Volume 1 Issue 3
September  2022
Turn off MathJax
Article Contents
Chi Zhang, Zewei Yi, Wei Xu. Scanning Probe Microscopy in Probing Low-Dimensional Carbon-Based Nanostructures and Nanomaterials[J]. Materials Futures, 2022, 1(3): 032301. doi: 10.1088/2752-5724/ac8a63
Citation: Chi Zhang, Zewei Yi, Wei Xu. Scanning Probe Microscopy in Probing Low-Dimensional Carbon-Based Nanostructures and Nanomaterials[J]. Materials Futures, 2022, 1(3): 032301. doi: 10.1088/2752-5724/ac8a63
Topical Review •
OPEN ACCESS

Scanning Probe Microscopy in Probing Low-Dimensional Carbon-Based Nanostructures and Nanomaterials

© 2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 1, Number 3
  • Received Date: 2022-06-30
  • Accepted Date: 2022-08-17
  • Publish Date: 2022-08-30
  • Carbon, as an indispensable chemical element on Earth, has diverse covalent bonding ability, which enables construction of extensive pivotal carbon-based structures in multiple scientific fields. The extraordinary physicochemical properties presented by pioneering synthetic carbon allotropes, typically including fullerenes, carbon nanotubes, and graphene, have stimulated broad interest in fabrication of carbon-based nanostructures and nanomaterials. Accurate regulation of topology, size, and shape, as well as controllably embedding target spn-hybridized carbons in molecular skeletons, is significant for tailoring their structures and consequent properties and requires atomic precision in their preparation. Scanning probe microscopy (SPM), combined with on-surface synthesis strategy, has demonstrated its capabilities in fabrication of various carbon-based nanostructures and nanomaterials with atomic precision, which has long been elusive for conventional solution-phase synthesis due to realistic obstacles in solubility, isolation, purification, etc. More intriguingly, atom manipulation via an SPM tip allows unique access to local production of highly reactive carbon-based nanostructures. In addition, SPM provides topographic information of carbon-based nanostructures as well as their characteristic electronic structures with unprecedented submolecular resolution in real space. In this review, we overview recent exciting progress in the delicate application of SPM in probing low-dimensional carbon-based nanostructures and nanomaterials, which will open an avenue for the exploration and development of elusive and undiscovered carbon-based nanomaterials.

  • loading
  • [1]
    Hirsch A 2010 The era of carbon allotropes Nat. Mater. 9 868–71
    [2]
    Kroto H W, Heath J R, O’Brien S C, Curl R F and Smalley R E 1985 C60: buckminsterfullerene Nature 318 162–3
    [3]
    Iijima S 1991 Helical microtubules of graphitic carbon Nature 354 56–58
    [4]
    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Electric field effect in atomically thin carbon films Science 306 666–9
    [5]
    Bottari G and Torres T 2017 A new dimension for low-dimensional carbon nanostructures Chem 3 21–24
    [6]
    Li G, Li Y, Liu H, Guo Y, Li Y and Zhu D 2010 Architecture of graphdiyne nanoscale films Chem. Commun. 46 3256–8
    [7]
    Li Y, Xu L, Liu H and Li Y 2014 Graphdiyne and graphyne: from theoretical predictions to practical construction Chem. Soc. Rev. 43 2572–86
    [8]
    Gao X, Liu H, Wang D and Zhang J 2019 Graphdiyne: synthesis, properties, and applications Chem. Soc. Rev. 48 908–36
    [9]
    Chalifoux W A and Tykwinski R R 2010 Synthesis of polyynes to model the sp-carbon allotrope carbyne Nat. Chem. 2 967–71
    [10]
    Liu M, Artyukhov V I, Lee H, Xu F and Yakobson B I 2013 Carbyne from first principles: chain of C atoms, a nanorod or a nanorope ACS Nano 7 10075–82
    [11]
    Tongay S, Senger R T, Dag S and Ciraci S 2004 Ab-initio electron transport calculations of carbon based string structures Phys. Rev. Lett. 93 136404
    [12]
    Li X, Zhang H and Chi L 2018 On-surface synthesis of graphyne-based nanostructures Adv. Mater. 31 1804087
    [13]
    Chen H, Zhu H, Huang Z, Rong W and Wu K 2019 Two-sidedness of surface reaction mediation Adv. Mater. 31 1902080
    [14]
    Shen Q, Gao H-Y and Fuchs H 2017 Frontiers of on-surface synthesis: from principles to applications Nano Today 13 77–96
    [15]
    Grill L and Hecht S 2020 Covalent on-surface polymerization Nat. Chem. 12 115–30
    [16]
    Dong L, Liu P N and Lin N 2015 Surface-activated coupling reactions confined on a surface Acc. Chem. Res. 48 2765–74
    [17]
