Volume 1 Issue 3
September  2022
Turn off MathJax
Article Contents
Rui Xu, Jianfeng Guo, Shuo Mi, Huanfei Wen, Fei Pang, Wei Ji, Zhihai Cheng. Advanced atomic force microscopiesand their applications intwo-dimensional materials: a review[J]. Materials Futures, 2022, 1(3): 032302. doi: 10.1088/2752-5724/ac8aba
Citation: Rui Xu, Jianfeng Guo, Shuo Mi, Huanfei Wen, Fei Pang, Wei Ji, Zhihai Cheng. Advanced atomic force microscopies and their applications in two-dimensional materials: a review[J]. Materials Futures, 2022, 1(3): 032302. doi: 10.1088/2752-5724/ac8aba
Topical Review •
OPEN ACCESS

Advanced atomic force microscopies and their applications in two-dimensional materials: a review

© 2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 1, Number 3
  • Received Date: 2022-07-04
  • Accepted Date: 2022-08-17
  • Publish Date: 2022-09-13
  • Scanning probe microscopy (SPM) allows the spatial imaging, measurement, and manipulation of nano and atomic scale surfaces in real space. In the last two decades, numerous advanced and functional SPM methods, particularly atomic force microscopy (AFM), have been developed and applied in various research fields, from mapping sample morphology to measuring physical properties. Herein, we review the recent progress in functional AFM methods and their applications in studies of two-dimensional (2D) materials, particularly their interfacial physical properties on the substrates. This review can inspire more exciting application works using advanced AFM modes in the 2D and functional materials fields.

  • loading
  • [1]
    Voigtlander B 2019 Atomic Force Microscopy (Berlin: Springer) (https://doi.org/10.1007/978-3-030-13654-3)
    [2]
    Bhushan B 2010 Handbook of Nanotechnology (Berlin: Springer) (https://doi.org/10.1007/978-3-642-02525-9)
    [3]
    Binnig G, Rohrer H, Gerber C and Weibel E 1982 Surface studies by scanning tunneling microscopy Phys. Rev. Lett. 49 57–61
    [4]
    Binnig G, Rohrer H, Gerbe C and Weibel E 1983 7 × 7 reconstruction on Si (111) resolved in real space Phys. Rev. Lett. 50 120–3
    [5]
    Belianinov A, Kalinin S V and Jesse S 2015 Complete information acquisition in dynamic force microscopy Nat. Commun. 6 6550
    [6]
    Jang S K, Youn J, Song Y J and Lee S 2016 Synthesis and characterization of hexagonal boron nitride as a gate dielectric Sci. Rep. 6 30449
    [7]
    Zheng Z, Xu R, Ye S, Hussain S, Ji W, Cheng P, Li Y, Sugawara Y and Cheng Z 2017 High harmonic exploring on different materials in dynamic atomic force microscopy Sci. China Technol. Sci. 61 446–52
    [8]
    Benstetter G, Biberger R and Liu D P 2009 A review of advanced scanning probe microscope analysis of functional films and semiconductor devices Thin Solid Films 517 5100–5
    [9]
    Horcas I, Fernandez R, Gomez-Rodriguez J M, Colchero J, Gomez-Herrero J and Baro A M 2007 WSXM: a software for scanning probe microscopy and a tool for nanotechnology Rev. Sci. Instrum. 78 013705
    [10]
    Binnig G, Quate C F and Gerber C 1986 Atomic force microscope Phys. Rev. Lett. 56 930
    [11]
    Albrecht T R, Grütter P, Horne D and Rugar D 1991 Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity J. Appl. Phys. 69 668–73
    [12]
    Bettac A, Koeble J, Winkler K, Uder B, Maier M and Feltz A 2009 QPlus: atomic force microscopy on single-crystal insulators with small oscillation amplitudes at 5 K Nanotechnology 20 264009
    [13]
    Groning O et al 2018 Engineering of robust topological quantum phases in graphene nanoribbons Nature 560 209–13
    [14]
    Ruffieux P et al 2016 On-surface synthesis of graphene nanoribbons with zigzag edge topology Nature 531 489–93
    [15]
    Zhang J, Chen P, Yuan B, Ji W, Cheng Z and Qiu X 2013 Real-space identification of intermolecular bonding with atomic force microscopy Science 342 611–4
    [16]
    Yacoot A and Koenders L 2008 Aspects of scanning force microscope probes and their effects on dimensional measurement J. Phys. D: Appl. Phys. 41 103001
    [17]
    Hussain S et al 2020 Strain-induced hierarchical ripples in MoS2 layers investigated by atomic force microscopy Appl. Phys. Lett. 117 153102
    [18]
    Xu K et al 2019 Shear anisotropy-driven crystallographic orientation imaging in flexible hexagonal two-dimensional atomic crystals Appl. Phys. Lett. 115 063101
    [19]
    Hussain S et al 2021 Toplayer-dependent crystallographic orientation imaging in the bilayer two-dimensional materials with transverse shear microscopy Front. Phys. 16 53504
    [20]
    Garcia R and Herruzo E T 2012 The emergence of multifrequency force microscopy Nat. Nanotechnol. 7 217–26
    [21]
