Volume 1 Issue 3
September  2022
Turn off MathJax
Article Contents
Lin Ye, Xinxin Peng, Zhenhai Wen, Haitao Huang. Solid-state Z-scheme assisted hydrated tungsten trioxide/ZnIn2S4 photocatalyst for efficient photocatalytic H2 production[J]. Materials Futures, 2022, 1(3): 035103. doi: 10.1088/2752-5724/ac7faf
Citation: Lin Ye, Xinxin Peng, Zhenhai Wen, Haitao Huang. Solid-state Z-scheme assisted hydrated tungsten trioxide/ZnIn2S4 photocatalyst for efficient photocatalytic H2 production[J]. Materials Futures, 2022, 1(3): 035103. doi: 10.1088/2752-5724/ac7faf
Paper •
OPEN ACCESS

Solid-state Z-scheme assisted hydrated tungsten trioxide/ZnIn2S4 photocatalyst for efficient photocatalytic H2 production

© 2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 1, Number 3
  • Received Date: 2022-05-26
  • Accepted Date: 2022-07-08
  • Rev Recd Date: 2022-07-03
  • Publish Date: 2022-08-15
  • Efficient water splitting for H2 evolution over semiconductor photocatalysts is highly attractive in the field of clean energy. It is of great significance to construct heterojunctions, among which the direct Z-scheme nanocomposite photocatalyst provides effective separation of photo-generated carriers to boost the photocatalytic performance. Herein, Z-scheme hydrated tungsten trioxide/ZnIn2S4 is fabricated via an in-situ hydrothermal method where ZnIn2S4 nanosheets are grown on WO3xH2O. The close contact between WO30.5H2O and WO30.33H2O as well as ZnIn2S4 improve the charge carrier separation and migration in the photocatalyst, where the strong reducing electrons in the conduction band of ZnIn2S4 and the strong oxidizing holes in the valence band of WO30.33H2O are retained, leading to enhanced photocatalytic hydrogen production. The obtained WO3xH2O/ZnIn2S4 shows an excellent H2 production rate of 7200 mol g-1 h-1, which is 11 times higher than pure ZnIn2S4. To the best of our knowledge, this value is higher than most of the WO3-based noble metal-free semiconductor photocatalysts. The improved stability and activity are attributed to the formation of the Z-scheme heterojunction, which can markedly accelerate the interfacial charge separation for surface reaction. This work offers a promising strategy towards the design of an efficient Z-scheme photocatalyst to suppress electron-hole recombination and optimize redox potential.
  • loading
  • [1]
    Meng X, Liu L, Ouyang S, Xu H, Wang D, Zhao N Q, Ye J H 2016 Nanometals for solar-to-chemical energy conversion: from semiconductor-based photocatalysis to plasmon-mediated photocatalysis and photo-thermocatalysis Adv. Mater. 28 6781 doi: 10.1002/adma.201600305
    [2]
    Bharatvaj J, Preethi V, Kanmani S 2018 Hydrogen production from sulphide waste water using Ce3+-TiO2 photocatalysis Int. J. Hydrog. Energy 43 3935 doi: 10.1016/j.ijhydene.2017.12.069
    [3]
    Zhu Y, Wang T, Xu T, Li Y, Wang C 2019 Size effect of Pt co-catalyst on photocatalytic efficiency of g-C3N4 for hydrogen evolution Appl. Surf. Sci. 464 36 doi: 10.1016/j.apsusc.2018.09.061
    [4]
    Shen R C, Ren D D, Ding Y N, Guan Y T, Ng Y H, Zhang P, Li X 2020 Nanostructured CdS for efficient photocatalytic H2 evolution: a review Sci. China Mater. 63 2153-88 doi: 10.1007/s40843-020-1456-x
    [5]
    Zhang P, Lou X W D 2019 Design of heterostructured hollow photocatalysts for solar-to-chemical energy conversion Adv. Mater. 31 1900281 doi: 10.1002/adma.201900281
    [6]
