Volume 2 Issue 3
August  2023
Turn off MathJax
Article Contents
Leire Meabe, Itziar Aldalur, Simon Lindberg, Mikel Arrese-Igor, Michel Armand, Maria Martinez-Ibanez, Heng Zhang. Solid-state electrolytes for safe rechargeable lithium metal batteries: a strategic view[J]. Materials Futures, 2023, 2(3): 033501. doi: 10.1088/2752-5724/accdf3
Citation: Leire Meabe, Itziar Aldalur, Simon Lindberg, Mikel Arrese-Igor, Michel Armand, Maria Martinez-Ibanez, Heng Zhang. Solid-state electrolytes for safe rechargeable lithium metal batteries: a strategic view[J]. Materials Futures, 2023, 2(3): 033501. doi: 10.1088/2752-5724/accdf3
Perspective •
OPEN ACCESS

Solid-state electrolytes for safe rechargeable lithium metal batteries: a strategic view

© 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 2, Number 3
  • Received Date: 2023-03-05
  • Accepted Date: 2023-04-10
  • Publish Date: 2023-06-30
  • Despite the efforts devoted to the identification of new electrode materials with higher specific capacities and electrolyte additives to mitigate the well-known limitations of current lithium-ion batteries, this technology is believed to have almost reached its energy density limit. It suffers also of a severe safety concern ascribed to the use of flammable liquid-based electrolytes. In this regard, solid-state electrolytes (SSEs) enabling the use of lithium metal as anode in the so-called solid-state lithium metal batteries (SSLMBs) are considered as the most desirable solution to tackle the aforementioned limitations. This emerging technology has rapidly evolved in recent years thanks to the striking advances gained in the domain of electrolyte materials, where SSEs can be classified according to their core chemistry as organic, inorganic, and hybrid/composite electrolytes. This strategic review presents a critical analysis of the design strategies reported in the field of SSEs, summarizing their main advantages and disadvantages, and providing a future perspective toward the rapid development of SSLMB technology.

  • loading
  • [1]
    Stephen N and LaRose A 2021 International Energy Outlook 2021 (available at: www.eia. gov/outlooks/ieo/) (Accessed 8 May 2023)
    [2]
    Obrovac M N, Christensen L, Le D B and Dahn J R 2007 Alloy design for lithium-ion battery anodes J. Electrochem. Soc. 154 A849
    [3]
    Feng X, Ouyang M, Liu X, Lu L, Xia Y and He X 2018 Thermal runaway mechanism of lithium ion battery for electric vehicles: a review Energy Storage Mater. 10 246–67
    [4]
    Janek J and Zeier W G 2016 A solid future for battery development Nat. Energy 1 16141
    [5]
    Armand M and Tarascon J-M 2008 Building better batteries Nature 451 652–7
    [6]
    Judez X, Eshetu G G, Li C, Rodriguez-Martinez L M, Zhang H and Armand M 2018 Opportunities for rechargeable solid-state batteries based on Li-intercalation cathodes Joule 2 2208–24
    [7]
    Eshetu G G, Judez X, Li C, Martinez-Iba˜nez M, Sánchez-Diez E, Rodriguez-Martinez L M, Zhang H and Armand M 2019 Solid electrolytes for lithium metal and future lithium-ion batteries Future Lithium-Ion Batteries (The Royal Society of Chemistry) ch 4 (https://doi. org/10.3390/batteries8020019)
    [8]
    Webpage of Blue Solutions (available at: www.blue-solutions.com/en/) (Accessed 8 May 2023)
    [9]
    Li S, Zhang S Q, Shen L, Liu Q, Ma J B, Lv W, He Y B and Yang Q H 2020 Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries Adv. Sci. 7 1903088
    [10]
    Wang H, Sheng L, Yasin G, Wang L, Xu H and He X 2020 Reviewing the current status and development of polymer electrolytes for solid-state lithium batteries Energy Storage Mater. 33 188–215
    [11]
