Citation: | Danyang Li, Junjie Wang, Miaozi Li, Biao Guo, Lan Mu, Yu Luo, Yi Xiao, Chaohuang Mai, Jian Wang, Junbiao Peng. Efficient red perovskite quantum dots light-emitting diode fabricated by inkjet printing[J]. Materials Futures, 2022, 1(1): 015301. doi: 10.1088/2752-5724/ac3568 |
Perovskite quantum dots (PeQDs) are considered potential display materials due to their high color purity, high photoluminescence quantum yield (PLQY), low cost and easy film casting. In this work, a novel electroluminescence (EL) device consisting of the interface layer of long alkyl-based oleylammonium bromide (OAmBr), which passivates the surface defects of PeQDs and adjusts the carrier transport properties, was designed. The PLQY of the OAmBr/PeQD bilayer was significantly improved. A high-performance EL device with the structure of indium tin oxide/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate/poly(bis(4-phenyl)(2,4,6-trimethylphenyl)amine)/OAmBr/PeQDs/2,2′,2′′-(1,3,5-benzinetriyl)-tris(1-phenyl-1H benzimidazole)/LiF/Al was constructed using a spin-coating method. A peak external quantum efficiency (EQE) of 16.5% at the emission wavelength of 646 nm was obtained. Furthermore, an efficient matrix EL device was fabricated using an inkjet printing method. A high-quality PeQD matrix film was obtained by introducing small amounts of polybutene into the PeQDs to improve the printing process. The EQE reached 9.6% for the matrix device with 120 pixels per inch and the same device structure as that of the spin-coating one.
[1] |
Chiba T, Hayashi Y, Ebe H, Hoshi K, Sato J, Sato S, Pu Y, Ohisa S and Kido J 2018 Nat. Photon. 12 681–7
|
[2] |
Park M H et al 2019 Adv. Funct. Mater. 29 1902017
|
[3] |
Hassan Y et al 2021 Nature 591 72–7
|
[4] |
Lin K et al 2018 Nature 562 245–8
|
[5] |
Dong Y et al 2020 Nat. Nanotechnol. 15 668–74
|
[6] |
Shen Y, Wu H, Li Y, Shen K, Gao X, Song F and Tang J 2021 Adv. Funct. Mater. 31 2103870
|
[7] |
Xiang C et al 2020 Nat. Commun. 11 1646
|
[8] |
Li D, Wang J, Li M, Xie G, Guo B, Mu L, Li H, Wang J, Yip H L and Peng J 2020 Adv. Mater. Technol. 5 2000099
|
[9] |
Li Y et al 2021 Adv. Opt. Mater. 9 2100553
|
[10] |
Hermerschmidt F, Mathies F, Schröder V R F, Rehermann C, Morales N Z, Unger E L and List-Kratochvil E J W 2020 Mater. Horiz. 7 1773–81
|
[11] |
Zheng C, Zheng X, Feng C, Ju S, Xu Z, Ye Y, Guo T and Li F 2021 Org. Electron. 93 106168
|
[12] |
Zhang J, Zhong Y, Chen L and Yang L 2020 Chem. Phys. Lett. 752 137572
|
[13] |
Chen C, Xuan T, Bai W, Zhou T, Huang F, Xie A, Wang L and Xie R 2021 Nano Energy 85 106033
|
[14] |
Yao J, Ge J, Wang K, Zhang G, Zhu B, Chen C, Zhang Q, Luo Y, Yu S and Yao H 2019 J. Am. Chem. Soc. 141 2069–79
|
[15] |
Shen X et al 2019 Nano Lett. 19 1552–9
|
[16] |
Shin Y S et al 2020 ACS Appl. Mater. Interfaces 12 31582–90
|
[17] |
Ye J, Byranvand M M, Martinez C O, Hoye R L Z, Saliba M and Polavarapu L 2021 Angew. Chem. 133 21804–28
|
[18] |
Song J, Fang T, Li J, Xu L, Zhang F, Han B, Shan Q and Zeng H 2018 Adv. Mater. 30 1805409
|
[19] |
Chiba T, Ishikawa S, Sato J, Takahashi Y, Ebe H, Ohisa S and Kido J 2020 Adv. Opt. Mater. 8 2000289
|
[20] |
Jiang C, Zhong Z, Liu B, He Z, Zou J, Wang L, Wang J, Peng J and Cao Y 2016 ACS Appl. Mater. Inter. 8 26162–8
|
[21] |
Liu Y, Li F, Xu Z, Zheng C, Guo T, Xie X, Qian L, Fu D and Yan X 2017 ACS Appl. Mater. Inter. 9 25506–12
|
[22] |
Roh H, Ko D, Shin D Y, Chang J H, Hahm D, Bae W K, Lee C, Kim J Y and Kwak J 2021 Adv. Opt. Mater. 9 2002129
|
[23] |
Cho H, Kim Y, Wolf C, Lee H and Lee T 2018 Adv. Mater. 30 1704587
|
![]() |
![]() |