 doi: 10.1088/1367-2630/8/9/175
    [2]
    Luo Y K, et al 2013 Li2RhO3: a spin-glassy relativistic Mott insulator Phys. Rev. B 87 161121 doi: 10.1103/PhysRevB.87.161121
    [3]
    Movshovich R, Graf T, Mandrus D, Thompson J D, Smith J L, Fisk Z 1996 Superconductivity in heavy-fermion CeRh2Si2 Phys. Rev. B 53 8241-4 doi: 10.1103/PhysRevB.53.8241
    [4]
    Hegger H, Petrovic C, Moshopoulou E G, Hundley M F, Sarrao J L, Fisk Z, Thompson J D 2000 Pressure-induced superconductivity in quasi-2D CeRhIn5 Phys. Rev. Lett. 84 4986-9 doi: 10.1103/PhysRevLett.84.4986
    [5]
    Wastin F, Boulet P, Rebizant J, Colineau E, Lander G H 2003 Advances in the preparation and characterization of transuranium systems J. Phys.: Condens. Matter 15 S2279-85 doi: 10.1088/0953-8984/15/28/369
    [6]
    Aoki D, Huxley A, Ressouche E, Braithwaite D, Flouquet J, Brison J-P, Lhotel E, Paulsen C 2001 Coexistence of superconductivity and ferromagnetism in URhGe Nature 413 613-6 doi: 10.1038/35098048
    [7]
    Khim S, et al 2021 Field-induced transition within the superconducting state of CeRh2As2 Science 373 1012-6 doi: 10.1126/science.abe7518
    [8]
    Kibune M, et al 2022 Observation of antiferromagnetic order as odd-parity multipoles inside the superconducting phase in CeRh2As2 Phys. Rev. Lett. 128 057002 doi: 10.1103/PhysRevLett.128.057002
    [9]
    Kumigashira H, Takahashi T, Yoshii S, Kasaya M 2001 Hybridized nature of pseudogap in Kondo insulators CeRhSb and CeRhAs Phys. Rev. Lett. 87 067206 doi: 10.1103/PhysRevLett.87.067206
    [10]
    Gegenwart P, Custers J, Geibel C, Neumaier K, Tayama T, Tenya K, Trovarelli O, Steglich F 2002 Magnetic-field induced quantum critical point in YbRh2Si2 Phys. Rev. Lett. 89 056402 doi: 10.1103/PhysRevLett.89.056402
    [11]
    Shen B, et al 2020 Strange-metal behaviour in a pure ferromagnetic Kondo lattice Nature 579 51-55 doi: 10.1038/s41586-020-2052-z
    [12]
    Onimaru T, Nagasawa N, Matsumoto K T, Wakiya K, Umeo K, Kittaka S, Sakakibara T, Matsushita Y, Takabatake T 2012 Simultaneous superconducting and antiferroquadrupolar transitions in PrRh2Zn20 Phys. Rev. B 86 184426 doi: 10.1103/PhysRevB.86.184426
    [13]
    Hofmann W K, Jeitschko W 1988 Ternary pnictides MNi2−xPn2M = Sr and rare earth metals, Pn = Sb, Bi) with defect CaBe2Ge2 and defect ThCr2Si2 structures J. Less-Common Met. 138 313-22 doi: 10.1016/0022-5088(88)90119-1
    [14]
    Cava R J, Ramirez A P, Takagi H, Krajewski J J, Peck Jr W E 1993 Physical properties of some ternary Ce intermetallics with the transition metals Ni and Pd J. Magn. Magn. Mater. 128 124-8 doi: 10.1016/0304-8853(93)90865-Y
    [15]
    Yang X X, Lu Y M, Zhou S K, Mao S Y, Mi J X, Man Z Y, Zhao J T 2005 RCu1+xSb2R = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho and Y) phases with defect CaBe2Ge2-type structure Mater. Sci. Forum 475-479 861-4 doi: 10.4028/www.scientific.net/MSF.475-479.861
    [16]
    Luo Y, et al 2012 Magnetism and crystalline electric field effect in ThCr2Si2-type CeNi2As2 Phys. Rev. B 86 245130 doi: 10.1103/PhysRevB.86.245130
    [17]
    Luo Y, Ronning F, Wakeham N, Lu X, Park T, Xu Z-A, Thompson J D 2015 Pressure-tuned quantum criticality in the antiferromagnetic Kondo semimetal CeNi2−δAs2 Proc. Natl Acad. Sci. USA 112 13520-4 doi: 10.1073/pnas.1509581112
    [18]
    Schfer K, Hermes W, Rodewald U C, Hoffmann R-D, Pttgen R 2011 Ternary antimonides RE2Ir3Sb4RE = La, Ce, Pr, Nd) Z. Naturforsch. B 66 777-83 doi: 10.1515/znb-2011-0802
    [19]
    Cardoso-Gil R, Caroca-Canales N, Budnyk S, Schnelle W 2011 Crystal structure, chemical bonding and magnetic properties of the new antimonides Ce2Ir3Sb4, La2Ir3Sb4 and Ce2Rh3Sb4 Z. Kristallogr. 226 657-66 doi: 10.1524/zkri.2011.1392