    Xu K 2004 Nonaqueous liquid electrolytes for lithium-based rechargeable batteries Chem. Rev. 104 4303–418
    [12]
    Xu K 2014 Electrolytes and interphases in Li-ion batteries and beyond Chem. Rev. 114 11503–618
    [13]
    Zhang H, Qiao L, Kühnle H, Figgemeier E, Armand M and Eshetu G G 2023 From lithium to emerging mono- and multivalent-cation-based rechargeable batteries: non-aqueous organic electrolyte and interphase perspectives Energy Environ. Sci. 16 11–52
    [14]
    Zhang Z and Nazar L F 2022 Exploiting the paddle-wheel mechanism for the design of fast ion conductors Nat. Rev. Mater. 7 389–405
    [15]
    Cazorla C 2019 Refrigeration based on plastic crystals Nature 567 470–1
    [16]
    Ratner M A and Shriver D F 1988 Ion transport in solvent-free polymers Chem. Rev. 88 109–24
    [17]
    Wang C et al 2020 Garnet-type solid-state electrolytes: materials, interfaces, and batteries Chem. Rev. 120 4257–300
    [18]
    Zou Z et al 2020 Mobile ions in composite solids Chem. Rev. 120 4169–221
    [19]
    Wang X, Zhu H, Greene G W, Zhou Y, Yoshizawa-fujita M, Miyachi Y, Armand M, Forsyth M, Pringle J M and Howlett P C 2017 Organic ionic plastic crystal-based composite electrolyte with surface enhanced ion transport and its use in all-solid-state lithium batteries Adv. Mater. Technol. 2 1700046
    [20]
    Wang X, Kerr R, Chen F, Goujon N, Pringle J M, Mecerreyes D, Forsyth M and Howlett P C 2020 Toward high-energy-density lithium metal batteries: opportunities and challenges for solid organic electrolytes Adv. Mater. 32 1905219
    [21]
    Yunis R, Al-Masri D, Hollenkamp A F, Doherty C M, Zhu H and Pringle J M 2020 Plastic crystals utilising small ammonium cations and sulfonylimide anions as electrolytes for lithium batteries J. Electrochem. Soc. 167 070529
    [22]
    Tlmmermans K 1961 (Solids Pergamon Press)
    [23]
    MacFarlane D R et al 2016 Ionic liquids and their solid-state analogues as materials for energy generation and storage Nat. Rev. Mater. 1 15005
    [24]
    Basile A, Hilder M, Makhlooghiazad F, Pozo-gonzalo C, MacFarlane D R, Howlett P C and Forsyth M 2018 Ionic liquids and organic ionic plastic crystals: advanced electrolytes for safer high performance sodium energy storage technologies Adv. Energy Mater. 8 1703491
    [25]
    Zhu H, MacFarlane D R, Pringle J M and Forsyth M 2019 Organic ionic plastic crystals as solid-state electrolytes Trends Chem. 1 126–40
    [26]
    Zhou H, Xie J, Bao L, Qiao S, Sui J and Wang J 2022 Poly(carbonate)-based ionic plastic crystal fast ion-conductor for solid-state rechargeable lithium batteries J. Energy Chem. 73 360–9
    [27]
    Dong Y, Ding T and Fan L-Z 2017 A free-standing and thermostable polymer/plastic crystal electrolyte for all-solid-state lithium batteries Ionics 23 3339–45
    [28]
    Wang A, Geng S, Zhao Z, Hu Z and Luo J 2022 In situ cross-linked plastic crystal electrolytes for wide-temperature and high-energy-density lithium metal batteries Adv. Funct. Mater. 32 2201861
    [29]
    Alarco P-J, Abu-Lebdeh Y, Abouimrane A and Armand M 2004 The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors Nat. Mater. 3 476–81
    [30]
    Liu Y, Zhao Y, Lu W, Sun L, Lin L, Zheng M, Sun X and Xie H 2021 PEO based polymer in plastic crystal electrolytes for room temperature high-voltage lithium metal batteries Nano Energy 88 106205
    [31]
    Lee M J, Han J, Lee K, Lee Y J, Kim B G, Jung K-N, Kim B J and Lee S W 2022 Elastomeric electrolytes for high-energy solid-state lithium batteries Nature 601 217–22
    [32]
    Forsyth M, Porcarelli L, Wang X, Goujon N and Mecerreyes D 2019 Innovative electrolytes based on ionic liquids and polymers for next-generation solid-state batteries Acc. Chem. Res. 52 686–94
