Volume 1 Issue 3
September  2022
Turn off MathJax
Article Contents
Marie-Claude Bay, Rabeb Grissa, Konstantin V Egorov, Ryo Asakura, Corsin Battaglia. Low Na-β''-alumina electrolyte/cathode interfacial resistance enabled by a hydroborate electrolyte opening up new cell architecture designs for all-solid-state sodium batteries[J]. Materials Futures, 2022, 1(3): 031001. doi: 10.1088/2752-5724/ac8947
Citation: Marie-Claude Bay, Rabeb Grissa, Konstantin V Egorov, Ryo Asakura, Corsin Battaglia. Low Na-β''-alumina electrolyte/cathode interfacial resistance enabled by a hydroborate electrolyte opening up new cell architecture designs for all-solid-state sodium batteries[J]. Materials Futures, 2022, 1(3): 031001. doi: 10.1088/2752-5724/ac8947
Letter •
OPEN ACCESS

Low Na-β''-alumina electrolyte/cathode interfacial resistance enabled by a hydroborate electrolyte opening up new cell architecture designs for all-solid-state sodium batteries

© 2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 1, Number 3
  • Received Date: 2022-05-03
  • Accepted Date: 2022-08-11
  • Publish Date: 2022-08-26
  • Development of low-resistance electrode/electrolyte interfaces is key for enabling all-solid-state batteries with fast-charging capabilities. Low interfacial resistance and high current density were demonstrated for Na-β''-alumina/sodium metal interfaces, making Na-β''-alumina a promising solid electrolyte for high-energy all-solid-state batteries. However, integration of Na-β''-alumina with a high-energy sodium-ion intercalation cathode remains challenging. Here, we report a proof-of-concept study that targets the implementation of a Na-β''-alumina ceramic electrolyte with a slurry-casted porous NaCrO2 cathode with infiltrated sodium hydroborates as secondary electrolyte. The hydroborate Na4(B12H12)(B10H10) possesses similar sodium-ion conductivity of 1 mS cm-1 at room temperature as Na-β''-alumina and can be fully densified by cold pressing. Using the Na4(B12H12)(B10H10) secondary electrolyte as interlayer between Na-β''-alumina and NaCrO2, we obtain a cathode-electrolyte interfacial resistance of only 25 Ω cm2 after cold pressing at 70 MPa. Proof-of-concept cells with a sodium metal anode and a NaCrO2 cathode feature an initial discharge capacity of 103 mAh g-1 at C/10 and 42 mAh g-1 at 1 C with an excellent capacity retention of 88% after 100 cycles at 1 C at room temperature. Ion-milled cross-sections of the cathode/electrolyte interface demonstrate that intimate contact is maintained during cycling, proving that the use of hydroborates as secondary electrolyte and as an interlayer is a promising approach for the development of all-solid-state batteries with ceramic electrolytes.