    Yablon D G 2013 Scanning Probe Microscopy in Industrial Applications (New York: Wiley)
    [22]
    Shaw J E, Perumal A, Bradley D D C, Stavrinou P N and Anthopoulos T D 2016 Nanoscale current spreading analysis in solution-processed graphene oxide/silver nanowire transparent electrodes via conductive atomic force microscopy J. Appl. Phys. 119 195501
    [23]
    Houzé F, Meyer R, Schneegans O and Boyer L 1996 Imaging the local electrical properties of metal surfaces by atomic force microscopy with conducting probes Appl. Phys. Lett. 69 1975–7
    [24]
    Yang J, Gordiichuk P, Zheliuk O, Lu J, Herrmann A and Ye J 2017 Role of defects in tuning the electronic properties of monolayer WS2 grown by chemical vapor deposition Phys. Status Solidi 11 1700302
    [25]
    Zhang L and Mitani Y 2006 Structural and electrical evolution of gate dielectric breakdown observed by conductive atomic force microscopy Appl. Phys. Lett. 88 032906
    [26]
    Mi S, Guo J, Wang H, Xia T and Cheng Z 2022 Scanning kelvin probe microcopy study of magnetic topological insulators MnBi2Te4(Bi2Te3)n Chin. J. Vac. Sci. Technol. 42 585–92
    [27]
    Filleter T, Emtsev K V, Seyller T and Bennewitz R 2008 Local work function measurements of epitaxial graphene Appl. Phys. Lett. 93 133117
    [28]
    Wen H F, Li Y J, Arima E, Naitoh Y, Sugawara Y, Xu R and Cheng Z H 2017 Investigation of tunneling current and local contact potential difference on the TiO2(110) surface by AFM/KPFM at 78K Nanotechnology 28 105704
    [29]
    Shen Y, Zhang X Q, Wang Y, Zhou X J, Hu J, Guo S W and Zhang Y 2013 Charge transfer between reduced graphene oxide sheets on insulating substrates Appl. Phys. Lett. 103 053107
    [30]
    Xu R et al 2018 Nanoscale charge transfer and diffusion at the MoS2/SiO2 interface by atomic force microscopy: contact injection versus triboelectrification Nanotechnology 29 355701
    [31]
    Wen H F, Adachi Y, Zhang Q Z, Miyazaki M, Sugawara Y and Li Y J 2019 Identification of atomic defects and adsorbate on rutile TiO2(110)-(1×1) surface by atomic force microscopy J. Phys. Chem. C 123 25756–60
    [32]
    Wen H F, Sugawara Y and Li Y J 2020 Multi-channel exploration of O adatom on TiO2(110) surface by scanning probe microscopy Nanomaterials 10 1506
    [33]
    Wen H F, Sugawara Y and Li Y J 2021 Exploring the nature of hydrogen of rutile TiO2(110) at 78 K Surf. Interfaces 26 101339
    [34]
    Yan L, Punckt C, Aksay I A, Mertin W and Bacher G 2011 Local voltage drop in a single functionalized graphene sheet characterized by Kelvin probe force microscopy Nano Lett. 11 3543–9
    [35]
    Lucchesi M, Privitera G, Labardi M, Prevosto D, Capaccioli S and Pingue P 2009 Electrostatic force microscopy and potentiometry of realistic nanostructured systems J. Appl. Phys. 105 054301
    [36]
    Datta S S, Strachan D R, Mele E J and Johnson A T C 2009 Surface potentials and layer charge distributions in few-layer graphene films Nano Lett. 9 7–11
    [37]
    Oliveira C K, Matos M J S, Mazzoni M S C, Chacham H and Neves B R A 2012 Anomalous response of supported few-layer hexagonal boron nitride to DC electric fields: a confined water effect? Nanotechnology 23 175703
    [38]
    Collins L, Kilpatrick J I, Weber S A L, Tselev A, Vlassiouk I V, Ivanov I N, Jesse S, Kalinin S V and Rodriguez B J 2013 Open loop Kelvin probe force microscopy with single and multi-frequency excitation Nanotechnology 24 475702
    [39]
    Li C, Ding X D and Lin G C 2013 Study on multi-frequency method for electrostatic force microscopy in air Integr. Ferroelectr. 145 59–67
    [40]
    Jiang Y, Qi Q, Wang R, Zhang J, Xue Q K, Wang C, Jiang C and Qiu X H 2011 Direct observation and measurement of mobile charge carriers in a monolayer organic semiconductor on a dielectric substrate ACS Nano 5 6195–201
    [41]
    Wu D et al 2015 Thickness-dependent dielectric constant of few-layer In2Se3 nanoflakes Nano Lett. 15 8136–40
    [42]
    Feng Y et al 2015 Synthesis of large-area highly crystalline monolayer molybdenum disulfide with tunable grain size in a H2 atmosphere ACS Appl. Mater. Interfaces 7 22587
    [43]
    Liu Y et al 2015 Thermal oxidation of WSe2 nanosheets adhered on SiO2/Si substrates Nano Lett. 15 4979–84
    [44]
    Kundhikanjana W, Lai K, Wang H, Dai H, Kelly M A and Shen Z-X 2009 Hierarchy of electronic properties of chemically derived and pristine graphene probed by microwave imaging Nano Lett. 9 3762–5
    [45]
    Berweger S, Blanchard P T, Brubaker M D, Coakley K J, Sanford N A, Wallis T M, Bertness K A and Kabos P 2016 Near-field control and imaging of free charge carrier variations in GaN nanowires Appl. Phys. Lett. 108 073101
    [46]