    [20]
    Cheng K Q, Luo Y K in preparation
    [21]
    Kresse G, Hafner J 1993 Ab initio molecular dynamics for liquid metals Phys. Rev. B 47 558-61 doi: 10.1103/PhysRevB.47.558
    [22]
    Perdew J P, Burke K, Ernzerhof M 1996 Generalized gradient approximation made simple Phys. Rev. Lett. 77 3865-8 doi: 10.1103/PhysRevLett.77.3865
    [23]
    Blchl P E 1994 Projector augmented-wave method Phys. Rev. B 50 17953-79 doi: 10.1103/PhysRevB.50.17953
    [24]
    Kresse G, Joubert D 1999 From ultrasoft pseudopotentials to the projector augmented-wave method Phys. Rev. B 59 1758-75 doi: 10.1103/PhysRevB.59.1758
    [25]
    Ginzburg V L, Landau L D 1950 On the theory of superconductivity Zh. Eksp. Teor. Fiz. 20 1064
    [26]
    Clogston A M 1962 Upper limit for the critical field in hard superconductors Phys. Rev. Lett. 9 266-7 doi: 10.1103/PhysRevLett.9.266
    [27]
    Chandrasekhar B S 1962 A note on the maximum critical field of high-field superconductors Appl. Phys. Lett. 1 7-8 doi: 10.1063/1.1777362
    [28]
    Ashcroft N W, Mermin N D 1976 Solid State PhysicsPhiladelphia, PAHarcourt College Publishers
    [29]
    Movshovich R, Yatskar A, Hundley M F, Canfield P C, Beyermann W P 1999 Magnetic-field dependence of the low-temperature specific heat in PrInAg2: support for a nonmagnetic heavy-fermion ground state Phys. Rev. B 59 R6601-3 doi: 10.1103/PhysRevB.59.R6601
    [30]
    Taylor O J, Carrington A, Schlueter J A 2007 Specific-heat measurements of the gap structure of the organic superconductors -(ET)2Cu[N(CN)2]Br and -(ET)2Cu(NCS)2 Phys. Rev. Lett. 99 057001 doi: 10.1103/PhysRevLett.99.057001
    [31]
    Li Y K, Luo Y K, Li L, Chen B, Xu X F, Dai J H, Yang X J, Zhang L, Cao G H, Xu Z A 2014 Kramers non-magnetic superconductivity in LnNiAsO superconductors J. Phys.: Condens. Matter 26 425701 doi: 10.1088/0953-8984/26/42/425701
    [32]
    Bardeen J, Cooper L N, Schrieffer J R 1957 Microscopic theory of superconductivity Phys. Rev. 106 162-4 doi: 10.1103/PhysRev.106.162
    [33]
    Bardeen J, Cooper L N, Schrieffer J R 1957 Theory of superconductivity Phys. Rev. 108 1175-204 doi: 10.1103/PhysRev.108.1175
    [34]
    The Rh4 atom is assumed to be divalent in the calculation. Taking Z = 4 and dopant concentration = 1/8 for simplicity, we get 1 electron/u.c. Therefore, the Fermi level is assumed to change by ΔE = 39meV given by ∫0ΔEN(E)dE=1N(ΔE) = 24eV−1/u.c.
    [35]
    McMillan W L 1968 Transition temperature of strong-coupled superconductors Phys. Rev. 167 331-44 doi: 10.1103/PhysRev.167.331
    [36]
    Mu G, Zhu X Y, Fang L, Shan L, Ren C, Wen H-H 2008 Nodal gap in Fe-based layered superconductor LaO0.9F0.1−δFeAs probed by specific heat measurements Chin. Phys. Lett. 2 2221-4
    [37]
    Moodenbaugh A R, Xu Y W, Suenaga M, Folkerts T J, Shelton R N 1988 Superconducting properties of La2−xBaxCuO4 Phys. Rev. B 38 4596-9 doi: 10.1103/PhysRevB.38.4596
    [38]
    Wang Q, et al 2021 Charge density wave orders and enhanced superconductivity under pressure in the Kagome metal CsV3Sb5 Adv. Mater. 33 2102813 doi: 10.1002/adma.202102813
    [39]
    Qi Y P, et al 2021 Superconductivity from buckled-honeycomb-vacancy ordering Sci. Bull. 66 327-31 doi: 10.1016/j.scib.2020.12.007
    [40]
    Ying T P, Yu T X, Cheng E J, Li S Y, Deng J, Cui X R, Guo J G, Qi Y P, Chen X L, Hosono H 2021 Fermi surface nesting, vacancy ordering and the emergence of superconductivity in IrSb compounds (arXiv:2108.13704)
  • mfac972fsupp3.pdf
    mfac972fsupp2.zip
    mfac972fsupp1.pdf
  • 加载中

Catalog

    Figures(8)  / Tables(2)

    Article Metrics

    Article Views(478) PDF downloads(23)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return