Volume 1 Issue 2
June  2022
Turn off MathJax
Article Contents
Wei Weng, Dong Zhou, Gaozhan Liu, Lin Shen, Mengqi Li, Xinshuang Chang, Xiayin Yao. Air exposure towards stable Li/Li10GeP2S12 interface for all-solid-state lithium batteries[J]. Materials Futures, 2022, 1(2): 021001. doi: 10.1088/2752-5724/ac66f5
Citation: Wei Weng, Dong Zhou, Gaozhan Liu, Lin Shen, Mengqi Li, Xinshuang Chang, Xiayin Yao. Air exposure towards stable Li/Li10GeP2S12 interface for all-solid-state lithium batteries[J]. Materials Futures, 2022, 1(2): 021001. doi: 10.1088/2752-5724/ac66f5
Letter •
OPEN ACCESS

Air exposure towards stable Li/Li10GeP2S12 interface for all-solid-state lithium batteries

© 2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures , Volume 1, Number 2
  • Received Date: 2022-03-27
  • Accepted Date: 2022-04-12
  • Publish Date: 2022-04-29
  • Moist air is a great challenge for manufacturing sulfide-based all-solid-state lithium batteries as the water in air will lead to severe decomposition of sulfide electrolytes and release H2S gas. However, different with direct reaction with water, short-period air exposure of Li10GeP2S12 sulfide electrolyte with controlled humidity can greatly enhance the stability of Li10GeP2S12 against lithium metal, thus realizing stable Li10GeP2S12 based all-solid-state lithium metal batteries. During air exposure, partial hydrolysis reaction occurs on the surface of Li10GeP2S12 pellets, rapidly generating a protective decomposition layer of Li4P2S6, GeSand Li2HPO3 in dozens of seconds. This ionically conductive but electronically insulation protecting layer can effectively prevent the severe interface reaction between Li10GeP2S12 and lithium metal during electrochemical cycling. The Li/40s-air-exposed Li10GeP2S12/Li cell shows long cycling stability for 1000 h. And the LiCoO2/40s-air-exposed Li10GeP2S12/Li batteries present good rate capability and long cyclic performances, showing capacity retention of 80% after 100 cycles.

  • loading
  • [1]
    Janek J and Zeier W G 2016 Nat. Energy 1 16141
    [2]
    Schnell J, Günther T, Knoche T, Vieider C, Köhler L, Just A, Keller M, Passerini S and Reinhart G 2018 J. Power Sources 382 160–75
    [3]
    Randau S et al 2020 Nat. Energy 5 259–70
    [4]
    Kamaya N et al 2011 Nat. Mater. 10 682–6
    [5]
    Seino Y, Ota T, Takada K, Hayashi A and Tatsumisago M 2014 Energy Environ. Sci. 7 627–31
    [6]
    Bachman J C et al 2016 Chem. Rev. 116 140–62
    [7]
    Meesala Y, Jena A, Chang H and Liu R S 2017 ACS Energy Lett. 2 2734–51
    [8]
    Zhang Z Z et al 2018 Energy Environ. Sci. 11 1945–76
    [9]
    Ohtomo T, Hayashi A, Tatsumisago M and Kawamoto K 2013 J. Mater. Sci. 48 4137–42
    [10]
    Liang J et al 2020 Chem. Mater. 32 2664–72
    [11]
    Ye L, Gil-Gonz´alez E and Li X 2021 Electrochem. Commun. 128 107058
    [12]
    Lee H, Oh P, Kim J, Cha H, Chae S, Lee S and Cho J 2019 Adv. Mater. 31 e1900376
    [13]
    Han F D, Zhu Y Z, He X F, Mo Y F and Wang C S 2016 Adv. Energy Mater. 6 1501590
    [14]
    Wenzel S, Randau S, Leichtweiss T, Weber D A, Sann J, Zeier W G and Janek J 2016 Chem. Mater. 28 2400–7
    [15]
    Zhu Y, He X and Mo Y 2015 ACS Appl. Mater. Interfaces 7 23685–93
    [16]
    Zhang Z, Chen S, Yang J, Wang J, Yao L, Yao X, Cui P and Xu X 2018 ACS Appl. Mater. Interfaces 10 2556–65
    [17]
    Wan H, Liu S, Deng T, Xu J, Zhang J, He X, Ji X, Yao X and Wang C 2021 ACS Energy Lett. 6 862–8
    [18]
    Yao X Y, Huang N, Han F D, Zhang Q, Wan H L, Mwizerwa J P, Wang C S and Xu X X 2017 Adv. Energy Mater. 7 1602923
    [19]
    Wan H, Liu G, Li Y, Weng W, Mwizerwa J P, Tian Z, Chen L and Yao X 2019 ACS Nano 13 9551–60
    [20]
    Ye L and Li X 2021 Nature 593 218–22
    [21]
    Yin J, Yao X, Peng G, Yang J, Huang Z, Liu D, Tao Y and Xu X 2015 Solid State Ion. 274 8–11
    [22]
    Shang S L, Yu Z, Wang Y, Wang D and Liu Z K 2017 ACS Appl. Mater. Interfaces 9 16261–9
    [23]
    Kimura T, Kato A, Hotehama C, Sakuda A, Hayashi A and Tatsumisago M 2019 Solid State Ion. 333 45–49
    [24]
    Calpa M, Rosero-Navarro N C, Miura A, Jalem R, Tateyama Y and Tadanaga K 2021 Appl. Mater. Today 22 100918
    [25]
    Kwon O, Hirayama M, Suzuki K, Kato Y, Saito T, Yonemura M, Kamiyama T and Kanno R 2015 J. Mater. Chem. A 3 438–46
    [26]
    Culver S P, Squires A G, Minafra N, Armstrong C W F, Krauskopf T, Bocher F, Li C, Morgan B J and Zeier W G 2020 J. Am. Chem. Soc. 142 21210–9
    [27]
    Dietrich C, Sadowski M, Sicolo S, Weber D A, Sedlmaier S J, Weldert K S, Indris S, Albe K, Janek J and Zeier W G 2016 Chem. Mater. 28 8764–73
    [28]
    Nagata H and Akimoto J 2020 ChemistrySelect 5 9926–31
    [29]
    Stamminger A R, Ziebarth B, Mrovec M, Hammerschmidt T and Drautz R 2020 RSC Adv. 10 10715–22
    [30]
    Suyama M, Yubuchi S, Deguchi M, Sakuda A, Tatsumisago M and Hayashi A 2021 J. Electrochem. Soc. 168 060542
    [31]
    Zhang H et al 2021 Angew. Chem., Int. Ed. 60 19183–90
    [32]
    Shi Y N, Zhou D, Li M Q, Wang C, Wei W, Liu G Z, Jiang M, Fan W T, Zhang Z H and Yao X Y 2021 ChemElectroChem 8 386–9
    [33]
    Niu J J, Wang M M, Cao T C, Cheng X P, Wu R, Liu H, Zhang Y F and Liu X Q 2021 Ionics 27 2445–54
    [34]
    Zheng G R et al 2020 Energy Storage Mater. 29 377–85
  • 加载中

Catalog

    Figures(1)

    Article Metrics

    Article Views(181) PDF downloads(36)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return