    Klappenberger F, Zhang Y-Q, Björk J, Klyatskaya S, Ruben M and Barth J V 2015 On-surface synthesis of carbon-based scaffolds and nanomaterials using terminal alkynes Acc. Chem. Res. 48 2140–50
    [18]
    Held P A, Fuchs H and Studer A 2017 Covalent-bond formation via on-surface chemistry Chem. Eur. J. 23 5874–92
    [19]
    Clair S and de Oteyza D G 2019 Controlling a chemical coupling reaction on a surface: tools and strategies for on-surface synthesis Chem. Rev. 119 4717–76
    [20]
    Bian K, Gerber C, Heinrich A J, Müller D J, Scheuring S and Jiang Y 2021 Scanning probe microscopy Nat. Rev. Methods Primers 1 36
    [21]
    Gross L, Schuler B, Pavlicˇek N, Fatayer S, Majzik Z, Moll N, Peña D and Meyer G 2018 Atomic force microscopy for molecular structure elucidation Angew. Chem., Int. Ed. 57 3888–908
    [22]
    Kaiser K, Scriven L M, Schulz F, Gawel P, Gross L and Anderson H L 2019 An sp-hybridized molecular carbon allotrope, cyclo[18]carbon Science 365 1299–301
    [23]
    Pavlicˇek N, Gawel P, Kohn D R, Majzik Z, Xiong Y, Meyer G, Anderson H L and Gross L 2018 Polyyne formation via skeletal rearrangement induced by atomic manipulation Nat. Chem. 10 853–8
    [24]
    Otero G et al 2008 Fullerenes from aromatic precursors by surface-catalysed cyclodehydrogenation Nature 454 865–8
    [25]
    Amsharov K, Abdurakhmanova N, Stepanow S, Rauschenbach S, Jansen M and Kern K 2010 Towards the isomer-specific synthesis of higher fullerenes and buckybowls by the surface-catalyzed cyclodehydrogenation of aromatic precursors Angew. Chem., Int. Ed. 49 9392–6
    [26]
    Pinardi A L et al 2013 Tailored formation of N-doped nanoarchitectures by diffusion-controlled on-surface (cyclo)-dehydrogenation of heteroaromatics ACS Nano 7 3676–84
    [27]
    Pinardi A L, Martínez J I, Jancˇaˇrík A, Stará I G, Starý I, López M F, Méndez J and Martín-Gago J A 2014 ´ Sequential formation of N-doped nanohelicenes, nanographenes and nanodomes by surface-assisted chemical (cyclo)dehydrogenation of heteroaromatics Chem. Commun. 50 1555–7
    [28]
    Lu J, Yeo P S E, Gan C K, Wu P and Loh K P 2011 Transforming C60 molecules into graphene quantum dots Nat. Nanotechnol. 6 247–52
    [29]
    Gross L, Mohn F, Moll N, Liljeroth P and Meyer G 2009 The chemical structure of a molecule resolved by atomic force microscopy Science 325 1110–4
    [30]
    Giessibl F J 2019 The qPlus sensor, a powerful core for the atomic force microscope Rev. Sci. Instrum. 90 11101
    [31]
    Gross L, Mohn F, Moll N, Schuler B, Criado A, Guitián E, Peña D, Gourdon A and Meyer G 2012 Bond-order discrimination by atomic force microscopy Science 337 1326–9
    [32]
    Moreno C, Stetsovych O, Shimizu T K and Custance O 2015 Imaging three-dimensional surface objects with submolecular resolution by atomic force microscopy Nano Lett. 15 2257–62
    [33]
    Scriven L M, Kaiser K, Schulz F, Sterling A J, Woltering S L, Gawel P, Christensen K E, Anderson H L and Gross L 2020 Synthesis of cyclo[18]carbon via debromination of C18Br6 J. Am. Chem. Soc. 142 12921–4
    [34]
    Müllen K and Rabe J P 2008 Nanographenes as active components of single-molecule electronics and how a scanning tunneling microscope puts them to work Acc. Chem. Res. 41 511–20
    [35]
    Fujii S and Enoki T 2013 Nanographene and graphene edges: electronic structure and nanofabrication Acc. Chem. Res. 46 2202–10
    [36]
    Son Y-W, Cohen M L and Louie S G 2006 Energy gaps in graphene nanoribbons Phys. Rev. Lett. 97 216803
    [37]
    Zuzak R et al 2018 Building a 22-ring nanographene by combining in-solution and on-surface syntheses Chem. Commun. 54 10256–9
    [38]
    Mishra S, Beyer D, Berger R, Liu J, Gröning O, Urgel J I, Müllen K, Ruffieux P, Feng X and Fasel R 2020 Topological defect-induced magnetism in a nanographene J. Am. Chem. Soc. 142 1147–52
    [39]
    Rogers C, Chen C, Pedramrazi Z, Omrani A A, Tsai H-Z, Jung H S, Lin S, Crommie M F and Fischer F R 2015 Closing the nanographene gap: surface-assisted synthesis of peripentacene from 6,6′ -bipentacene precursors Angew. Chem., Int. Ed. 54 15143–6
    [40]
    Wang X-Y et al 2017 Heteroatom-doped perihexacene from a double helicene precursor: on-surface synthesis and properties J. Am. Chem. Soc. 139 4671–4
    [41]
    Telychko M et al 2021 Ultrahigh-yield on-surface synthesis and assembly of circumcoronene into a chiral electronic Kagome-honeycomb lattice Sci. Adv. 7 eabf0269
    [42]
    Zhong Q et al 2019 Benzo-fused periacenes or double helicenes? Different cyclodehydrogenation pathways on surface and in solution J. Am. Chem. Soc. 141 7399–406
