Volume 1 Issue 4
December  2022
Turn off MathJax
Article Contents
Kangqiao Cheng, Wei Xie, Shuo Zou, Huanpeng Bu, Jinke Bao, Zengwei Zhu, Hanjie Guo, Chao Cao, Yongkang Luo. La2Rh3+δSb4: A new ternary superconducting rhodium-antimonide[J]. Materials Futures, 2022, 1(4): 045201. doi: 10.1088/2752-5724/ac972f
Citation: Kangqiao Cheng, Wei Xie, Shuo Zou, Huanpeng Bu, Jinke Bao, Zengwei Zhu, Hanjie Guo, Chao Cao, Yongkang Luo. La2Rh3+δSb4: A new ternary superconducting rhodium-antimonide[J]. Materials Futures, 2022, 1(4): 045201. doi: 10.1088/2752-5724/ac972f
Paper •
OPEN ACCESS

La2Rh3+δSb4: A new ternary superconducting rhodium-antimonide

© 2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 1, Number 4
  • Received Date: 2022-08-18
  • Accepted Date: 2022-10-02
  • Publish Date: 2022-10-17
  • Rhodium-containing compounds offer a fertile playground to explore novel materials with superconductivity (SC) and other fantastic electronic correlation effects. A new ternary rhodium-antimonide La2Rh3+δSb4 (δ≈1/8) has been synthesized by a Bi-flux method. It crystallizes in the orthorhombic Pr2Ir3Sb4-like structure, with the space group Pnma (No. 62). The crystalline structure appears as stacking the two-dimensional RhSb4- and RhSb5-polyhedra networks along b axis, and the La atoms embed in the cavities of these networks. Band structure calculations confirm it as a multi-band metal with a van-Hove singularity like feature at the Fermi level, whose density of states are mainly of Rh-4d and Sb-5p characters. The calculations also imply that the redundant Rh acts as charge dopant. SC is observed in this material with onset transition at Tcon≈0.8 K. Ultra-low temperature magnetic susceptibility and specific heat measurements suggest that it is an s-wave type-II superconductor. Our work may also imply that the broad Ln2Tm3+δSb4 (Ln = rare earth, Tm = Rh, Ir) family may host new material bases where new superconductors, quantum magnetism and other electronic correlation effects could be found.