    Huang W, He Q, Hu Y, Li Y 2019 Molecular heterostructures of covalent triazine frameworks for enhanced photocatalytic hydrogen production Angew. Chem., Int. Ed. 58 8676 doi: 10.1002/anie.201900046
    [7]
    Li D, Lao J, Jiang C, Shen Y, Luo C, Qi R, Lin H, Huang R, Waterhouse G I, Peng H 2020 Heterostructured MoS2@Bi2Se3 nanoflowers: a highly efficient electrocatalyst for hydrogen evolution J. Catal. 381 590 doi: 10.1016/j.jcat.2019.11.039
    [8]
    Liu J, Liu Y, Liu N, Han Y, Zhang X, Huang H, Lifshitz Y, Lee S-T, Zhong J, Kang Z 2015 Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway Science 347 970 doi: 10.1126/science.aaa3145
    [9]
    Dan M, Zhang Q, Yu S, Prakashb A, Lin Y, Zhou Y 2017 Noble-metal-free MnS/In2S3 composite as highly efficient visible light driven photocatalyst for H2 production from H2S Appl. Catal. B 217 530 doi: 10.1016/j.apcatb.2017.06.019
    [10]
    Lu M F, Li Q Q, Zhang C L, Fan X X, Li L, Dong Y M, Chen G Q, Shi H F 2020 Remarkable photocatalytic activity enhancement of CO2 conversion over 2D/2D g-C3N4/BiVO4 Z-scheme heterojunction promoted by efficient interfacial charge transfer Carbon 160 342 doi: 10.1016/j.carbon.2020.01.038
    [11]
    Liang Q, Cui S, Jin J, Liu C, Xu S, Yao C, Li Z 2018 Eosin Y bidentately bridged on UiO-66-NH2 by solvothermal treatment towards enhanced visible-light-driven photocatalytic H2 production Appl. Surf. Sci. 456 899 doi: 10.1016/j.apsusc.2018.06.173
    [12]
    Anwer H, Mahmood A, Lee J, Kim K, Park J, Yip A C K 2019 Photocatalysts for degradation of dyes in industrial effluents: opportunities and challenges Nano Res. 12 955 doi: 10.1007/s12274-019-2287-0
    [13]
    Naya S I, Kume T, Akashi R, Fujishima M, Tada H 2018 Red-light-driven water splitting by Au(Core)-CdS(Shell) half-cut nanoegg with heteroepitaxial junction J. Am. Chem. Soc. 140 1251 doi: 10.1021/jacs.7b12972
    [14]
    Lv M, Sun X, Wei S, Shen C, Mi Y, Xu X 2017 Ultrathin lanthanum tantalate perovskite nanosheets modified by nitrogen doping for efficient photocatalytic water splitting ACS Nano 11 11441 doi: 10.1021/acsnano.7b06131
    [15]
    Pan B, Qin J N, Wang X X, Su W Y 2020 Efficient self-assembly synthesis of LaPO4/CdS hierarchical heterostructure with enhanced visible-light photocatalytic CO2 reduction Appl. Surf. Sci. 504 144379 doi: 10.1016/j.apsusc.2019.144379
    [16]
    Majhi D, Das K, Bariki R, Padhan S, Mishra A, Dhiman R, Dash P, Nayakc B, Mishra B G 2020 A facile reflux method for in situ fabrication of a non-cytotoxic Bi2S3/b-Bi2O3/ZnIn2S4 ternary photocatalyst: a novel dual Z-scheme system with enhanced multifunctional photocatalytic activity J. Mater. Chem. A 8 21729 doi: 10.1039/D0TA06129H
    [17]
    Zong X, Yan H, Wu G, Ma G, Wen F, Wang L, Li C 2008 Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation J. Am. Chem. Soc. 130 7176 doi: 10.1021/ja8007825
    [18]
    Formal F, Pendlebury S R, Cornuz M, Tilley S D, Gra M, Durrant J R 2014 Back electron-hole recombination in hematite photoanodes for water splitting J. Am. Chem. Soc. 136 2564 doi: 10.1021/ja412058x
    [19]
    Wang H, Zhang L, Chen Z, Hu J, Li S, Wang Z, Liu J, Wang X 2014 Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances Chem. Soc. Rev. 43 5234 doi: 10.1039/C4CS00126E
    [20]
    Gholipour M R, Dinh C T, Bland F, Do T O 2015 Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting Nanoscale 7 8187 doi: 10.1039/C4NR07224C
    [21]