    [43]
    Hu Y, Wang X-Y, Peng P-X, Wang X-C, Cao X-Y, Feng X, Müllen K and Narita A 2017 Benzo-fused double [7]carbohelicene: synthesis, structures, and physicochemical properties Angew. Chem., Int. Ed. 56 3374–8
    [44]
    Mishra S, Lohr T G, Pignedoli C A, Liu J, Berger R, Urgel J I, Müllen K, Feng X, Ruffieux P and Fasel R 2018 Tailoring bond topologies in open-shell graphene nanostructures ACS Nano 12 11917–27
    [45]
    Mishra S et al 2020 Topological frustration induces unconventional magnetism in a nanographene Nat. Nanotechnol. 15 22–28
    [46]
    Mishra S et al 2021 Large magnetic exchange coupling in rhombus-shaped nanographenes with zigzag periphery Nat. Chem. 13 581–6
    [47]
    Buttrick J C and King B T 2017 Kekulenes, cycloarenes, and heterocycloarenes: addressing electronic structure and aromaticity through experiments and calculations Chem. Soc. Rev. 46 7–20
    [48]
    Pozo I, Majzik Z, Pavlicˇek N, Melle-Franco M, Guitián E, Peña D, Gross L and Pérez D 2019 Revisiting kekulene: synthesis and single-molecule imaging J. Am. Chem. Soc. 141 15488–93
    [49]
    Treier M, Pignedoli C A, Laino T, Rieger R, Müllen K, Passerone D and Fasel R 2011 Surface-assisted cyclodehydrogenation provides a synthetic route towards easily processable and chemically tailored nanographenes Nat. Chem. 3 61–67
    [50]
    Su J, Wu X, Song S, Telychko M and Lu J 2020 Substrate induced strain for on-surface transformation and synthesis Nanoscale 12 7500–8
    [51]
    Shiotari A, Nakae T, Iwata K, Mori S, Okujima T, Uno H, Sakaguchi H and Sugimoto Y 2017 Strain-induced skeletal rearrangement of a polycyclic aromatic hydrocarbon on a copper surface Nat. Commun. 8 16089
    [52]
    Fan Q, Martin-Jimenez D, Werner S, Ebeling D, Koehler T, Vollgraff T, Sundermeyer J, Hieringer W, Schirmeisen A and Gottfried J M 2020 On-surface synthesis and characterization of a cycloarene: C108 graphene ring J. Am. Chem. Soc. 142 894–9
    [53]
    Di Giovannantonio M, Yao X, Eimre K, Urgel J I, Ruffieux P, Pignedoli C A, Müllen K, Fasel R and Narita A 2020 Large-cavity coronoids with different inner and outer edge structures J. Am. Chem. Soc. 142 12046–50
    [54]
    Xu K et al 2019 On-surface synthesis of a nonplanar porous nanographene J. Am. Chem. Soc. 141 7726–30
    [55]
    Zeng Z et al 2022 Chemisorption-induced formation of biphenylene dimer on Ag(111) J. Am. Chem. Soc. 144 723–32
    [56]
    Zhang C, Kazuma E and Kim Y 2019 Atomic-scale visualization of the stepwise metal-mediated dehalogenative cycloaddition reaction pathways: competition between radicals and organometallic intermediates Angew. Chem., Int. Ed. 58 17736–44
    [57]
    Li Q, Gao J, Li Y, Fuentes-Cabrera M, Liu M, Qiu X, Lin H, Chi L and Pan M 2018 Self-assembly directed one-step synthesis of [4]radialene on Cu(100) surfaces Nat. Commun. 9 3113
    [58]
    Liu J et al 2019 Open-shell non-benzenoid nanographenes containing two pairs of pentagonal and heptagonal rings J. Am. Chem. Soc. 141 12011–20
    [59]
    Lohr T G et al 2020 On-surface synthesis of non-benzenoid nanographenes by oxidative ring-closure and ring-rearrangement reactions J. Am. Chem. Soc. 142 13565–72
    [60]
    Mallada B et al 2021 On-surface strain-driven synthesis of nonalternant non-benzenoid aromatic compounds containing four- to eight-membered rings J. Am. Chem. Soc. 143 14694–702
    [61]
    Stetsovych O, Švec M, Vacek J, Chocholoušová J V, Jancˇaˇrík A, Rybácˇek J, Kosmider K, Stará I G, Jelínek P and Stary I 2017 From helical to planar chirality by on-surface chemistry Nat. Chem. 9 213–8
    [62]
    Bischoff F, Riss A, Michelitsch G S, Ducke J, Barth J V, Reuter K and Auwärter W 2021 Surface-mediated ring-opening and porphyrin deconstruction via conformational distortion J. Am. Chem. Soc. 143 15131–8
    [63]
    Kawai S et al 2016 Thermal control of sequential on-surface transformation of a hydrocarbon molecule on a copper surface Nat. Commun. 7 12711
    [64]
    Kawai S et al 2017 Competing annulene and radialene structures in a single anti-aromatic molecule studied by high-resolution atomic force microscopy ACS Nano 11 8122–30
    [65]
    Nakamura K, Li Q-Q, Krejcˇí O, Foster A S, Sun K, Kawai S and Ito S 2020 On-surface synthesis of a π-extended diaza[8]circulene J. Am. Chem. Soc. 142 11363–9
    [66]
    Mishra S, Fatayer S, Fernández S, Kaiser K, Peña D and Gross L 2022 Nonbenzenoid high-spin polycyclic hydrocarbons generated by atom manipulation ACS Nano 16 3264–71