    Brinciotti E et al 2015 Probing resistivity and doping concentration of semiconductors at the nanoscale using scanning microwave microscopy Nanoscale 7 14715–22
    [47]
    Lu A-Y et al 2017 Janus monolayers of transition metal dichalcogenides Nat. Nanotechnol. 12 744–9
    [48]
    Kim S K, Bhatia R, Kim T-H, Seol D, Kim J H, Kim H, Seung W, Kim Y, Lee Y H and Kim S-W 2016 Directional dependent piezoelectric effect in CVD grown monolayer MoS2 for flexible piezoelectric nanogenerators Nano Energy 22 483–9
    [49]
    Park M, Hong S, Kim J, Hong J and No K 2011 Nanoscale ferroelectric switching behavior at charged domain boundaries studied by angle-resolved piezoresponse force microscopy Appl. Phys. Lett. 99 142909
    [50]
    Kim S, Gopalan V and Gruverman A 2002 Coercive fields in ferroelectrics: a case study in lithium niobate and lithium tantalate Appl. Phys. Lett. 80 2740–2
    [51]
    Hartmann U 1999 Magnetic force microscopy Annu. Rev. Mater. Sci. 29 53–87
    [52]
    Sidles J A, Garbini J L, Bruland K J, Rugar D, Züger O, Hoen S and Yannoni C S 1995 Magnetic resonance force microscopy Rev. Mod. Phys. 67 249–65
    [53]
    Xu K, Ye S, Lei L, Meng L, Hussain S, Zheng Z, Zeng H, Ji W, Xu R and Cheng Z 2018 Dynamic interfacial mechanical-thermal characteristics of atomically thin two-dimensional crystals Nanoscale 10 13548–54
    [54]
    Maletinsky P, Hong S, Grinolds M, Hausmann B, Lukin M D, Walsworth R L, Loncar M and Yacoby A 2012 A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres Nat. Nanotechnol. 7 320–4
    [55]
    Tetienne J-P, Rondin L, Spinicelli P, Chipaux M, Debuisschert T, Roch J-F and Jacques V 2012 Magnetic-field-dependent photodynamics of single NV defects in diamond: an application to qualitative all-optical magnetic imaging New J. Phys. 14 103033
    [56]
    Huxter W S, Palm M L, Davis M L, Welter P, Lambert C-H, Trassin M and Degen C L 2022 Scanning gradiometry with a single spin quantum magnetometer Nat. Commun. 13 3761
    [57]
    Grinolds M S, Hong S, Maletinsky P, Luan L, Lukin M D, Walsworth R L and Yacoby A 2013 Nanoscale magnetic imaging of a single electron spin under ambient conditions Nat. Phys. 9 215–9
    [58]
    Song T et al 2021 Direct visualization of magnetic domains and moiré magnetism in twisted 2D magnets Science 374 1140–4
    [59]
    Ariyaratne A, Bluvstein D, Myers B A and Jayich A C B 2018 Nanoscale electrical conductivity imaging using a nitrogen-vacancy center in diamond Nat. Commun. 9 2406
    [60]
    Bian K, Zheng W, Zeng X, Chen X, Stohr R, Denisenko A, Yang S, Wrachtrup J and Jiang Y 2021 Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition Nat. Commun. 12 2457
    [61]
    Appel P, Ganzhorn M, Neu E and Maletinsky P 2015 Nanoscale microwave imaging with a single electron spin in diamond New J. Phys. 17 112001
    [62]
    Kucsko G, Maurer P C, Yao N Y, Kubo M, Noh H J, Lo P K, Park H and Lukin M D 2013 Nanometre-scale thermometry in a living cell Nature 500 54–58
    [63]
    Dazzi A and Prater C B 2017 AFM-IR: technology and applications in nanoscale infrared spectroscopy and chemical imaging Chem. Rev. 117 5146–73
    [64]
    Bazylewski P, Ezugwu S and Fanchini G 2017 A review of three-dimensional scanning near-field optical microscopy (3D-SNOM) and its applications in nanoscale light management Appl. Sci. 7 973
    [65]
    Huth F, Govyadinov A, Amarie S, Nuansing W, Keilmann F and Hillenbrand R 2012 Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution Nano Lett. 12 3973
    [66]
    Choi J S et al 2011 Friction anisotropy-driven domain imaging on exfoliated monolayer graphene Science 333 607–10
    [67]
    McNeill C 2011 Imaging the domain structure of organic semiconductor films J. Polym. Sci. 49 909–19
    [68]
    Kalihari V, Tadmor E B, Haugstad G and Frisbie C D 2008 Grain orientation mapping of polycrystalline organic semiconductor films by transverse shear microscopy Adv. Mater. 20 4033
    [69]
    Martinez-Martin D, Herruzo E T, Dietz C, Gomez-Herrero J and Garcia R 2011 Noninvasive protein structural flexibility mapping by bimodal dynamic force microscopy Phys. Rev. Lett. 106 198101
    [70]
    Vasudevan R K, Okatan M B, Rajapaksa I, Kim Y, Marincel D, Trolier-mckinstry S, Jesse S, Valanoor N and Kalinin S V 2013 Higher order harmonic detection for exploring nonlinear interactions with nanoscale resolution Sci. Rep. 3 2677
    [71]
    Tetard L, Passian A and Thundat T 2010 New modes for subsurface atomic force microscopy through nanomechanical coupling Nat. Nanotechnol. 5 105
    [72]
    Cheng Z, Zheng Z and Xu R 2016 Multi-frequency atomic force microscopy Sci. Sin. Technol. 46 437–50
    [73]