  • loading
  • [1]
    Janek J and Zeier W G 2016 A solid future for battery development Nat. Energy 1 16141
    [2]
    Famprikis T, Canepa P, Dawson J A, Islam M S and Masquelier C 2019 Fundamentals of inorganic solid-state electrolytes for batteries Nat. Mater. 18 1278
    [3]
    Zhao C, Liu L, Qi X, Lu Y, Wu F, Zhao J, Yu Y, Hu Y-S and Chen L 2018 Solid-state sodium batteries Adv. Energy Mater. 8 1703012
    [4]
    Banerjee A, Wang X, Fang C, Wu E A and Meng Y S 2020 Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes Chem. Rev. 120 6878
    [5]
    Jiang Z, Han Q, Wang S and Wang H 2019 Reducing the interfacial resistance in all-solid-state lithium batteries based on oxide ceramic electrolytes Chem. Electron. Chem. 6 2970
    [6]
    Tan D H S, Banerjee A, Chen Z and Meng Y S 2020 From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries Nat. Nanotechnol. 15 170
    [7]
    Sharafi A, Kazyak E, Davis A L, Yu S, Thompson T, Siegel D J, Dasgupta N P and Sakamoto J 2017 Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12 Chem. Mater. 29 7961
    [8]
    Luo W et al 2017 Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer Adv. Mater. 29 1606042
    [9]
    Tsai C-L, Roddatis V, Chandran C V, Ma Q, Uhlenbruck S, Bram M, Heitjans P and Guillon O 2016 Li7La3Zr2O12 interface modification for Li dendrite prevention ACS Appl. Mater. Interfaces 8 10617
    [10]
    Krauskopf T, Hartmann H, Zeier W G and Janek J 2019 Toward a fundamental understanding of the lithium metal anode in solid-state batteries—an electrochemo-mechanical study on the garnet-type solid electrolyte Li6.25Al0.25La3Zr2O12 ACS Appl. Mater. Interfaces 11 14463
    [11]
    Wang M J, Choudhury R and Sakamoto J 2019 Characterizing the Li-solid-electrolyte interface dynamics as a function of stack pressure and current density Joule 3 2165
    [12]
    Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y and Zhang J-G 2014 Lithium metal anodes for rechargeable batteries Energy Environ. Sci. 7 513
    [13]
    Lin D, Liu Y and Cui Y 2017 Reviving the lithium metal anode for high-energy batteries Nat. Nanotechnol. 12 194
    [14]
    Zhang S S 2018 Problem, status, and possible solutions for lithium metal anode of rechargeable batteries ACS Appl. Energy Mater. 1 910
    [15]
    Tang B, Jaschin P W, Li X, Bo S-H and Zhou Z 2020 Critical interface between inorganic solid-state electrolyte and sodium metal Mater. Today 41 200
    [16]
    Bay M-C, Wang M, Grissa R, Heinz M V F, Sakamoto J and Battaglia C 2020 Sodium plating from Na-β ′′-alumina ceramics at room temperature, paving the way for fast-charging all-solid-state batteries Adv. Energy Mater. 10 1902899
    [17]
    Albertus P, Babinec S, Litzelman S and Newman A 2018 Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries Nat. Energy 3 16–21
    [18]
    Lacivita V, Wang Y, Bo S-H and Ceder G 2019 Ab initio investigation of the stability of electrolyte/electrode interfaces in all-solid-state Na batteries J. Mater. Chem. A 7 8144
    [19]
    Fertig M P, Skadell K, Schulz M, Dirksen C, Adelhelm P and Stelter M 2022 From high- to low-temperature: the revival of sodium-beta alumina for sodium solid-state batteries Batter. Supercaps 5 e202100131
    [20]
    Dustmann C-H 2004 Advances in ZEBRA batteries J. Power Sources 127 85
    [21]
    Sudworth J L 2001 The sodium/nickel chloride (ZEBRA) battery J. Power Sources 100 149
    [22]
    Sheng O, Jin C, Ding X, Liu T, Wan Y, Liu Y, Nai J, Wang Y, Liu C and Tao X 2021 A decade of progress on solid-state electrolytes for secondary batteries: advances and contributions Adv. Funct. Mater. 31 2100891
    [23]
    Yamauchi H, Ikejiri J, Sato F, Oshita H, Honma T and Komatsu T 2019 Pressureless all-solid-state sodium-ion battery consisting of sodium iron pyrophosphate glass-ceramic cathode and β ′′-alumina solid electrolyte composite J. Am. Ceram. Soc. 102 6658
    [24]
    Yamauchi H, Ikejiri J, Tsunoda K, Tanaka A, Sato F, Honma T and Komatsu T 2020 Enhanced rate capabilities in a glass-ceramic-derived sodium all-solid-state battery Sci. Rep. 10 9453
    [25]
    Liu L, Qi X, Ma Q, Rong X, Hu Y-S, Zhou Z, Li H, Huang X and Chen L 2016 Toothpaste-like electrode: a novel approach to optimize the interface for solid-state sodium-ion batteries with ultralong cycle life ACS Appl. Mater. Interfaces 8 32631
    [26]
    Zhao K, Liu Y, Zhang S, He S, Zhang N, Yang J and Zhan Z 2016 A room temperature solid-state rechargeable sodium ion cell based on a ceramic Na-β ′′-Al2O3 electrolyte and NaTi2(PO4)3 cathode Electrochem. commun. 69 59
    [27]
    Wu T, Wen Z, Sun C, Wu X, Zhang S and Yang J 2018 Disordered carbon tubes based on cotton cloth for modulating interface impedance in β ′′-Al2O3-based solid-state sodium metal batteries J. Mater. Chem. A 6 12623–9
    [28]