    [67]
    Hieulle J, Carbonell-Sanrom`a E, Vilas-Varela M, Garcia-Lekue A, Guitián E, Peña D and Pascual J I 2018 On-surface route for producing planar nanographenes with azulene moieties Nano Lett. 18 418–23
    [68]
    Hou I C-Y, Sun Q, Eimre K, Di Giovannantonio M, Urgel J I, Ruffieux P, Narita A, Fasel R and Müllen K 2020 On-surface synthesis of unsaturated carbon nanostructures with regularly fused pentagon-heptagon pairs J. Am. Chem. Soc. 142 10291–6
    [69]
    Su J, Telychko M, Song S and Lu J 2020 Triangulenes: from precursor design to on-surface synthesis and characterization Angew. Chem., Int. Ed. 59 7658–68
    [70]
    Pavlicˇek N, Mistry A, Majzik Z, Moll N, Meyer G, Fox D J and Gross L 2017 Synthesis and characterization of triangulene Nat. Nanotechnol. 12 308–11
    [71]
    Mishra S et al 2019 Synthesis and characterization of π-extended triangulene J. Am. Chem. Soc. 141 10621–5
    [72]
    Su J et al 2019 Atomically precise bottom-up synthesis of π-extended
    [73]
    Mishra S, Xu K, Eimre K, Komber H, Ma J, Pignedoli C A, Fasel R, Feng X and Ruffieux P 2021 Synthesis and characterization of
    [74]
    Su J et al 2021 On-surface synthesis and characterization of
    [75]
    Mishra S et al 2020 Collective all-carbon magnetism in triangulene dimers Angew. Chem., Int. Ed. 59 12041–7
    [76]
    Cheng S, Xue Z, Li C, Liu Y, Xiang L, Ke Y, Yan K, Wang S and Yu P 2022 On-surface synthesis of triangulene trimers via dehydration reaction Nat. Commun. 13 1705
    [77]
    Mishra S et al 2021 Observation of fractional edge excitations in nanographene spin chains Nature 598 287–92
    [78]
    Wang T, Berdonces-Layunta A, Friedrich N, Vilas-Varela M, Calupitan J P, Pascual J I, Peña D, Casanova D, Corso M and de Oteyza D G 2022 Aza-triangulene: on-surface synthesis and electronic and magnetic properties J. Am. Chem. Soc. 144 4522–9
    [79]
    Hieulle J et al 2021 On-surface synthesis and collective spin excitations of a triangulene-based nanostar Angew. Chem., Int. Ed. 60 25224–9
    [80]
    Song S, Su J, Telychko M, Li J, Li G, Li Y, Su C, Wu J and Lu J 2021 On-surface synthesis of graphene nanostructures with π-magnetism Chem. Soc. Rev. 50 3238–62
    [81]
    Peng X et al 2021 Visualizing designer quantum states in stable macrocycle quantum corrals Nat. Commun. 12 5895
    [82]
    Labinger J A and Bercaw J E 2002 Understanding and exploiting C–H bond activation Nature 417 507–14
    [83]
    Kruppe C M, Krooswyk J D and Trenary M 2017 Selective hydrogenation of acetylene to ethylene in the presence of a carbonaceous surface layer on a Pd/Cu(111) single-atom alloy ACS Catal. 7 8042–9
    [84]
    Molina D L, Muir M, Abdel-Rahman M K and Trenary M 2021 The influence of palladium on the hydrogenation of acetylene on Ag(111) J. Chem. Phys. 154 184701
    [85]
    Shilov A E and Shul’pin G B 1997 Activation of C–H bonds by metal complexes Chem. Rev. 97 2879–923
    [86]
    Marcinkowski M D, Darby M T, Liu J, Wimble J M, Lucci F R, Lee S, Michaelides A, Flytzani-Stephanopoulos M, Stamatakis M and Sykes E C H 2018 Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C–H activation Nat. Chem. 10 325–32
    [87]
    Rabe J P and Buchholz S 1991 Commensurability and mobility in two-dimensional molecular patterns on graphite Science 253 424–7
    [88]
    Askadskaya L and Rabe J P 1992 Anisotropic molecular dynamics in the vicinity of order-disorder transitions in organic monolayers Phys. Rev. Lett. 69 1395–8
    [89]
    Zhong D, Franke J-H, Podiyanachari S K, Blömker T, Zhang H, Kehr G, Erker G, Fuchs H and Chi L 2011 Linear alkane polymerization on a gold surface Science 334 213–6
    [90]
    Li Q et al 2016 Surface-controlled mono/diselective ortho C–H bond activation J. Am. Chem. Soc. 138 2809–14
    [91]
    Fan Q, Werner S, Tschakert J, Ebeling D, Schirmeisen A, Hilt G, Hieringer W and Gottfried J M 2018 Precise monoselective aromatic C–H bond activation by chemisorption of meta-aryne on a metal surface J. Am. Chem. Soc. 140 7526–32
    [92]
    Sun Q, Zhang C, Kong H, Tan Q and Xu W 2014 On-surface aryl-aryl coupling via selective C–H activation Chem. Commun. 50 11825–8
    [93]
    Zhang C, Sun Q, Chen H, Tan Q and Xu W 2015 Formation of polyphenyl chains through hierarchical reactions: Ullmann coupling followed by cross-dehydrogenative coupling Chem. Commun. 51 495–8
    [94]
    Hao Z et al 2022 Converting n-alkanol to conjugated polyenal on Cu(110) surface at mild temperature J. Phys. Chem. Lett. 13 3276–82