    Zheng Z-Y, Xu R, Xu K-Q, Ye S-L, Pang F, Lei L, Hussain S, Liu X-M, Ji W and Cheng Z-H 2019 Real-space visualization of intercalated water phases at the hydrophobic graphene interface with atomic force microscopy Front. Phys. 15 23601
    [74]
    Nievergelt A P, Adams J D, Odermatt P D and Fantner G E 2014 High-frequency multimodal atomic force microscopy Beilstein J. Nanotechnol. 5 2459
    [75]
    Dietz C, Schulze M, Voss A, Riesch C and Stark R W 2015 Bimodal frequency-modulated atomic force microscopy with small cantilevers Nanoscale 7 1849–56
    [76]
    Zheng Z-Y et al 2020 Local probe of the interlayer coupling strength of few-layers SnSe by contact-resonance atomic force microscopy Front. Phys. 15 63505
    [77]
    Rabe U and Arnold W 1994 Acoustic microscopy by atomic force microscopy Appl. Phys. Lett. 64 1493–5
    [78]
    Yamanaka K and Nakano S 1996 Ultrasonic atomic force microscope with overtone excitation of cantilever Jpn. J. Appl. Phys. 35 3787–92
    [79]
    Yamanaka K, Kobari K and Tsuji T 2008 Evaluation of functional materials and devices using atomic force microscopy with ultrasonic measurements Jpn. J. Appl. Phys. 47 6070–6
    [80]
    Li Q, Jesse S, Tselev A, Collins L, Yu P, Kravchenko I, Kalinin S V and Balke N 2015 Probing local bias-induced transitions using photothermal excitation contact resonance atomic force microscopy and voltage spectroscopy ACS Nano 9 1848–57
    [81]
    Yablon D G, Gannepalli A, Proksch R, Killgore J, Hurley D C, Grabowski J and Tsou A H 2012 Quantitative viscoelastic mapping of polyolefin blends with contact resonance atomic force microscopy Macromolecules 45 4363–70
    [82]
    Gannepalli A, Yablon D G, Tsou A H and Proksch R 2011 Mapping nanoscale elasticity and dissipation using dual frequency contact resonance AFM Nanotechnology 22 355705
    [83]
    Nonnenmacher M, Oboyle M P and Wickramasinghe H K 1991 Kelvin probe force microscopy Appl. Phys. Lett. 58 2921–3
    [84]
    Jacobs H O, Leuchtmann P, Homan O J and Stemmer A 1998 Resolution and contrast in Kelvin probe force microscopy J. Appl. Phys. 84 1168–73
    [85]
    Hsu J W P, Ng H M, Sergent A M and Chu S N G 2002 Scanning Kelvin force microscopy imaging of surface potential variations near threading dislocations in GaN Appl. Phys. Lett. 81 3579–81
    [86]
    Ren J, Liess H-D, Mackel R and Baumgartner H 1995 Scanning Kelvin microscope: a new method for surface investigations Fresenius J. Anal. Chem. 353 303–6
    [87]
    Collins L, Jesse S, Balke N, Rodriguez B J, Kalinin S and Li Q 2015 Band excitation Kelvin probe force microscopy utilizing photothermal excitation Appl. Phys. Lett. 106 104102
    [88]
    Guo S L, Kalinin S V and Jesse S 2012 Open-loop band excitation Kelvin probe force microscopy Nanotechnology 23 125704
    [89]
    Melitz W, Shen J, Kummel A C and Lee S 2011 Kelvin probe force microscopy and its application Surf. Sci. Rep. 66 1–27
    [90]
    Strelcov E, Arble C, Guo H X, Hoskins B D, Yulaev A, Vlassiouk I V, Zhitenev N B, Tselev A and Kolmakov A 2020 Nanoscale mapping of the double layer potential at the graphene- electrolyte interface Nano Lett. 20 1336–44
    [91]
    Hussain S, Xu K, Ye S, Lei L, Liu X, Xu R, Xie L and Cheng Z H 2019 Local electrical characterization of two-dimensional materials with functional atomic force microscopy Front. Phys. 14 33401
    [92]
    Xu R et al 2019 Interfacial water intercalation-induced metal-insulator transition in NbS2/BN heterostructure Nanotechnology 30 205702
    [93]
    De Wolf P, Stephenson R, Trenkler T, Clarysse T, Hantschel T and Vandervorst W 2000 Status and review of two-dimensional carrier and dopant profiling using scanning probe microscopy J. Vac. Sci. Technol. B 18 361–8
    [94]
    Girard P 2001 Electrostatic force microscopy: principles and some applications to semiconductors Nanotechnology 12 485–90
    [95]
    Zhang K, Marzari N and Zhang Q 2013 Covalently functionalized metallic single-walled carbon nanotubes studied using electrostatic force microscopy and dielectric force microscopy J. Phys. Chem. C 117 24570–8
    [96]
    Kimura K, Kobayashi K, Yamada H and Matsushige K 2003 Two-dimensional dopant profiling by scanning capacitance force microscopy Appl. Surf. Sci. 210 93–98
    [97]
    Kobayashi K, Yamada H and Matsushige K 2004 Method and apparatus for measuring values of physical property US Patent 6823724B1
    [98]
    Ding X D, An J, Xu J B, Li C and Zeng R Y 2009 Improving lateral resolution of electrostatic force microscopy by multifrequency method under ambient conditions Appl. Phys. Lett. 94 223109
    [99]
