Ao Li, Xiao Chen, Lijian Song, Guoxin Chen, Wei Xu, Juntao Huo, Meng Gao, Ming Li, Lei Zhang, Bingnan Yao, Min Ji, Yan Zhang, Shaofan Zhao, Wei Yao, Yanhui Liu, Jun-Qiang Wang, Haiyang Bai, Zhigang Zou, Mengfei Yang, Weihua Wang. Taking advantage of glass: capturing and retaining the helium gas on the moon[J]. Materials Futures, 2022, 1(3): 035101. DOI: 10.1088/2752-5724/ac74af
Citation: Ao Li, Xiao Chen, Lijian Song, Guoxin Chen, Wei Xu, Juntao Huo, Meng Gao, Ming Li, Lei Zhang, Bingnan Yao, Min Ji, Yan Zhang, Shaofan Zhao, Wei Yao, Yanhui Liu, Jun-Qiang Wang, Haiyang Bai, Zhigang Zou, Mengfei Yang, Weihua Wang. Taking advantage of glass: capturing and retaining the helium gas on the moon[J]. Materials Futures, 2022, 1(3): 035101. DOI: 10.1088/2752-5724/ac74af

Taking advantage of glass: capturing and retaining the helium gas on the moon

  • Helium-3 (3He) is a noble gas that has critical applications in scientific research and promising application potential as clean fusion energy. It is thought that the lunar regolith contains large amounts of helium, but it is challenging to extract because most helium atoms are reserved in defects of crystals or as solid solutions. Here, we find large amounts of helium bubbles in the glassy surface layer of ilmenite particles that were brought back by the Chang’E-5 mission. The special disordered atomic packing structure of glasses should be the critical factor for capturing the noble helium gas. The reserves in bubbles do not require heating to high temperatures to be extracted. Mechanical methods at ambient temperatures can easily break the bubbles. Our results provide insights into the mechanism of helium gathering on the moon and offer guidance on future in situ extraction.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return