    [95]
    Li X et al 2021 Direct transformation of n-alkane into all-trans conjugated polyene via cascade dehydrogenation Natl Sci. Rev. 8 nwab093
    [96]
    Hao Z et al 2022 From n-alkane to polyacetylene on Cu (110): linkage modulation in chain growth Sci. China Chem. 65 733–9
    [97]
    Guo W et al 2022 Visualization of on-surface ethylene polymerization through ethylene insertion Science 375 1188–91
    [98]
    Okawa Y and Aono M 2001 Nanoscale control of chain polymerization Nature 409 683–4
    [99]
    Okawa Y and Aono M 2001 Linear chain polymerization initiated by a scanning tunneling microscope tip at designated positions J. Chem. Phys. 115 2317–22
    [100]
    Miura A, De Feyter S, Abdel-Mottaleb M M S, Gesquière A, Grim P C M, Moessner G, Sieffert M, Klapper M, Müllen K and De Schryver F C 2003 Light- and STM-tip-induced formation of one-dimensional and two-dimensional organic nanostructures Langmuir 19 6474–82
    [101]
    Sun Q et al 2016 Bottom-up synthesis of metalated carbyne J. Am. Chem. Soc. 138 1106–9
    [102]
    Yu X, Li X, Lin H, Liu M, Cai L, Qiu X, Yang D, Fan X, Qiu X and Xu W 2020 Bond-scission-induced structural transformation from cumulene to diyne moiety and formation of semiconducting organometallic polyyne J. Am. Chem. Soc. 142 8085–9
    [103]
    Gao W, Kang F, Qiu X, Yi Z, Shang L, Liu M, Qiu X, Luo Y and Xu W 2022 On-surface debromination of C6Br6: C6 ring versus C6 chain ACS Nano 16 6578–84
    [104]
    Yu X et al 2022 Lattice-directed selective synthesis of acetylenic and diacetylenic organometallic polyynes Chem. Mater. 34 1770–7
    [105]
    Wang S et al 2019 On-surface synthesis and characterization of individual polyacetylene chains Nat. Chem. 11 924–30
    [106]
    Wang C, Batsanov A S, Bryce M R, Martín S, Nichols R J, Higgins S J, García-Suárez V M and Lambert C J 2009 Oligoyne single molecule wires J. Am. Chem. Soc. 131 15647–54
    [107]
    Pavlicˇek N, Schuler B, Collazos S, Moll N, Pérez D, Guitián E, Meyer G, Peña D and Gross L 2015 On-surface generation and imaging of arynes by atomic force microscopy Nat. Chem. 7 623–8
    [108]
    Schuler B, Fatayer S, Mohn F, Moll N, Pavlicˇek N, Meyer G, Peña D and Gross L 2016 Reversible Bergman cyclization by atomic manipulation Nat. Chem. 8 220–4
    [109]
    Pavlicˇek N, Majzik Z, Collazos S, Meyer G, Pérez D, Guitián E, Peña D and Gross L 2017 Generation and characterization of a meta-aryne on Cu and NaCl surfaces ACS Nano 11 10768–73
    [110]
    de Oteyza D G et al 2013 Direct imaging of covalent bond structure in single-molecule chemical reactions Science 340 1434–7
    [111]
    Repp J, Meyer G, Stojkovi´c S M, Gourdon A and Joachim C 2005 Molecules on insulating films: scanning-tunneling microscopy imaging of individual molecular orbitals Phys. Rev. Lett. 94 26803
    [112]
    Albrecht F, Rey D, Fatayer S, Schulz F, Pérez D, Peña D and Gross L 2020 Intramolecular coupling of terminal alkynes by atom manipulation Angew. Chem., Int. Ed. 59 22989–93
    [113]
    Repp J, Meyer G, Paavilainen S, Olsson F E and Persson M 2006 Imaging bond formation between a gold atom and pentacene on an insulating surface Science 312 1196–9
    [114]
    Liljeroth P, Repp J and Meyer G 2007 Current-induced hydrogen tautomerization and conductance switching of naphthalocyanine molecules Science 317 1203–6
    [115]
    Morgenstern K, Lorente N and Rieder K-H 2013 Controlled manipulation of single atoms and small molecules using the scanning tunnelling microscope Phys. Status Solidi b 250 1671–751
    [116]
    Hla S-W, Bartels L, Meyer G and Rieder K-H 2000 Inducing all steps of a chemical reaction with the scanning tunneling microscope tip: towards single molecule engineering Phys. Rev. Lett. 85 2777–80
    [117]
    Zhong Q, Ihle A, Ahles S, Wegner H A, Schirmeisen A and Ebeling D 2021 Constructing covalent organic nanoarchitectures molecule by molecule via scanning probe manipulation Nat. Chem. 13 1133–9
    [118]
    Rizzo D J, Veber G, Jiang J, McCurdy R, Cao T, Bronner C, Chen T, Louie S G, Fischer F R and Crommie M F 2020 Inducing metallicity in graphene nanoribbons via zero-mode superlattices Science 369 1597–603
    [119]
    Fan Q et al 2021 Biphenylene network: a nonbenzenoid carbon allotrope Science 372 852–6
    [120]
    Blackwell R E, Zhao F, Brooks E, Zhu J, Piskun I, Wang S, Delgado A, Lee Y-L, Louie S G and Fischer F R 2021 Spin splitting of dopant edge state in magnetic zigzag graphene nanoribbons Nature 600 647–52
