Volume 1 Issue 2
June  2022
Turn off MathJax
Article Contents
Liwei Liu, Yibo Sun, Xiaohe Huang, Chunsen Liu, Zhaowu Tang, Senfeng Zeng, David Wei Zhang, Shaozhi Deng, Peng Zhou. Ultrafast flash memory with large self-rectifying ratio based on atomically thin MoS2-channel transistor[J]. Materials Futures, 2022, 1(2): 025301. doi: 10.1088/2752-5724/ac7067
Citation: Liwei Liu, Yibo Sun, Xiaohe Huang, Chunsen Liu, Zhaowu Tang, Senfeng Zeng, David Wei Zhang, Shaozhi Deng, Peng Zhou. Ultrafast flash memory with large self-rectifying ratio based on atomically thin MoS2-channel transistor[J]. Materials Futures, 2022, 1(2): 025301. doi: 10.1088/2752-5724/ac7067
Paper •
OPEN ACCESS

Ultrafast flash memory with large self-rectifying ratio based on atomically thin MoS2-channel transistor

© 2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 1, Number 2
  • Received Date: 2022-02-27
  • Accepted Date: 2022-05-17
  • Publish Date: 2022-06-14
  • Flash memory with high operation speed and stable retention performance is in great demand to meet the requirements of big data. In addition, the realisation of ultrafast flash memory with novel functions offers a means of combining heterogeneous components into a homogeneous device without considering impedance matching. This report proposes a 20 ns programme flash memory with 108 self-rectifying ratios based on a 0.65 nm-thick MoS2-channel transistor. A high-quality van der Waals heterojunction with a sharp interface is formed between the Cr/Au metal floating layer and h-BN tunnelling layer. In addition, the large rectification ratio and low ideality factor (n = 1.13) facilitate the application of the MoS2-channel flash memory as a bit-line select transistor. Finally, owing to the ultralow MoS2/h-BN heterojunction capacitance (50 fF), the memory device exhibits superior performance as a high-frequency (up to 1 MHz) sine signal rectifier. These results pave the way toward the potential utilisation of multifunctional memory devices in ultrafast two-dimensional NAND-flash applications.