    [33]
    Warrington A et al 2022 Thermal, structural and dynamic properties of ionic liquids and organic ionic plastic crystals with a small ether-functionalised cation Mater. Chem. Front. 6 1437–55
    [34]
    Park H, Park C B and Sung B J 2021 The effects of vacancies and their mobility on the dynamic heterogeneity in 1,3-dimethylimidazolium hexafluorophosphate organic ionic plastic crystals Phys. Chem. Chem. Phys. 23 11980–9
    [35]
    Zhu H, Wang X, Vijayaraghava R, Zhou Y, Macfarlane D R and Forsyth M 2018 Structure and ion dynamics in imidazolium-based protic organic ionic plastic crystals J. Phys. Chem. Lett. 9 3904–9
    [36]
    Abeysooriya S, Lee M, O’Dell L A and Pringle J M 2022 Plastic crystal-based electrolytes using novel dicationic salts Phys. Chem. Chem. Phys. 24 4899–909
    [37]
    Yamada H, Miyachi Y, Takeoka Y, Rikukawa M and Yoshizawa-Fujita M 2019 Pyrrolidinium-based organic ionic plastic crystals: relationship between side chain length and properties Electrochim. Acta 303 293–8
    [38]
    Sirigiri N, Chen F, Forsyth C M, Yunis R, O’Dell L, Pringle J M and Forsyth M 2022 Factors controlling the physical properties of an organic ionic plastic crystal Mater. Today Phys. 22 100603
    [39]
    Li S, Yang K, Zhang Z, Yang L and Hirano S-I 2018 Organic ionic plastic crystal-poly(ethylene oxide) solid polymer electrolytes: application in all-solid-state lithium batteries Ind. Eng. Chem. Res. 57 13608–14
    [40]
    Fang Z, Zhao M, Peng Y and Guan S 2021 Organic ionic plastic crystal enhanced interface compatibility of PEO-based solid polymer electrolytes for lithium-metal batteries Solid State Ion. 373 115806
    [41]
    Wang W, Fang Z, Zhao M, Peng Y, Zhang J and Guan S 2020 Solid polymer electrolytes based on the composite of PEO–LiFSI and organic ionic plastic crystal Chem. Phys. Lett. 747 137335
    [42]
    Iranipour N, Gunzelmann D J, Seeber A J, Vongsvivut J, Hollenkamp A F, Forsyth M and Howlett P C 2017 Effect of secondary phase on thermal behaviour and solid-state ion conduction in lithium doped N-ethyl-N-methylpyrrolidinium tetrafluoroborate organic ionic plastic crystal J. Mater. Chem. A 5 24909–19
    [43]
    Zhou Y, Wang X, Zhu H, Armand M, Forsyth M, Greene G W, Pringle L M and Howlett P C 2017 N-ethyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide-electrospun polyvinylidene fluoride composite electrolytes: characterization and lithium cell studies Phys. Chem. Chem. Phys. 19 2225–34
    [44]
    Al-Masri D, Yunis R, Hollenkamp A F and Pringle J M 2020 Designing solid-state electrolytes through the structural modification of a high-performing ionic liquid ChemElectroChem. 7 4118–23
    [45]
    Al-Masri D, Yunis R, Zhu H, Jin L, Bruce P, Hollenkamp A F and Pringle J M 2019 A new approach to very high lithium salt content quasi-solid state electrolytes for lithium metal batteries using plastic crystals J. Mater. Chem. A 7 25389–98
    [46]
    Biernacka K, Al-Masri D, Yunis R, Zhu H, Hollenkamp A F and Pringle J M 2020 Development of new solid-state electrolytes based on a hexamethylguanidinium plastic crystal and lithium salts Electrochim. Acta 357 136863
    [47]
    Jin L, Howlett P C, Pringle J M, Janikowski J, Armand M, MacFarlane D R and Forsyth M 2014 An organic ionic plastic crystal electrolyte for rate capability and stability of ambient temperature lithium batteries Energy Environ. Sci. 7 3352–61
    [48]
    Zhou Y, Wang X, Zhu H, Greene G W, Armand M, Forsyth M, Pringle K M and Howlett P C 2021 Phase behavior and electrochemical properties of solid lithium electrolytes based on N-ethyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide and PVdF composites Solid State Ion. 363 115588