    [121]
    Wang T et al 2022 Magnetic interactions between radical pairs in chiral graphene nanoribbons Nano Lett. 22 164–71
    [122]
    Yang L, Park C-H, Son Y-W, Cohen M L and Louie S G 2007 Quasiparticle energies and band gaps in graphene nanoribbons Phys. Rev. Lett. 99 186801
    [123]
    Talirz L, Ruffieux P and Fasel R 2016 On-surface synthesis of atomically precise graphene nanoribbons Adv. Mater. 28 6222–31
    [124]
    Cai J et al 2010 Atomically precise bottom-up fabrication of graphene nanoribbons Nature 466 470–3
    [125]
    Ruffieux P et al 2016 On-surface synthesis of graphene nanoribbons with zigzag edge topology Nature 531 489–92
    [126]
    Berdonces-Layunta A, Schulz F, Aguilar-Galindo F, Lawrence J, Mohammed M S G, Muntwiler M, Lobo-Checa J, Liljeroth P and de Oteyza D G 2021 Order from a mess: the growth of 5-armchair graphene nanoribbons ACS Nano 15 16552–61
    [127]
    Sánchez-Sánchez C, Dienel T, Deniz O, Ruffieux P, Berger R, Feng X, Müllen K and Fasel R 2016 Purely armchair or partially chiral: noncontact atomic force microscopy characterization of dibromo-bianthryl-based graphene nanoribbons grown on Cu(111) ACS Nano 10 8006–11
    [128]
    de Oteyza D G et al 2016 Substrate-independent growth of atomically precise chiral graphene nanoribbons ACS Nano 10 9000–8
    [129]
    Cai J et al 2014 Graphene nanoribbon heterojunctions Nat. Nanotechnol. 9 896–900
    [130]
    Kawai S, Saito S, Osumi S, Yamaguchi S, Foster A S, Spijker P and Meyer E 2015 Atomically controlled substitutional boron-doping of graphene nanoribbons Nat. Commun. 6 8098
    [131]
    Zhang Y et al 2022 On-surface synthesis of a nitrogen-doped graphene nanoribbon with multiple substitutional sites Angew. Chem., Int. Ed. 61 e202204736
    [132]
    Moreno C et al 2018 Bottom-up synthesis of multifunctional nanoporous graphene Science 360 199–203
    [133]
    Tenorio M, Moreno C, Febrer P, Castro-esteban J, Ordejón P, Peña D, Pruneda M and Mugarza A 2022 Atomically sharp lateral superlattice heterojunctions built-in nitrogen-doped nanoporous graphene Adv. Mater. 34 e2110099
    [134]
    Chen Y-C, de Oteyza D G, Pedramrazi Z, Chen C, Fischer F R and Crommie M F 2013 Tuning the band gap of graphene nanoribbons synthesized from molecular precursors ACS Nano 7 6123–8
    [135]
    Talirz L et al 2017 On-surface synthesis and characterization of 9-atom wide armchair graphene nanoribbons ACS Nano 11 1380–8
    [136]
    Ruffieux P et al 2012 Electronic structure of atomically precise graphene nanoribbons ACS Nano 6 6930–5
    [137]
    Rizzo D J, Veber G, Cao T, Bronner C, Chen T, Zhao F, Rodriguez H, Louie S G, Crommie M F and Fischer F R 2018 Topological band engineering of graphene nanoribbons Nature 560 204–8
    [138]
    Gröning O et al 2018 Engineering of robust topological quantum phases in graphene nanoribbons Nature 560 209–13
    [139]
    Cao T, Zhao F and Louie S G 2017 Topological phases in graphene nanoribbons: junction states, spin centers, and quantum spin chains Phys. Rev. Lett. 119 76401
    [140]
    Rizzo D J et al 2021 Rationally designed topological quantum dots in bottom-up graphene nanoribbons ACS Nano 15 20633–42
    [141]
    Li S, Liu M and Qiu X 2020 Scanning probe microscopy of topological structure induced electronic states of graphene Small Methods 4 1900683
    [142]
    Liu M et al 2017 Graphene-like nanoribbons periodically embedded with four- and eight-membered rings Nat. Commun. 8 14924
    [143]
    Liu M, Liu M, Zha Z, Pan J, Qiu X, Li T, Wang J, Zheng Y and Zhong D 2018 Thermally induced transformation of nonhexagonal carbon rings in graphene-like nanoribbons J. Phys. Chem. C 122 9586–92
    [144]
    Li D-Y et al 2021 Ladder phenylenes synthesized on Au(111) surface via selective
    [145]
    Fan Q, Martin-Jimenez D, Ebeling D, Krug C K, Brechmann L, Kohlmeyer C, Hilt G, Hieringer W, Schirmeisen A and Gottfried J M 2019 Nanoribbons with nonalternant topology from fusion of polyazulene: carbon allotropes beyond graphene J. Am. Chem. Soc. 141 17713–20
    [146]
    de la Torre B et al 2020 Tailoring π-conjugation and vibrational modes to steer on-surface synthesis of pentalene-bridged ladder polymers Nat. Commun. 11 4567
    [147]
    Di Giovannantonio M, Urgel J I, Beser U, Yakutovich A V, Wilhelm J, Pignedoli C A, Ruffieux P, Narita A, Müllen K and Fasel R 2018 On-surface synthesis of indenofluorene polymers by oxidative five-membered ring formation J. Am. Chem. Soc. 140 3532–6