    Shen R C, Lu X Y, Zheng Q Q, Chen Q, Ng Y H, Zhang P, Li X 2021 Tracking s-scheme charge transfer pathways in Mo2C/CdS H2-evolution photocatalysts Sol. RRL 5 2100177 doi: 10.1002/solr.202100177
    [22]
    Bai J X, Shen R C, Jiang Z M, Zhang P, Li Y J, Li X 2022 Integration of 2D layered CdS/WO3 S-scheme heterojunctions and metallic Ti3C2 Mxene-based Ohmic junctions for effective photocatalytic H2 generation Chin. J. Catal. 43 359 doi: 10.1016/S1872-2067(21)63883-4
    [23]
    Zhou P, Yu J, Jaroniec M 2014 All-solid-state Z-scheme photocatalytic systems Adv. Mater. 26 4920 doi: 10.1002/adma.201400288
    [24]
    Chen Z M, Deng Y C, Tang L, Feng C Y, Wang J J, Yu J J, Liu Z F, Zhou H 2020 Theoretical and experimental study of full spectrum response Z-scheme 0D/2D Ag6Si2O7/CN photocatalyst with enhanced photocatalytic activities Appl. Surf. Sci. 514 145963 doi: 10.1016/j.apsusc.2020.145963
    [25]
    Wang S, Zhu B, Liu M, Zhang L, Yu J, Zhou M 2019 Direct Z-scheme ZnO/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity Appl. Catal. B 243 19 doi: 10.1016/j.apcatb.2018.10.019
    [26]
    Jin J, Yu J G, Guo D P, Cui C, Ho W K 2015 A hierarchical Z-scheme CdS-WO3 photocatalyst with enhanced CO2 reduction activity Small 11 5262 doi: 10.1002/smll.201500926
    [27]
    Sasaki Y, Iwase A, Kato H, Kudo A 2008 The effect of co-catalyst for Z-scheme photocatalysis systems with an Fe3+/Fe2+ electron mediator on overall water splitting under visible light irradiation J. Catal. 259 133 doi: 10.1016/j.jcat.2008.07.017
    [28]
    Ma D, Wu J, Gao M, Xin Y, Chai C 2017 Enhanced debromination and degradation of 2, 4-dibromophenol by an Z-scheme Bi2MoO6/CNTs/g-C3N4 visible light photo- catalyst Chem. Eng. J. 316 461 doi: 10.1016/j.cej.2017.01.124
    [29]
    Tada H, Mitsui T, Kiyonaga T, Akita T, Tanaka K 2006 All-solid-state Z-scheme in CdS-Au-P25 three-component nanojunction system Nat. Mater. 5 782 doi: 10.1038/nmat1734
    [30]
    Ye L, Wen Z H 2019 ZnIn2S4 nanosheets decorating WO3 nanorods core-shell hybrids for boosting visible-light photocatalysis hydrogen generation Int. J. Hydrog. Energy 4 3751 doi: 10.1016/j.ijhydene.2018.12.093
    [31]
    Wu X, Zhao J, Wang L, Han M, Zhang M, Wang H, Huang H, Liu Y, Kang Z 2017 Carbon dots as solid-state electron mediator for BiVO4/CDs/CdS Z-scheme photocatalyst working under visible light Appl. Catal. B 206 501 doi: 10.1016/j.apcatb.2017.01.049
    [32]
    Zeng C, Hu Y, Zhang T, Dong F, Zhang Y, Huang H 2018 A core-satellite structured Z-scheme catalyst Cd0.5Zn0.5S/BiVO4 for highly efficient and stable photocatalytic water splitting J. Mater. Chem. A 6 16932 doi: 10.1039/C8TA04258F
    [33]
    Wang Y, Suzuki H, Xie J, Tomita O, Martin D J, Higashi M, Kong D, Abe R, Tang J 2018 Mimicking natural photosynthesis: solar to renewable H2 fuel synthesis by Z-scheme water splitting systems Chem. Rev. 118 5201 doi: 10.1021/acs.chemrev.7b00286
    [34]
    Chen S, Hu Y, Meng S, Fu X 2014 Study on the separation mechanisms of photogenerated electrons and holes for composite photocatalysts g-C3N4-WO3 Appl. Catal. B 150-151 564 doi: 10.1016/j.apcatb.2013.12.053
    [35]
    Zheng H D, Ou J Z, Strano M S, Kaner R B, Mitchell A, Kalantar-zadeh K 2011 Nanostructured tungsten oxide-properties, synthesis, and applications Adv. Funct. Mater. 21 2175-96 doi: 10.1002/adfm.201002477
    [36]