    [49]
    Yang K, Zhang Z, Liao Z, Yang L and Hirano S-I 2018 Organic ionic plastic crystal-polymer solid electrolytes with high ionic conductivity and mechanical ability for solid-state lithium ion batteries ChemistrySelect 3 12595–9
    [50]
    Zhou Y, Wang X, Zhu H, Yoshizawa-Fujita M, Miyachi Y, Armand M, Forsyth M, Greene G W, Pringle J M and Howlett P C 2017 Solid-state lithium conductors for lithium metal batteries based on electrospun nanofiber/plastic crystal composites ChemSusChem 10 3135–45
    [51]
    Rao J, Vijayaraghavan R, Wang X, Zhou Y, Howlett P C, Macfarlane D R, Forsyth M and Zhu H 2018 Influence of electrospun poly(vinylidene difluoride) nanofiber matrix on the ion dynamics of a protic organic ionic plastic crystal J. Phys. Chem C 122 14546–53
    [52]
    Nti F, Greene G W, Zhu H, Howlett P C, Forsyth M and Wang X 2021 Anion effects on the properties of OIPC/PVDF composites Mater. Adv. 2 1683–94
    [53]
    Nti F, Porcarelli L, Greene G W, Zhu H, Makhlooghiazad F, Mecerreyes D, Howlett P C, Forsyth M and Wang X 2020 The influence of interfacial interactions on the conductivity and phase behaviour of organic ionic plastic crystal/polymer nanoparticle composite electrolytes J. Mater. Chem. A 8 5350–62
    [54]
    Zhang H et al 2019 Enhanced lithium-ion conductivity of polymer electrolytes by selective introduction of hydrogen into the anion Angew. Chem., Int. Ed. Engl. 58 7829–34
    [55]
    Hei Z, Wu S, Zheng H, Liu H and Duan H 2022 Increasing the electrochemical stability window for polyethylene-oxide-based solid polymer electrolytes by understanding the affecting factors Solid State Ion. 375 115837
    [56]
    Burjanadze M et al 2010 Salt-in-polymer electrolytes for lithium ion batteries based on organo-functionalized polyphosphazenes and polysiloxanes Z. Phys. Chem. 224 1439–73
    [57]
    Hu P, Chai J, Duan Y, Liu Z, Cui G and Chen L 2016 Progress in nitrile-based polymer electrolytes for high performance lithium batteries J. Mater. Chem. A 4 10070–83
    [58]
    Mindemark J, Sun B, Törmä E and Brandell D 2015 High-performance solid polymer electrolytes for lithium batteries operational at ambient temperature J. Power Sources 298 166–70
    [59]
    Mindemark J, Lacey M J, Bowden T and Brandell D 2018 Beyond PEO—alternative host materials for Li+-conducting solid polymer electrolytes Prog. Polym. Sci. 81 114–43
    [60]
    Eriksson T, Mindemark J, Yue M and Brandell D 2019 Effects of nanoparticle addition to poly(ε-caprolactone) electrolytes: crystallinity, conductivity and ambient temperature battery cycling Electrochim. Acta 300 489–96
    [61]
    Commarieu B, Paolella A, Collin-Martin S, Gagnon C, Vijh A, Guerfi A and Zaghib K 2019 Solid-to-liquid transition of polycarbonate solid electrolytes in Li-metal batteries J. Power Sources 436 226852
    [62]
    Aldalur I, Zhang H, Piszcz M, Oteo U, Rodriguez-Martinez L M, Shanmukaraj D, Rojo T and Armand M 2017 Jeffamine® based polymers as highly conductive polymer electrolytes and cathode binder materials for battery application J. Power Sources 347 37–46
    [63]
    Aldalur I, Martinez-Iba˜nez M, Piszcz M, Rodriguez-Martinez L M, Zhang H and Armand M 2018 Lowering the operational temperature of all-solid-state lithium polymer cell with highly conductive and interfacially robust solid polymer electrolytes J. Power Sources 383 144–9
    [64]
    Aldalur I, Martinez-Iba˜nez M, Krzto´n-Maziopa A, Piszcz M, Armand M and Zhang H 2019 Flowable polymer electrolytes for lithium metal batteries J. Power Sources 423 218–26