    Fumagalli L, Esteban-Ferrer D, Cuervo A, Carrascosa J L and Gomila G 2012 Label-free identification of single dielectric nanoparticles and viruses with ultraweak polarization forces Nat. Mater. 11 808–16
    [100]
    Li N, Shang Y, Xu R, Jiang Q, Liu J, Wang L, Cheng Z and Ding B 2019 Precise organization of metal and metal oxide nanoclusters into arbitrary patterns on DNA origami J. Am. Chem. Soc. 141 17968–72
    [101]
    Collins L, Kilpatrick J I, Vlassiouk I V, Tselev A, Weber S A L, Jesse S, Kalinin S V and Rodriguez B J 2014 Dual harmonic Kelvin probe force microscopy at the graphene-liquid interface Appl. Phys. Lett. 104 133103
    [102]
    Martin Y, Abraham D W and Wickramasinghe H K 1988 High-resolution capacitance measurement and potentiometry by force microscopy Appl. Phys. Lett. 52 1103–5
    [103]
    Lai K, Ji M B, Leindecker N, Kelly M A and Shen Z X 2007 Atomic-force-microscope-compatible near-field scanning microwave microscope with separated excitation and sensing probes Rev. Sci. Instrum. 78 063702
    [104]
    Lai K, Kundhikanjana W, Kelly M and Shen Z X 2008 Modeling and characterization of a cantilever-based near-field scanning microwave impedance microscope Rev. Sci. Instrum. 79 063703
    [105]
    Yang Y, Lai K, Tang Q, Kundhikanjana W, Kelly M A, Zhang K, Shen Z-X and Li X 2012 Batch-fabricated cantilever probes with electrical shielding for nanoscale dielectric and conductivity imaging J. Micromech. Microeng. 22 115040
    [106]
    Lai K, Kundhikanjana W, Kelly M A and Shen Z X 2008 Calibration of shielded microwave probes using bulk dielectrics Appl. Phys. Lett. 93 123105
    [107]
    Seabron E, MacLaren S, Xie X, Rotkin S V, Rogers J A and Wilson W L 2016 Scanning probe microwave reflectivity of aligned single-walled carbon nanotubes: imaging of electronic structure and quantum behavior at the nanoscale ACS Nano 10 360–8
    [108]
    Lai K, Peng H, Kundhikanjana W, Schoen D T, Xie C, Meister S, Cui Y, Kelly M A and Shen Z-X 2009 Nanoscale electronic inhomogeneity in In2Se3 nanoribbons revealed by microwave impedance microscopy Nano Lett. 9 1265–9
    [109]
    Lai K, Nakamura M, Kundhikanjana W, Kawasaki M, Tokura Y, Kelly M A and Shen Z-X 2010 Mesoscopic percolating resistance network in a strained manganite thin film Science 329 190–3
    [110]
    Kundhikanjana W, Lai K, Kelly M A and Shen Z-X 2011 Cryogenic microwave imaging of metal-insulator transition in doped silicon Rev. Sci. Instrum. 82 033705
    [111]
    Lai K, Kundhikanjana W, Kelly M A, Shen Z-X, Shabani J and Shayegan M 2011 Imaging of coulomb-driven quantum Hall edge states Phys. Rev. Lett. 107 176809
    [112]
    Ma E Y, Bryant B, Tokunaga Y, Aeppli G, Tokura Y and Shen Z-X 2015 Charge-order domain walls with enhanced conductivity in a layered manganite Nat. Commun. 6 7595
    [113]
    Ma E Y, Cui Y-T, Ueda K, Tang S, Chen K, Tamura N, Wu P M, Fujioka J, Tokura Y and Shen Z-X 2015 Mobile metallic domain walls in an all-in-all-out magnetic insulator Science 350 538
    [114]
    Ponath P et al 2015 Carrier density modulation in a germanium heterostructure by ferroelectric switching Nat. Commun. 6 6067
    [115]
    Lei L et al 2018 Local characterization of mobile charge carriers by two electrical AFM modes: multi-harmonic EFM vs. sMIM J. Phys. Commun. 2 025013
    [116]
    Tsai Y et al 2017 Tailoring semiconductor lateral multijunctions for giant photoconductivity enhancement Adv. Mater. 29 1703680
    [117]
    Wu D et al 2016 Uncovering edge states and electrical inhomogeneity in MoS2 field-effect transistors Proc. Natl Acad. Sci. USA 113 8583–8
    [118]
    Xu R, Zheng Z Y, Ji W and Cheng Z H 2015 Advance scanning mcrowave microscopy Prog. Phys. 35 241–56
    [119]
    Barber M E, Ma E Y and Shen Z-X 2022 Microwave impedance microscopy and its application to quantum materials Nat. Rev. Phys. 4 61–74
    [120]
    Williams C C and Wickramasinghe H K 1986 Scanning thermal profiler Appl. Phys. Lett. 49 1587–9
    [121]
    Majumdar A 1999 Scanning thermal microscopy Annu. Rev. Mater. Res. 29 505–85
    [122]
    Lai J, Chandrachood M, Majumdar A and Carrejo J P 1995 Thermal detection of device failure by atomic-force microscopy IEEE Electron Device Lett. 16 312–5
    [123]
    Fiege G B M, Feige V, Phang J C H, Maywald M, Gorlich S and Balk L J 1998 Failure analysis of integrated devices by scanning thermal microscopy (SThM) Microelectron. Reliab. 38 957–61
    [124]
    Kwon O and Majumdar A 2003 Cross-sectional thermal imaging of a metal-oxide-semiconductor field-effect ttransistor Microscale Thermophys. Eng. 7 349–54
    [125]
    Boroumand F A, Voigt M, Lidzey D G, Hammiche A and Hill G 2004 Imaging Joule heating in a conjugated-polymer light-emitting diode using a scanning thermal microscope Appl. Phys. Lett. 84 4890–2