    [148]
    Sun Q et al 2018 Direct formation of C–C triple-bonded structural motifs by on-surface dehalogenative homocouplings of tribromomethyl-substituted arenes Angew. Chem., Int. Ed. 57 4035–8
    [149]
    Sánchez-Grande A et al 2019 On-surface synthesis of ethynylene-bridged anthracene polymers Angew. Chem., Int. Ed. 58 6559–63
    [150]
    Sun K, Sagisaka K, Peng L, Watanabe H, Xu F, Pawlak R, Meyer E, Okuda Y, Orita A and Kawai S 2021 Head-to-tail oligomerization by silylene-tethered Sonogashira coupling on Ag(111) Angew. Chem., Int. Ed. 60 19598–603
    [151]
    Kawai S et al 2022 On-surface synthesis of porphyrin-complex multi-block co-oligomers by defluorinative coupling Angew. Chem., Int. Ed. 61 e202114697
    [152]
    Sun Q, Cai L, Ma H, Yuan C and Xu W 2016 Dehalogenative homocoupling of terminal alkynyl bromides on Au(111): incorporation of acetylenic scaffolding into surface nanostructures ACS Nano 10 7023–30
    [153]
    Kawai S, Krejcˇí O, Foster A S, Pawlak R, Xu F, Peng L, Orita A and Meyer E 2018 Diacetylene linked anthracene oligomers synthesized by one-shot homocoupling of trimethylsilyl on Cu(111) ACS Nano 12 8791–7
    [154]
    Sánchez-Grande A et al 2020 Diradical organic one-dimensional polymers synthesized on a metallic surface Angew. Chem., Int. Ed. 59 17594–9
    [155]
    Zhang C, Jaculbia R B, Tanaka Y, Kazuma E, Imada H, Hayazawa N, Muranaka A, Uchiyama M and Kim Y 2021 Chemical identification and bond control of π-skeletons in a coupling reaction J. Am. Chem. Soc. 143 9461–7
    [156]
    Urgel J I et al 2020 On-surface synthesis of cumulene-containing polymers via two-step dehalogenative homocoupling of dibromomethylene-functionalized tribenzoazulene Angew. Chem., Int. Ed. 59 13281–7
    [157]
    Cirera B et al 2020 Tailoring topological order and π-conjugation to engineer quasi-metallic polymers Nat. Nanotechnol. 15 437–43
    [158]
    Zhong Q, Niu K, Chen L, Zhang H, Ebeling D, Björk J, Müllen K, Schirmeisen A and Chi L 2022 Substrate-modulated synthesis of metal-organic hybrids by tunable multiple aryl-metal bonds J. Am. Chem. Soc. 144 8214–22
    [159]
    Fan Q, Wang T, Dai J, Kuttner J, Hilt G, Gottfried J M and Zhu J 2017 On-surface pseudo-high-dilution synthesis of macrocycles: principle and mechanism ACS Nano 11 5070–9
    [160]
    Kolmer M, Zuzak R, Steiner A K, Zajac L, Engelund M, Godlewski S, Szymonski M and Amsharov K 2019 Fluorine-programmed nanozipping to tailored nanographenes on rutile TiO2 surfaces Science 363 57–60
    [161]
    Zhan G, Cai Z-F, Struty´nski K, Yu L, Herrmann N, Martínez-Abadía M, Melle-Franco M, Mateo-Alonso A and De Feyter S 2022 Observing polymerization in 2D dynamic covalent polymers Nature 603 835–40
    [162]
    Lu C, Mo Y-P, Hong Y, Chen T, Yang Z-Y, Wan L-J and Wang D 2020 On-surface growth of single-layered homochiral 2D covalent organic frameworks by steric hindrance strategy J. Am. Chem. Soc. 142 14350–6
    [163]
    Liu X-H, Guan C-Z, Ding S-Y, Wang W, Yan H-J, Wang D and Wan L-J 2013 On-surface synthesis of single-layered two-dimensional covalent organic frameworks via solid-vapor interface reactions J. Am. Chem. Soc. 135 10470–4
    [164]
    Dienstmaier J F, Medina D D, Dogru M, Knochel P, Bein T, Heckl W M and Lackinger M 2012 Isoreticular two-dimensional covalent organic frameworks synthesized by on-surface condensation of diboronic acids ACS Nano 6 7234–42
    [165]
    Liu X-H, Guan C-Z, Wang D and Wan L-J 2014 Graphene-like single-layered covalent organic frameworks: synthesis strategies and application prospects Adv. Mater. 26 6912–20
    [166]
    Zhang R et al 2013 Chemical mapping of a single molecule by plasmon-enhanced Raman scattering Nature 498 82–86
    [167]
    Wang R-P et al 2021 Raman detection of bond breaking and making of a chemisorbed up-standing single molecule at single-bond level J. Phys. Chem. Lett. 12 1961–8
    [168]
    Xu J et al 2021 Determining structural and chemical heterogeneities of surface species at the single-bond limit Science 371 818–22
    [169]
    Kazuma E, Jung J, Ueba H, Trenary M and Kim Y 2017 Direct pathway to molecular photodissociation on metal surfaces using visible light J. Am. Chem. Soc. 139 3115–21
    [170]
    Yu M et al 2020 Long-range ordered and atomic-scale control of graphene hybridization by photocycloaddition Nat. Chem. 12 1035–41
    [171]
    Nacci C, Baroncini M, Credi A and Grill L 2018 Reversible photoswitching and isomer-dependent diffusion of single azobenzene tetramers on a metal surface Angew. Chem., Int. Ed. 57 15034–9