    Liu B, Wang J, Wu J, Li H, Li Z, Zhou M, Zuo T 2014 Controlled fabrication of hierarchical WO3 hydrates with excellent adsorption performance J. Mater. Chem. A 2 1947 doi: 10.1039/C3TA13897F
    [37]
    Sun S M, Watanabe M, Wu J, An Q, Ishihara T 2018 Ultrathin WO3·0.33H2O nanotubes for CO2 photoreduction to acetate with high selectivity J. Am. Chem. Soc. 140 6474 doi: 10.1021/jacs.8b03316
    [38]
    Wang H X, Ren X B, Liu Z, Jiang D, Lv B L 2019 Bubble-template synthesis of WO3·0.5H2O hollow spheres as a high-activity catalyst for catalytic oxidation of benzyl alcohol to benzaldehyde CrystEngComm 21 1026 doi: 10.1039/C8CE01999A
    [39]
    Ye L, Fu J L, Xu Z, Yuan R S, Li Z H 2014 Facile one-pot solvothermal method to synthesize sheet-on-sheet reduced graphene oxide (RGO)/ZnIn2S4 nanocomposites with superior photocatalytic performance ACS Appl. Mater. Interfaces 6 3483 doi: 10.1021/am5004415
    [40]
    Ye L, Li Z H 2014 ZnIn2S4: a photocatalyst for the selective aerobic oxidation of amines to imines under visible light ChemCatChem 6 2540 doi: 10.1002/cctc.201402360
    [41]
    Lei Z B, You W S, Liu M Y, Zhou G H, Takata T, Hara M, Domen K, Li C 2013 Photocatalytic water reduction under visible light on a novel ZnIn2S4 catalyst synthesized by hydrothermal method Chem. Commun. 17 2142 doi: 10.1039/B306813G
    [42]
    He Y Q, Rao H, Song K P, Li J X, Yu Y, Lou Y, Li C G, Han Y, Shi Z, Feng S H 2019 3D Hierarchical ZnIn2S4 nanosheets with Rich Zn vacancies boosting photocatalytic CO2 reduction Adv. Funct. Mater. 29 1905153 doi: 10.1002/adfm.201905153
    [43]
    Zhou J, Tian G, Chen Y, Meng X, Shi Y, Cao X, Pan K, Fu H 2013 In situ controlled growth of ZnIn2S4 nanosheets on reduced graphene oxide for enhanced photocatalytic hydrogen production performance Chem. Commun. 49 2237 doi: 10.1039/c3cc38999e
    [44]
    Lin R, Wan J W, Xiong Y, Wu K L, Cheong W, Zhou G, Wang D S, Peng Q, Chen C, Li Y D 2018 Quantitative study of charge carrier dynamics in well-defined WO3 nanowires and nanosheets: insight into the crystal facet effect in photocatalysis J. Am. Chem. Soc. 140 9078 doi: 10.1021/jacs.8b05293
    [45]
    He J, Liu H L, Xu B, Wang X 2015 Highly Flexible Sub-1 nm tungsten oxide nanobelts as efficient desulfurization catalysts Small 11 1144 doi: 10.1002/smll.201401273
    [46]
    Xu B, He P, Liu H, Wang P, Zhou G, Wang X 2014 A 1D/2D helical CdS/ZnIn2S4 nano-heterostructure Angew. Chem., Int. Ed. 53 2339 doi: 10.1002/anie.201310513
    [47]
    Du C, Yan B, Yang G W 2020 Self-integrated effects of 2D ZnIn2S4 and amorphous Mo2C nanoparticles composite for promoting solar hydrogen generation Nano Energy 76 105031 doi: 10.1016/j.nanoen.2020.105031
    [48]
    Yang M-Q, Xu Y-J, Lu W H, Zeng K Y, Zhu H, Xu Q-H, Ho G W 2017 Self-surface charge exfoliation and electrostatically coordinated 2D hetero-layered hybrids Nat. Commun. 8 14224 doi: 10.1038/ncomms14224
    [49]
    Wang H P, Zhang L, Wang K F, Sun X, Wang W Z 2019 Enhanced photocatalytic CO2 reduction to methane over WO3·0.33H2O via Mo doping Appl. Catal. B 243 771 doi: 10.1016/j.apcatb.2018.11.021
    [50]
    Zheng Y, Chen G, Yu Y G, Wang Y, Sun J X, Xu H M, Zhou Y S 2014 Solvothermal synthesis of pyrochlore-type cubic tungsten trioxide hemihydrate and high photocatalytic activity New J. Chem. 38 3071 doi: 10.1039/C3NJ01401K
  • mfac8170supp1.docx
  • 加载中

Catalog

    Figures(8)

    Article Metrics

    Article Views(888) PDF downloads(158)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return