    [126]
    Luo K, Herrick R W, Majumdar A and Petroff P 1997 Scanning thermal microscopy of a vertical-cavity surface-emitting laser Appl. Phys. Lett. 71 1604–6
    [127]
    Shi L, Plyasunov S, Bachtold A, McEuen P L and Majumdar A 2000 Scanning thermal microscopy of carbon nanotubes using batch-fabricated probes Appl. Phys. Lett. 77 4295–7
    [128]
    Shi L, Zhou J, Kim P, Bachtold A, Majumdar A and McEuen P L 2009 Thermal probing of energy dissipation in current-carrying carbon nanotubes J. Appl. Phys. 105 104306
    [129]
    Gomès S, Assy A and Chapuis P-O 2015 Scanning thermal microscopy: a review Phys. Status Solidi a 212 477–94
    [130]
    Majumdar A, Lai J, Chandrachood M, Nakabeppu O, Wu Y and Shi Z 1995 Thermal imaging by atomic-force microscopy using thermocouple cantilever probes Rev. Sci. Instrum. 66 3584–92
    [131]
    Suzuki Y 1996 Novel microcantilever for scanning thermal imaging microscopy Jpn. J. Appl. Phys. 35 L352–4
    [132]
    Luo K, Shi Z, Lai J and Majumdar A 1996 Nanofabrication of sensors on cantilever probe tips for scanning multiprobe microscopy Appl. Phys. Lett. 68 325–7
    [133]
    Rangelow I W, Gotszalk T, Abedinov N, Grabiec P and Edinger K 2001 Thermal nano-probe Microelectron. Eng. 57–58 737–48
    [134]
    Pylkki R J, Moyer P J and West P E 1994 Scanning near-field optical microscopy and scanning thermal microscopy Jpn. J. Appl. Phys. 33 3785–90
    [135]
    Edinger K, Gotszalk T and Rangelow I W 2001 Novel high resolution scanning thermal probe J. Vac. Sci. Technol. B 19 2856–60
    [136]
    Zhang Y, Dobson P S and Weaver J M R 2011 Batch fabricated dual cantilever resistive probe for scanning thermal microscopy Microelectron. Eng. 88 2435–8
    [137]
    Aigouy L, Tessier G, Mortier M and Charlot B 2005 Scanning thermal imaging of microelectronic circuits with a fluorescent nanoprobe Appl. Phys. Lett. 87 184105
    [138]
    Aigouy L, Saidi E, Lalouat L C, Labéguerie-Egéa J, Mortier M, Low P and Bergaud C 2009 AC thermal imaging of a microwire with a fluorescent nanocrystal: influence of the near field on the thermal contrast J. Appl. Phys. 106 074301
    [139]
    Nakabeppu O, Chandrachood M, Wu Y, Lai J and Majumdar A 1995 Scanning thermal imaging microscopy using composite cantilever probes Appl. Phys. Lett. 66 694–6
    [140]
    Chung J, Kim K, Hwang G, Kwon O, Choi Y K and Lee J S 2012 Quantitative temperature profiling through null-point scanning thermal microscopy Int. J. Therm. Sci. 62 109–13
    [141]
    Chung J, Kim K, Hwang G, Kwon O, Jung S, Lee J, Lee J W and Kim G T 2010 Quantitative temperature measurement of an electrically heated carbon nanotube using the null-point method Rev. Sci. Instrum. 81 114901
    [142]
    Hwang G, Chung J and Kwon O 2014 Enabling low-noise null-point scanning thermal microscopy by the optimization of scanning thermal microscope probe through a rigorous theory of quantitative measurement Rev. Sci. Instrum. 85 114901
    [143]
    Kim K, Chung J, Hwang G, Kwon O and Lee J S 2011 Quantitative measurement with scanning thermal microscope by preventing the distortion due to the heat transfer through the air ACS Nano 5 8700–9
    [144]
    Yoon K, Hwang G, Chung J, Kim H G, Kwon O, Kihm K D and Lee J S 2014 Measuring the thermal conductivity of residue-free suspended graphene bridge using null point scanning thermal microscopy Carbon 76 77–83
    [145]
    Gotsmann B and Lantz M A 2013 Quantized thermal transport across contacts of rough surfaces Nat. Mater. 12 59–65
    [146]
    Kim K, Jeong W, Lee W and Reddy P 2012 Ultra-high vacuum scanning thermal microscopy for nanometer resolution quantitative thermometry ACS Nano 6 4248–57
    [147]
    Novoselov K, Geim A, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva I and Firsov A 2004 Electric field effect in atomically thin carbon films Science 306 666–9
    [148]
    Novoselov K S, Mishchenko A, Carvalho A and Castro Neto A H 2016 2D materials and van der Waals heterostructures Science 353 9439
    [149]
    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Electronics and optoelectronics of two-dimensional transition metal dichalcogenides Nat. Nanotechnol. 7 699–712
    [150]
    Liu L, Kumar S B, Ouyang Y and Guo J 2011 Performance limits of monolayer transition metal dichalcogenide transistors IEEE Trans. Electron Devices 58 3042–7
    [151]
    Xu R et al 2020 Atomically asymmetric inversion scales up to mesoscopic single-crystal monolayer flakes ACS Nano 14 13834–40
    [152]
    Dai Z et al 2019 Mechanical responses of boron-doped monolayer graphene Carbon 147 594–601