    [65]
    Aldalur I, Martinez-iba˜nez M, Piszcz M, Zhang H and Armand M 2018 Self-standing highly conductive solid electrolytes based on block copolymers for rechargeable all-solid-state lithium-metal batteries Batter. Supercaps 1 149–59
    [66]
    Aldalur I et al 2020 Nanofiber-reinforced polymer electrolytes toward room temperature solid-state lithium batteries J. Power Sources 448 227424
    [67]
    Arrese-Igor M, Martinez-Iba˜nez M, Pavlenko E, Forsyth M, Zhu H, Armand M, Aguesse F and López-Aranguren P 2022 Toward high-voltage solid-state li-metal batteries with double-layer polymer electrolytes ACS Energy Lett. 7 1473–80
    [68]
    Zhang J et al 2015 Safety-reinforced poly(propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries Adv. Energy Mater. 5 1501082
    [69]
    Wang C, Zhang H, Li J, Chai J, Dong S and Cui G 2018 The interfacial evolution between polycarbonate-based polymer electrolyte and Li-metal anode J. Power Sources 397 157–61
    [70]
    Meabe L, Pe˜na S R, Martinez-Iba˜nez M, Zhang Y, Lobato E, Manzano H, Armand M, Carrasco J and Zhang H 2020 Insight into the ionic transport of solid polymer electrolytes in polyether and polyester blends J. Phys. Chem. C 124 17981–91
    [71]
    Arrese-Igor M, Martinez-Iba˜nez M, López Del Amo J M, Sanchez-Diez E, Shanmukaraj D, Dumont E, Armand M, Aguesse F and López-Aranguren P 2022 Enabling double layer polymer electrolyte batteries: overcoming the Li-salt interdiffusion Energy Storage Mater. 45 578–85
    [72]
    Arrese-Igor M, Martinez-Iba˜nez M, Orue A, Pavlenko E, Dumont E, Armand M, Aguesse F and López-Aranguren P 2022 Influence of the operating temperature on the ageing and interfaces of double layer polymer electrolyte solid state Li metal batteries Nano Res. 1998–0124
    [73]
    Porcarelli L, Shaplov A S, Salsamendi M, Nair J R, Vygodskii Y S, Mecerreyes D and Gerbaldi C 2016 Single-ion block copoly(ionic liquid)s as electrolytes for all-solid state lithium batteries ACS Appl. Mater. Interfaces 8 10350–9
    [74]
    Porcarelli L, Aboudzadeh M A, Rubatat L, Nair J R, Shaplov A S, Gerbaldi C and Mecerreyes D 2017 Single-ion triblock copolymer electrolytes based on poly(ethylene oxide) and methacrylic sulfonamide blocks for lithium metal batteries J. Power Sources 364 191–9
    [75]
    Mindemark J, Törmä E, Sun B and Brandell D 2015 Copolymers of trimethylene carbonate and ε-caprolactone as electrolytes for lithium-ion batteries Polymer 63 91–98
    [76]
    Johansson I L, Brandell D and Mindemark J 2020 Mechanically stable UV-crosslinked polyester-polycarbonate solid polymer electrolyte for high-temperature batteries Batter. Supercaps 3 527–33
    [77]
    Luo Y, Li X, Zhang Y, Ge L, Chen H and Guo L 2019 Electrochemical properties and structural stability of Ga- and Y- co-doping in Li7La3Zr2O12 ceramic electrolytes for lithium-ion batteries Electrochim. Acta 294 217–25
    [78]
    Ohta S, Kobayashi T, Seki J and Asaoka T 2012 Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte J. Power Sources 202 332–5
    [79]
    Shao Y et al 2018 Drawing a soft interface: an effective interfacial modification strategy for garnet-type solid-state Li batteries ACS Energy Lett. 3 1212–8
    [80]
    Zhang W, Nie J, Li F, Wang Z L and Sun C 2018 A durable and safe solid-state lithium battery with a hybrid electrolyte membrane Nano Energy 45 413–9
    [81]
    Zhou L, Kwok C Y, Shyamsunder A, Zhang Q, Wu X and Nazar L F 2020 A new halospinel superionic conductor for high-voltage all solid state lithium batteries Energy Environ. Sci. 13 2056–63
    [82]