    Chi X, Hao F, Zhang J, Wu X, Zhang Y, Gheytani S, Wen Z and Yao Y 2019 A high-energy quinone-based all-solid-state sodium metal battery Nano Energy 62 718
    [29]
    Lei D et al 2019 Cross-linked beta alumina nanowires with compact gel polymer electrolyte coating for ultra-stable sodium metal battery Nat. Commun. 10 4244
    [30]
    Liu Z, Wang X, Chen J, Tang Y, Mao Z and Wang D 2021 Gel polymer electrolyte membranes boosted with sodium-conductive β-alumina nanoparticles: application for Na-ion batteries ACS Appl. Energy Mater. 4 623
    [31]
    Duchˆene L, Kühnel R-S, Rentsch D, Remhof A, Hagemann H and Battaglia C 2017 A highly stable sodium solid-state electrolyte based on a dodeca/deca-borate equimolar mixture Chem. Commun. 53 4195
    [32]
    Duchˆene L, Remhof A, Hagemann H and Battaglia C 2020 Status and prospects of hydroborate electrolytes for all-solid-state batteries Energy Storage Mater. 25 782
    [33]
    Asakura R, Duchˆene L, Kühnel R-S, Remhof A, Hagemann H and Battaglia C 2019 Electrochemical oxidative stability of hydroborate-based solid-state electrolytes ACS Appl. Energy Mater. 2 6924
    [34]
    Brighi M, Murgia F and Cerný R 2022 Mechanical behavior ˇ and dendrite resistance of closo-hydroborate solid electrolyte Adv. Mater. Interfaces 9 2101254
    [35]
    Duchˆene L, Kim D H, Song Y B, Jun S, Moury R, Remhof A, Hagemann H, Jung Y S and Battaglia C 2020 Crystallization of closo-borate electrolytes from solution enabling infiltration into slurry-casted porous electrodes for all-solid-state batteries Energy Storage Mater. 26 543
    [36]
    Asakura R, Reber D, Duchˆene L, Payandeh S, Remhof A, Hagemann H and Battaglia C 2020 4 V room-temperature all-solid-state sodium battery enabled by a passivating cathode/hydroborate solid electrolyte interface Energy Environ. Sci. 13 5048
    [37]
    Bay M-C, Heinz M V F, Figi R, Schreiner C, Basso D, Zanon N, Vogt U F and Battaglia C 2019 Impact of liquid phase formation on microstructure and conductivity of Li-stabilized Na-β ′′-alumina ceramics ACS Appl. Energy Mater. 2 687
    [38]
    Bay M-C, Heinz M V F, Danilewsky A N, Battaglia C and Vogt U F 2021 Analysis of c-lattice parameters to evaluate Na2O loss from and Na2O content in β ′′-alumina ceramics Ceram. Int. 47 13402
    [39]
    Asakura R, Duchˆene L, Payandeh S, Rentsch D, Hagemann H, Battaglia C, Remhof A and Remhof A 2021 Thermal and electrochemical interface compatibility of a hydroborate solid electrolyte with 3 V-class cathodes for all-solid-state sodium batteries ACS Appl. Mater. Interfaces 13 55319
    [40]
    Yu C-Y, Park J-S, Jung H-G, Chung K-Y, Aurbach D, Sun Y-K and Myung S-T 2015 NaCrO2 cathode for high-rate sodium-ion batteries Energy Environ. Sci. 8 2019
    [41]
    Nafe D, Von Nacro Z K and Hoppe R 1989 Über den alpha-NaFeO2-Typ Zur Kenntnis von NaCrO2 und KCrO2 Z. Anorg. Allg. Chem. 568 151
    [42]
    Komaba S, Takei C, Nakayama T, Ogata A and Yabuuchi N 2010 Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2 Electrochem. Commun. 12 355
    [43]
    Duchˆene L, Kühnel R-S, Stilp E, Cuervo Reyes E, Remhof A, Hagemann H and Battaglia C 2017 A stable 3 V all-solid-state sodium–ion battery based on a closo-borate electrolyte Energy Environ Sci. 10 2609
    [44]
    Lilley E and Strutt J E 1979 Bulk and grain boundary ionic conductivity in polycrystalline β ′′-alumina Phys. Status Solidi 54 639
    [45]
    Kim J H, Shin E C, Cho D C, Kim S, Lim S, Yang K, Beum J, Kim J, Yamaguchi S and Lee J S 2014 Electrical characterization of polycrystalline sodium beta′′-alumina: revisited and resolved Solid State Ion. 264 22
    [46]
    Grissa R, Payandeh S, Heinz M and Battaglia C 2021 Impact of protonation on the electrochemical performance of Li7La3Zr2O12 Garnets ACS Appl. Mater. Interfaces 13 14700
    [47]
    Spencer Jolly D, Ning Z, Darnbrough J E, Kasemchainan J, Hartley G O, Adamson P, Armstrong D E J, Marrow J and Bruce P G 2020 Sodium/Na β ′′ alumina interface: effect of pressure on voids ACS Appl. Mater. Interfaces 12 678
    [48]
    Gu Z-Y, Guo J-Z, Sun Z-H, Zhao X-X, Wang X-T, Liang H-J, Wu X-L and Liu Y 2021 Air/water/temperature-stable cathode for all-climate sodium-ion batteries Cell Rep. Phys. Sci. 2 100665
    [49]
    Gu Z, Guo J, Cao J, Wang X, Zhao X, Zheng X, Li W, Sun Z, Liang H and Wu X 2022 An advanced high-entropy fluorophosphate cathode for sodium-ion batteries with increased working voltage and energy density Adv. Mater. 34 2110108
    [50]
    Tarascon J-M 2020 Na-ion versus Li-ion batteries: complementarity rather than competitiveness Joule 4 1616
    [51]
    Mariyappan S, Wang Q and Tarascon J M 2018 Will sodium layered oxides ever be competitive for sodium ion battery applications? J. Electrochem. Soc. 165 A3714
  • 加载中

Catalog

    Figures(1)

    Article Metrics

    Article Views(302) PDF downloads(48)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return