    [153]
    Lei L et al 2021 Size-dependent strain-engineered nanostructures in MoS2 monolayer investigated by atomic force microscopy Nanotechnology 32 465703
    [154]
    Xu R et al 2022 Visualization of strain-engineered nanopattern in center-confined mesoscopic WS2 monolayer flakes J. Phys. Chem. C 126 7184–92
    [155]
    Ahn G H, Amani M, Rasool H, Lien D-H, Mastandrea J P, Ager Iii J W, Dubey M, Chrzan D C, Minor A M and Jave A 2017 Strain-engineered growth of two-dimensional materials Nat. Commun. 8 608
    [156]
    Pang F et al 2021 Strain-engineered rippling and manipulation of single layer WS2 by atomic force microscopy J. Phys. Chem. C 125 8696–703
    [157]
    Peimyoo N, Shang J Z, Cong C X, Shen X N, Wu X Y, Yeow E K L and Yu T 2013 Nonblinking, intense two-dimensional light emitter: monolayer WS2 triangles ACS Nano 7 10985–94
    [158]
    Kim M S, Yun S J, Lee Y, Seo C, Han G H, Kim K K, Lee Y H and Kim J 2016 Biexciton emission from edges and grain boundaries of triangular WS2 monolayers ACS Nano 10 2399–405
    [159]
    Gutierrez H R, Perea-Lopez N, Elias A L, Berkdemir A, Wang B, Lv R, Lopez-Urias F, Crespi V H, Terrones H and Terrones M 2013 Extraordinary room-temperature photoluminescence in triangular WS2 monolayers Nano Lett. 13 3447–54
    [160]
    Jeong H Y, Jin Y, Yun S J, Zhao J, Baik J, Keum D H, Lee H S and Lee Y H 2017 Heterogeneous defect domains in single-crystalline hexagonal WS2 Adv. Mater. 29 1605043
    [161]
    Ghorbani-Asl M, Borini S, Kuc A and Heine T 2013 Strain-dependent modulation of conductivity in single-layer transition-metal dichalcogenides Phys. Rev. B 87 235434
    [162]
    Meng L, Zhang Y, Hu S, Wang X, Liu C, Guo Y, Wang X and Yan X 2016 Two dimensional WS2 lateral heterojunctions by strain modulation Appl. Phys. Lett. 108 263104
    [163]
    Yun W S, Han S W, Hong S C, Kim I G and Lee J D 2012 Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-M X2 semiconductors (M = Mo, W; X = S, Se, Te) Phys. Rev. B 85 033305
    [164]
    Cerda E and Mahadevan L 2003 Geometry and physics of wrinkling Phys. Rev. Lett. 90 074302
    [165]
    Vandeparre H, Piñeirua M, Brau F, Roman B, Bico J, Gay C, Bao W, Lau C N, Reis P M and Damman P 2011 Wrinkling hierarchy in constrained thin sheets from suspended graphene to curtains Phys. Rev. Lett. 106 224301
    [166]
    Zhang D-B, Akatyeva E and Dumitric˘a T 2011 Bending ultrathin graphene at the margins of continuum mechanics Phys. Rev. Lett. 106 255503
    [167]
    Pocivavsek L, Dellsy R, Kern A, Johnson S, Lin B H, Lee K Y C and Cerda E 2008 Stress and fold localization in thin elastic membranes Science 320 912–6
    [168]
    Cai S, Breid D, Crosby A J, Suo Z and Hutchinson J W 2011 Periodic patterns and energy states of buckled films on compliant substrates J. Mech. Phys. Solids 59 1094–114
    [169]
    Thi Q H, Wong L W, Liu H, Lee C-S, Zhao J and Ly T H 2020 Spontaneously ordered hierarchical two-dimensional wrinkle patterns in two-dimensional materials Nano Lett. 20 8420–5
    [170]
    Quereda J, San-Jose P, Parente V, Vaquero-Garzon L, Molina-Mendoza A J, Agrait N, Rubio-Bollinger G, Guinea F, Roldan R and Castellanos-Gomez A 2016 Strong modulation of optical properties in black phosphorus through strain-engineered rippling Nano Lett. 16 2931
    [171]
    Lee J, Yun S J, Seo C, Cho K, Kim T S, An G H, Kang K, Lee H S and Kim J 2021 Switchable, tunable, and directable exciton funneling in periodically wrinkled WS2 Nano Lett. 21 43–50
    [172]
    Nolte A J, Young Chung J, Davis C S and Stafford C M 2017 Wrinkling-to-delamination transition in thin polymer films on compliant substrates Soft Matter 13 7930–7
    [173]
    Naumis G G, Barraza-Lopez S, Oliva-Leyva M and Terrones H 2017 Electronic and optical properties of strained graphene and other strained 2D materials: a review Rep. Prog. Phys. 80 1–62
    [174]
    Lee C, Wei X, Kysar J W and Hone J 2008 Measurement of the elastic properties and intrinsic strength of monolayer graphene Science 321 385–8
    [175]
    Bertolazzi S, Brivio J and Kis A 2011 Stretching and breaking of ultrathin MoS2 ACS Nano 5 9703–9
    [176]
    Tran Khac B-C, DelRio F W and Chung K-H 2018 Interfacial strength and surface damage characteristics of atomically thin h-BN, MoS2, and graphene ACS Appl. Mater. Interfaces 10 9164–77
    [177]
    Ye S et al 2019 Nanoscratch on single-layer MoS2 crystal by atomic force microscopy: semi-circular to periodical zigzag cracks Mater. Res. Express 6 025048
    [178]
    Lu C-P, Li G H, Mao J H, Wang L-M and Andrei E Y 2014 Bandgap, mid-gap states, and gating effects in MoS2 Nano Lett. 14 4628–33