    [172]
    Galanti A, Diez-Cabanes V, Santoro J, Valášek M, Minoia A, Mayor M, Cornil J and Samor`ı P 2018 Electronic decoupling in C3-symmetrical light-responsive tris(azobenzene) scaffolds: self-assembly and multiphotochromism J. Am. Chem. Soc. 140 16062–70
    [173]
    Zhang X, Xu S, Li M, Shen Y, Wei Z, Wang S, Zeng Q and Wang C 2012 Photo-induced polymerization and isomerization on the surface observed by scanning tunneling microscopy J. Phys. Chem. C 116 8950–5
    [174]
    Kazuma E, Jung J, Ueba H, Trenary M and Kim Y 2018 Real-space and real-time observation of a plasmon-induced chemical reaction of a single molecule Science 360 521–6
    [175]
    Kazuma E, Lee M, Jung J, Trenary M and Kim Y 2020 Single-molecule study of a plasmon-induced reaction for a strongly chemisorbed molecule Angew. Chem., Int. Ed. 59 7960–6
    [176]
    Böckmann H, Gawinkowski S, Waluk J, Raschke M B, Wolf M and Kumagai T 2018 Near-field enhanced photochemistry of single molecules in a scanning tunneling microscope junction Nano Lett. 18 152–7
    [177]
    Mahapatra S, Schultz J F, Li L, Zhang X and Jiang N 2022 Controlling localized plasmons via an atomistic approach: attainment of site-selective activation inside a single molecule J. Am. Chem. Soc. 144 2051–5
    [178]
    Tanaka H and Kawai T 2009 Partial sequencing of a single DNA molecule with a scanning tunnelling microscope Nat. Nanotechnol. 4 518–22
    [179]
    Saywell A, Sprafke J K, Esdaile L J, Britton A J, Rienzo A, Anderson H L, O’Shea J N and Beton P H 2010 Conformation and packing of porphyrin polymer chains deposited using electrospray on a gold surface Angew. Chem., Int. Ed. 49 9136–9
    [180]
    O’Sullivan M C et al 2011 Vernier templating and synthesis of a 12-porphyrin nano-ring Nature 469 72–75
    [181]
    McCurdy R D, Jacobse P H, Piskun I, Veber G C, Rizzo D J, Zuzak R, Mutlu Z, Bokor J, Crommie M F and Fischer F R 2021 Synergetic bottom-up synthesis of graphene nanoribbons by matrix-assisted direct transfer J. Am. Chem. Soc. 143 4174–8
    [182]
    Loth S, Etzkorn M, Lutz C P, Eigler D M and Heinrich A J 2010 Measurement of fast electron spin relaxation times with atomic resolution Science 329 1628–30
    [183]
    Terada Y, Yoshida S, Takeuchi O and Shigekawa H 2010 Real-space imaging of transient carrier dynamics by nanoscale pump–probe microscopy Nat. Photon. 4 869–74
    [184]
    Cocker T L, Peller D, Yu P, Repp J and Huber R 2016 Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging Nature 539 263–7
    [185]
    Wiesendanger R, Güntherodt H, Güntherodt G, Gambino R J and Ruf R 1990 Observation of vacuum tunneling of spin-polarized electrons with the scanning tunneling microscope Phys. Rev. Lett. 65 247–50
    [186]
    Wiesendanger R 2009 Spin mapping at the nanoscale and atomic scale Rev. Mod. Phys. 81 1495–550
    [187]
    Yamamoto S, Imada H and Kim Y 2022 Atomic-scale photon mapping revealing spin-current relaxation Phys. Rev. Lett. 128 206804
    [188]
    Zhong J-H, Jin X, Meng L, Wang X, Su H-S, Yang Z-L, Williams C T and Ren B 2017 Probing the electronic and catalytic properties of a bimetallic surface with 3 nm resolution Nat. Nanotechnol. 12 132–6
    [189]
    Lee J, Crampton K T, Tallarida N and Apkarian V A 2019 Visualizing vibrational normal modes of a single molecule with atomically confined light Nature 568 78–82
    [190]
    Jaculbia R B, Imada H, Miwa K, Iwasa T, Takenaka M, Yang B, Kazuma E, Hayazawa N, Taketsugu T and Kim Y 2020 Single-molecule resonance Raman effect in a plasmonic nanocavity Nat. Nanotechnol. 15 105–10
    [191]
    Yin H et al 2020 Nanometre-scale spectroscopic visualization of catalytic sites during a hydrogenation reaction on a Pd/Au bimetallic catalyst Nat. Catal. 3 834–42
    [192]
    Schultz J F, Li S, Jiang S and Jiang N 2020 Optical scanning tunneling microscopy based chemical imaging and spectroscopy J. Phys.: Condens. Matter 32 463001
    [193]
    Nonnenmacher M, O’Boyle M P and Wickramasinghe H K 1991 Kelvin probe force microscopy Appl. Phys. Lett. 58 2921–3
    [194]
    Castañeda-Uribe O A, Reifenberger R, Raman A and Avila A 2015 Depth-sensitive subsurface imaging of polymer nanocomposites using second harmonic Kelvin probe force microscopy ACS Nano 9 2938–47
  • 加载中

Catalog

    Figures(1)

    Article Metrics

    Article Views(195) PDF downloads(48)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return