  • loading
  • [1]
    Bez R, Camerlenghi E, Modelli A and Visconti A 2003 Introduction to flash memory Proc. IEEE 91 489–502
    [2]
    Lee G-H, Hwang S, Yu J and Kim H 2011 Architecture and process integration overview of 3D NAND flash technologies Appl. Sci. 11 6703
    [3]
    Dumin D-J, Cooper J-R, Maddux J-R, Scott R-S and Wong D-P 1994 Low-level leakage currents in thin silicon oxide films J. Appl. Phys. 76 319–27
    [4]
    Hu C 1996 Gate oxide scaling limits and projection IEDM Technical Digest pp 319–22
    [5]
    Chhowalla M, Jena D and Zhang H 2016 Two-dimensional semiconductors for transistors Nat. Rev. Mater. 1 16052
    [6]
    Wang Y, Kim J-C, Wu R-J, Martinez J, Song X, Yang J, Zhao F, Mkhoyan A, Jeong H Y and Chhowalla M 2019 Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors Nature 568 70–74
    [7]
    Kang K, Lee K-H, Han Y, Gao H, Xie S, Muller D-A and Park J 2017 Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures Nature 550 229–33
    [8]
    Zhang Z-C, Li Y, Li J, Chen X-D, Yao B-W, Yu M-X, Lu T-B and Zhang J 2021 An ultrafast nonvolatile memory with low operation voltage for high-speed and low-power applications Adv. Funct. Mater. 31 2102571
    [9]
    Vu Q-A, Kim H, Nguyen V-L, Won U-Y, Adhikari S, Kim K, Lee Y-H and Yu W-J 2017 A high-on/off-ratio floating-gate memristor array on a flexible substrate via CVD-grown large-area 2D layer stacking Adv. Mater. 29 1703363
    [10]
    Liu C, Chen H, Wang S, Liu Q, Jiang Y-G, Zhang D-W, Liu M and Zhou P 2020 Two-dimensional materials for next-generation computing technologies Nat. Nanotechnol. 15 545–57
    [11]
    Jin T, Zheng Y, Gao J, Wang Y, Li E, Chen H, Pan X, Lin M and Chen W 2021 Controlling native oxidation of HfS2 for 2D materials based flash memory and artificial synapse ACS Appl. Mater. Interfaces 13 10639–49
    [12]
    Sasaki T, Ueno K, Taniguchi T, Watanabe K, Nishimura T and Nagashio K 2021 Material and device structure designs for 2D memory devices based on the floating gate voltage trejectory ACS Nano 15 6658–68
    [13]
    Liu L et al 2021 Ultrafast non-volatile memory based on van der Waals heterostructures Nat. Nanothchnol. 21 921
    [14]
    Wu L et al 2021 Atomically sharp interface enabled ultrahigh-speed non-volatile memory device Nat. Nanothchnol. 21 904
    [15]
    Chen Y, Yu J, Zhuge F, He Y, Zhang Q, Yu S, Liu K, Li L, Ma Y and Zhai T 2020 An asymmetric hot carrier tunneling van der Waals heterostructure for multibit optoelectronic memory Mater. Horiz. 7 1331–40
    [16]
    Wu E, Xie Y, Wang S, Zhang D, Hu X and Liu J 2020 Multi-level flash memory device based on stacked anisotropic ReS2-boron nitride-graphene heterostructures Nanoscale 12 18800–6
    [17]
    Zhao C, Zhao C-Z, Taylor S and Chalker P-R 2014 Review on non-volatile memory with high-k dielectrics: flash for generation beyond 32 nm Materials 7 5117–45
    [18]
    Chen W, Liu W J, Zhang M, Ding S J, Zhang D W and Li M F 2007 Multistacked Al2O3/HfO2/SiO2 tunnel layer for high-density nonvolatile memory application Appl. Phys. Lett. 91 022908
    [19]
    Lin Y-H, Chine C-H, Lin C-T, Chang C-Y and Lei T-F 2006 Novel two-bit HfO2 nanocrystal nonvolatile flash memory IEEE Trans. Electron Devices 53 782–9
    [20]
    Jayanti S, Yang X, Suri R and Misra V 2010 Ultimate scalability of TaN metal floating gate with incorporation of high-k blocking dielectrics for flash memory applications IEDM (IEEE) pp 5.3.1–5.3.4
    [21]
    Lee S, Seong H, Im S-G, Moon H and Yoo S 2017 Organic flash memory on various flexible substrates for foldable and disposable electronics Nat. Commun. 8 725
    [22]
    Hong S, Park J, Lee J-J, Lee S, Yun K, Yoo H and Kim S 2021 Multifunctional molybdenum disulfide flash memory using a PEDOT:PSS floating gate NPG Asia Mater. 13 38
    [23]
    Naqi M, Kwon N, Jung S-H, Pujar P, Cho H-W, Cho Y-I, Cho H-K, Lim B and Kim S 2021 High-performance non-volatile InGaZnO based flash memory device embedded with a monolayer Au nanoparticles Nanomaterials 11 1101
    [24]
    Chen H, Zhou Y and Han S-T 2021 Recent advances in metal nanoparticles-based floating gate memory Nano Sel. 2 1245–65
    [25]
    Lee J-S 2021 Recent progress in gold nanoparticle-based non-volatile memory devices Gold Bull. 43 189–99