    [179]
    Najmaei S, Lei S D, Burke R A, Nichols B M, George A, Ajayan P M, Franklin A D, Lou J and Dubey M 2016 Enabling ultrasensitive photodetection through control of interface properties in molybdenum disulfide atomic layers Sci. Rep. 6 39465
    [180]
    Tran M D, Kim J-H, Kim H, Doan M H, Duong D L and Lee Y H 2018 Role of hole trap sites in MoS2 for inconsistency in optical and electrical phenomena ACS Appl. Mater. Interfaces 10 10580–6
    [181]
    Liu J, Goswami A, Jiang K, Khan F, Kim S, McGee R, Li Z, Hu Z, Lee J and Thundat T 2018 Direct-current triboelectricity generation by a sliding Schottky nanocontact on MoS2 multilayers Nat. Nanotechnol. 13 112–6
    [182]
    Kim S, Kim T Y, Lee K H, Kim T-H, Cimini F A, Kim S K, Hinchet R, Kim S-W and Falconi C 2017 Rewritable ghost floating gates by tunnelling triboelectrification for two-dimensional electronics Nat. Commun. 8 15891
    [183]
    Burgo T A D L, Rezende C A, Bertazzo S, Galembeck A and Galembeck F 2011 Electric potential decay on polyethylene: role of atmospheric water on electric charge build-up and dissipation J. Electrost. 69 401–9
    [184]
    Galembeck F, Burgo T A L, Balestrin L B S, Gouveia R F, Silva C A and Galembeck A 2014 Friction, tribochemistry and triboelectricity: recent progress and perspectives RSC Adv. 4 64280–98
    [185]
    Ding S, Xiao X, Liu S, Wu J, Huang Z, Qi X and Li J 2019 Detection of interfacial charge transfer in MoS2/PbI2 heterostructures via Kelvin probe force microscope Appl. Phys. A 125 287
    [186]
    Bediako D K, Rezaee M, Yoo H, Larson D T, Zhao S Y F, Taniguchi T, Watanabe K, Brower-Thomas T L, Kaxiras E and Kim P 2018 Heterointerface effects in the electrointercalation of van der Waals heterostructures Nature 558 425–9
    [187]
    Mertens S F, Hemmi A, Muff S, Groning O, De Feyter S, Osterwalder J and Greber T 2016 Switching stiction and adhesion of a liquid on a solid Nature 534 676
    [188]
    Ducke J, Riss A, Paz A P, Seufert K, Schwarz M, Garnica M, Rubio A and Auwarter W 2018 Layered insulator/molecule/metal heterostructures with molecular functionality through porphyrin intercalation ACS Nano 12 2677–84
    [189]
    Al Balushi Z Y et al 2016 Two-dimensional gallium nitride realized via graphene encapsulation Nat. Mater. 15 1166–71
    [190]
    Lee H, Ko J-H, Song H C, Salmeron M, Kim Y-H and Park J Y 2018 Isotope- and thickness-dependent friction of water layers intercalated between graphene and mica Tribol. Lett. 66 36
    [191]
    Hong Y, Wang S, Li Q, Song X, Wang Z, Zhang X, Besenbacher F and Dong M 2019 Interfacial icelike water local doping of graphene Nanoscale 11 19334–40
    [192]
    Velasco-Velez J-J, Wu C H, Pascal T A, Wan L F, Guo J, Prendergast D and Salmeron M 2014 The structure of interfacial water on gold electrodes studied by x-ray absorption spectroscopy Science 346 831–4
    [193]
    Dollekamp E, Bampoulis P, Siekman M H, Kooij E S and Zandvliet H J W 2019 Tuning the friction of graphene on mica by alcohol intercalation Langmuir 35 4886–92
    [194]
    Zhang Y, Zhu W, Hui F, Lanza M, Borca-Tasciuc T and Muñoz Rojo M 2019 A review on principles and applications of scanning thermal microscopy (SThM) Adv. Funct. Mater. 30 1900892
    [195]
    Hwang G and Kwon O 2016 Measuring the size dependence of thermal conductivity of suspended graphene disks using null-point scanning thermal microscopy Nanoscale 8 5280–90
    [196]
    Menges F, Riel H, Stemmer A, Dimitrakopoulos C and Gotsmann B 2013 Thermal transport into graphene through nanoscopic contacts Phys. Rev. Lett. 111 205901
    [197]
    Yalon E et al 2017 Temperature-dependent thermal boundary conductance of monolayer MoS2 by raman thermometry ACS Appl. Mater. Interfaces 9 43013–20
    [198]
    Yasaei P et al 2017 Interfacial thermal transport in monolayer MoS2 — and graphene-based devices Adv. Mater. Interfaces 4 1700334
    [199]
    Chen Z, Jang W, Bao W, Lau C N and Dames C 2009 Thermal contact resistance between graphene and silicon dioxide Appl. Phys. Lett. 95 161910
    [200]
    Evangeli C, Spiece J, Sangtarash S, Molina-Mendoza A J, Mucientes M, Mueller T, Lambert C, Sadeghi H and Kolosov O 2019 Nanoscale thermal transport in 2D nanostructures from cryogenic to room temperature Adv. Electron. Mater. 5 1900331
    [201]
    Yasaei P, Murthy A A, Xu Y, Dos Reis R, Shekhawat G S and Dravid V P 2019 Spatial mapping of hot-spots at lateral heterogeneities in monolayer transition metal dichalcogenides Adv. Mater. 31 1808244
  • 加载中

Catalog

    Figures(1)

    Article Metrics

    Article Views(265) PDF downloads(56)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return