  • loading
  • [1]
    Perry R S, Baumberger F, Balicas L, Kikugawa N, Ingle N J C, Rost A, Mercure J F, Maeno Y, Shen Z X and Mackenzie A P 2006 Sr2RhO4: a new, clean correlated electron metal New. J. Phys. 8 175
    [2]
    Luo Y K et al 2013 Li2RhO3: a spin-glassy relativistic Mott insulator Phys. Rev. B 87 161121
    [3]
    Movshovich R, Graf T, Mandrus D, Thompson J D, Smith J L and Fisk Z 1996 Superconductivity in heavy-fermion CeRh2Si2 Phys. Rev. B 53 8241–4
    [4]
    Hegger H, Petrovic C, Moshopoulou E G, Hundley M F, Sarrao J L, Fisk Z and Thompson J D 2000 Pressure-induced superconductivity in quasi-2D CeRhIn5 Phys. Rev. Lett. 84 4986–9
    [5]
    Wastin F, Boulet P, Rebizant J, Colineau E and Lander G H 2003 Advances in the preparation and characterization of transuranium systems J. Phys.: Condens. Matter 15 S2279–85
    [6]
    Aoki D, Huxley A, Ressouche E, Braithwaite D, Flouquet J, Brison J-P, Lhotel E and Paulsen C 2001 Coexistence of superconductivity and ferromagnetism in URhGe Nature 413 613–6
    [7]
    Khim S et al 2021 Field-induced transition within the superconducting state of CeRh2As2 Science 373 1012–6
    [8]
    Kibune M et al 2022 Observation of antiferromagnetic order as odd-parity multipoles inside the superconducting phase in CeRh2As2 Phys. Rev. Lett. 128 057002
    [9]
    Kumigashira H, Takahashi T, Yoshii S and Kasaya M 2001 Hybridized nature of pseudogap in Kondo insulators CeRhSb and CeRhAs Phys. Rev. Lett. 87 067206
    [10]
    Gegenwart P, Custers J, Geibel C, Neumaier K, Tayama T, Tenya K, Trovarelli O and Steglich F 2002 Magnetic-field induced quantum critical point in YbRh2Si2 Phys. Rev. Lett. 89 056402
    [11]
    Shen B et al 2020 Strange-metal behaviour in a pure ferromagnetic Kondo lattice Nature 579 51–55
    [12]
    Onimaru T, Nagasawa N, Matsumoto K T, Wakiya K, Umeo K, Kittaka S, Sakakibara T, Matsushita Y and Takabatake T 2012 Simultaneous superconducting and antiferroquadrupolar transitions in PrRh2Zn20 Phys. Rev. B 86 184426
    [13]
    Hofmann W K and Jeitschko W 1988 Ternary pnictides MNi2−x Pn2 (M = Sr and rare earth metals, Pn = Sb, Bi) with defect CaBe2Ge2 and defect ThCr2Si2 structures J. Less-Common Met. 138 313–22
    [14]
    Cava R J, Ramirez A P, Takagi H, Krajewski J J and Peck Jr W E 1993 Physical properties of some ternary Ce intermetallics with the transition metals Ni and Pd J. Magn. Magn. Mater. 128 124–8
    [15]
    Yang X X, Lu Y M, Zhou S K, Mao S Y, Mi J X, Man Z Y and Zhao J T 2005 RCu1+x Sb2 (R = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho and Y) phases with defect CaBe2Ge2-type structure Mater. Sci. Forum 475–479 861–4
    [16]
    Luo Y et al 2012 Magnetism and crystalline electric field effect in ThCr2Si2-type CeNi2As2 Phys. Rev. B 86 245130
    [17]
    Luo Y, Ronning F, Wakeham N, Lu X, Park T, Xu Z-A and Thompson J D 2015 Pressure-tuned quantum criticality in the antiferromagnetic Kondo semimetal CeNi2 As2−δ Proc. Natl Acad. Sci. USA 112 13520–4
    [18]
    Schäfer K, Hermes W, Rodewald U C, Hoffmann R-D and Pöttgen R 2011 Ternary antimonides RE2Ir3Sb4 (RE = La, Ce, Pr, Nd) Z. Naturforsch. B 66 777–83
    [19]
    Cardoso-Gil R, Caroca-Canales N, Budnyk S and Schnelle W 2011 Crystal structure, chemical bonding and magnetic properties of the new antimonides Ce2Ir3Sb4, La2Ir3Sb4 and Ce2Rh3Sb4 Z. Kristallogr. 226 657–66
    [20]
    Cheng K Q and Luo Y K in preparation
    [21]
    Kresse G and Hafner J 1993 Ab initio molecular dynamics for liquid metals Phys. Rev. B 47 558–61
    [22]
    Perdew J P, Burke K and Ernzerhof M 1996 Generalized gradient approximation made simple Phys. Rev. Lett. 77 3865–8
    [23]
    Blöchl P E 1994 Projector augmented-wave method Phys. Rev. B 50 17953–79
    [24]
    Kresse G and Joubert D 1999 From ultrasoft pseudopotentials to the projector augmented-wave method Phys. Rev. B 59 1758–75
    [25]
    Ginzburg V L and Landau L D 1950 On the theory of superconductivity Zh. Eksp. Teor. Fiz. 20 1064
    [26]
    Clogston A M 1962 Upper limit for the critical field in hard superconductors Phys. Rev. Lett. 9 266–7
    [27]
    Chandrasekhar B S 1962 A note on the maximum critical field of high-field superconductors Appl. Phys. Lett. 1 7–8
    [28]
    Ashcroft N W and Mermin N D 1976 Solid State Physics (Philadelphia, PA: Harcourt College Publishers)
    [29]
    Movshovich R, Yatskar A, Hundley M F, Canfield P C and Beyermann W P 1999 Magnetic-field dependence of the low-temperature specific heat in PrInAg2: support for a nonmagnetic heavy-fermion ground state Phys. Rev. B 59 R6601–3
    [30]
    Taylor O J, Carrington A and Schlueter J A 2007 Specific-heat measurements of the gap structure of the organic superconductors κ–(ET)2Cu[N(CN)2]Br and κ–(ET)2Cu(NCS)2 Phys. Rev. Lett. 99 057001
    [31]
    Li Y K, Luo Y K, Li L, Chen B, Xu X F, Dai J H, Yang X J, Zhang L, Cao G H and Xu Z A 2014 Kramers non-magnetic superconductivity in LnNiAsO superconductors J. Phys.: Condens. Matter 26 425701
    [32]
    Bardeen J, Cooper L N and Schrieffer J R 1957 Microscopic theory of superconductivity Phys. Rev. 106 162–4
    [33]
    Bardeen J, Cooper L N and Schrieffer J R 1957 Theory of superconductivity Phys. Rev. 108 1175–204
    [34]
    The Rh4 atom is assumed to be divalent in the calculation. Taking Z = 4 and dopant concentration δ = 1/8 for simplicity, we get 1 electron/u.c. Therefore, the Fermi level is assumed to change by ∆E = 39 meV given by ´ ∆E 0 N(E)dE = 1. N(∆E) = 24 eV−1 /u.c.
    [35]
    McMillan W L 1968 Transition temperature of strong-coupled superconductors Phys. Rev. 167 331–44
    [36]
    Mu G, Zhu X Y, Fang L, Shan L, Ren C and Wen H-H 2008 Nodal gap in Fe-based layered superconductor LaO0.9F0.1−δFeAs probed by specific heat measurements Chin. Phys. Lett. 2 2221–4
    [37]
    Moodenbaugh A R, Xu Y W, Suenaga M, Folkerts T J and Shelton R N 1988 Superconducting properties of La2−xBaxCuO4 Phys. Rev. B 38 4596–9
    [38]
    Wang Q et al 2021 Charge density wave orders and enhanced superconductivity under pressure in the Kagome metal CsV3Sb5 Adv. Mater. 33 2102813
    [39]
    Qi Y P et al 2021 Superconductivity from buckled-honeycomb-vacancy ordering Sci. Bull. 66 327–31
    [40]
    Ying T P, Yu T X, Cheng E J, Li S Y, Deng J, Cui X R, Guo J G, Qi Y P, Chen X L and Hosono H 2021 Fermi surface nesting, vacancy ordering and the emergence of superconductivity in IrSb compounds (arXiv:2108.13704)
  • 加载中

Catalog

    Figures(1)

    Article Metrics

    Article Views(243) PDF downloads(18)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return