    [26]
    Han S-T, Zhou Y, Xu Z-X, Huang L-B, Yang X-B and Roy V-A-L 2012 Microcontact printing of ultrahigh density gold nanoparticle monolayer for flexible flash memories Adv. Mater. 24 3556–61
    [27]
    Allain A, Kang J, Banerjee K and Kis A 2015 Electrical contacts to two-dimensional semiconductors Nat. Mater. 14 1195–205
    [28]
    Shen P-C et al 2021 Ultralow contact resistance between semimetal and monolayer semiconductors Nature 593 211
    [29]
    Moun M, Singh A and Singh R 2018 Study of electrical behavior of metal-semiconductor contacts on exfoliated MoS2 flakes Phys. Status Solidi a 215 1800188
    [30]
    Yang S-J, Park K-T, Im J, Hong S, Lee Y, Min B-W, Kim K and Im S 2020 Ultrafast 27 GHz cutoff frequency in vertical WSe2 Schottky diodes with extremely low contact resistance Nat. Commun. 11 1574
    [31]
    Zhao Y, Xiao X, Huo Y, Wang Y, Zhang T, Jiang K, Wang J, Fan S and Li Q 2017 Influence of asymmetric contact form on contact resistance and schottky barrier, and corresponding applications of diode ACS Appl. Mater. Interfaces 9 18945–55
    [32]
    Wu F et al 2019 High efficiency and fast van der Waals hetero-photodiodes with a unilateral depletion region Nat. Commun. 10 4663
    [33]
    Hosseini S-A, Esfandiar A, Iraji Zad A, Hosseini-Shokouh S-H and Mahdavi S-M 2019 High-photoresponsive backward diode by two-dimensional SnS2/silicon heterostructure ACS Photonics 6 728–34
    [34]
    Murali K, Dandu M, Das S and Majumdar K 2018 Gate-tunable WSe2/SnSe2 backward diode with ultrahigh-reverse rectification ratio ACS Appl. Mater. Interfaces 10 5657–64
    [35]
    Aftab S, Khan M-F, Gautam P, Noh H and Eom J 2019 MoTe2 van der Waals homojunction p-n diode with low resistance metal contacts Nanoscale 11 9518–25
    [36]
    Liu L, Xu N-S, Zhang Y, Zhao P, Chen H and Deng S 2019 Van der Waals bipolar junction transistor using vertically stacked two-dimensional atomic crystals Adv. Funct. Mater. 29 1807893
    [37]
    Liu L, Liu C, Huang X, Zeng S, Tang Z, Zhang D-W and Zhou P 2022 Tunable current regulative diode based on van der Waals stacked MoS2/WSe2 heterojunction-channel field-effect transistor Adv. Electron. Mater. 8 2100869
    [38]
    Vu Q-A et al 2016 Two-terminal floating-gate memory with van der Waals heterodtructures for ultrahigh on/off ratio Nat. Commun. 7 12725
    [39]
    Di Bartolomeo A et al 2018 Asymmetric Schottky contacts in bilayer MoS2 field effect transistors Adv. Funct. Mater. 28 1800657
    [40]
    Sze S-M and Kwok K-N 2006 Physics of Semiconductor Devices (Hoboken, NJ: Wiley)
    [41]
    Liu Y, Wang P, Wang Y, Lin Z, Liu H, Huang J, Huang Y and Duan X 2020 van der Waals integrated devices based on nanomembranes of 3D materials Nano Lett. 20 1410–6
    [42]
    AQ J et al 2020 Ferroelectric domain wall memory with embedded selector realized in LiNbO3 single crystals integrated on Si wafers Nat. Mater. 19 1188–94
    [43]
    Carthy D-M, Duane R, O’Shea M, Duffy R, Carthy K-M, Kelliher A-M, Concannon A and Mathewson A 2003 A novel CMOS-compatible top-floating-gate EEPROM cell for embedded applications IEEE Trans. Electron Devices 50 1708–10
    [44]
    Tran M-D, Kim H, Kim J-S, Doan M-H, Chau T-K, Vu Q-A, Kim J-H and Lee Y-H 2019 Two-terminal multibit optical memory via van der Waals heterostructure Adv. Mater. 31 1807075
    [45]
    Li Y, Long S, Liu Q, Lv H and Liu M 2017 Resistive switching performance improvement via modulating nanoscale conductive filament, involving the application of two-dimensional layered materials Small 13 1604306
    [46]
    Dastgeer G, Abbas H, Kim D-Y, Eom J and Choi C 2021 Synaptic characteristics of an ultrathin hexagonal boron nitride (h-BN) diffusive memristor Phys. Status Solidi 15 2000473
    [47]
    Liu K et al 2021 A wafer-scale van der Waals dielectric made from an inorganic molecular crystal film Nat. Electron. 4 906–13
    [48]
    Li T et al 2020 A native oxide high-κ gate dielectric for two-dimensional electronics Nat. Electron. 3 473–8
  • 加载中

Catalog

    Figures(1)

    Article Metrics

    Article Views(569) PDF downloads(87)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return