    Kwak H et al 2021 New cost-effective halide solid electrolytes for all-solid-state batteries: mechanochemically prepared Fe3+-Substituted Li2ZrCl5 Adv. Energy Mater. 11 2003190
    [83]
    Liu Z, Ma S, Liu J, Xiong S, Ma Y and Chen H 2021 High ionic conductivity achieved in Li3Y(Br3Cl3) mixed halide solid electrolyte via promoted diffusion pathways and enhanced grain boundary ACS Energy Lett. 6 298–304
    [84]
    Cronk A et al 2023 Overcoming the interfacial challenges of LiFePO4 in inorganic all-solid-state batteries ACS Energy Lett. 8 827–35
    [85]
    Zhou L, Assoud A, Zhang Q, Wu X and Nazar L F 2019 New family of argyrodite thioantimonate lithium superionic conductors J. Am. Chem. Soc. 141 19002–13
    [86]
    Kamaya N et al 2011 A lithium superionic conductor Nat. Mater. 10 682–6
    [87]
    Zhang J, Zhong H, Zheng C, Xia Y, Liang C, Huang H, Gan Y, Tao X and Zhang W 2018 All-solid-state batteries with slurry coated LiNi0.8Co0.1Mn0.1O2 composite cathode and Li6PSCl electrolyte: effect of binder content J. Power Sources 391 73–79
    [88]
    Okada K, Machida N, Naito M, Shigematsu T, Ito S, Fujiki S, Nakano M and Aihara Y 2014 Preparation and electrochemical properties of LiAlO2-coated Li(Ni1/3Mn1/3Co1/3)O2 for all-solid-state batteries Solid State Ion. 255 120–7
    [89]
    DeWees R and Wang H 2019 Synthesis and properties of NaSICON-type LATP and LAGP solid electrolytes ChemSusChem 12 3713–25
    [90]
    Xu X, Wen Z, Yang X and Chen L 2008 Dense nanostructured solid electrolyte with high Li-ion conductivity by spark plasma sintering technique Mater. Res. Bull. 43 2334–41
    [91]
    Benabed Y, Rioux M, Rousselot S, Hautier G and Dollé M 2021 Assessing the electrochemical stability window of NASICON-type solid electrolytes Front. Energy Res. 9 682008
    [92]
    Zheng F, Kotobuki M, Song S, Lai M O and Lu L 2018 Review on solid electrolytes for all-solid-state lithium-ion batteries J. Power Sources 389 198–213
    [93]
    Ohta S, Kobayashi T and Asaoka T 2011 High lithium ionic conductivity in the garnet-type oxide Li7-X La3(Zr2-X, NbX)O12 (X = 0–2) J. Power Sources 196 3342–5
    [94]
    Murugan R, Thangadurai V and Weppner W 2007 Fast lithium ion conduction in garnet-type Li7La 3Zr2O12 Angew. Chem., Int. Ed. 46 7778–81
    [95]
    Wang Y, Wu Y, Wang Z, Chen L, Li H and Wu F 2022 Doping strategy and mechanism for oxide and sulfide solid electrolytes with high ionic conductivity J. Mater. Chem. A 10 4517–32
    [96]
    Thangadurai V and Weppner W 2006 Recent progress in solid oxide and lithium ion conducting electrolytes research Ionics 12 81–92
    [97]
    Kim K J, Balaish M, Wadaguchi M, Kong L and Rupp J L M 2021 Solid-state Li–metal batteries: challenges and horizons of oxide and sulfide solid electrolytes and their interfaces Adv. Energy Mater. 11 2002689
    [98]
    Monroe C and Newman J 2005 The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces J. Electrochem. Soc. 152 A396
    [99]
    Golozar M, Paolella A, Demers H, Savoie S, Girard G, Delaporte N, Gauvin R, Guerfi A, Lorrmann H and Zaghib K 2020 Direct observation of lithium metal dendrites with ceramic solid electrolyte Sci. Rep. 10 18410
    [100]
    Wu J, Liu S, Han F, Yao X and Wang C 2021 Lithium/sulfide all-solid-state batteries using sulfide electrolytes Adv. Mater. 33 2000751
    [101]
    Zhou L, Minafra N, Zeier W G and Nazar L F 2021 Innovative approaches to Li-argyrodite solid electrolytes for all-solid-state lithium batteries Acc. Chem. Res. 54 2717–28
    [102]
    Lian P J, Zhao B S, Zhang L Q, Xu N, Wu M T and Gao X P 2019 Inorganic sulfide solid electrolytes for all-solid-state lithium secondary batteries J. Mater. Chem. A 7 20540–57
    [103]
    Lau J, DeBlock R H, Butts D M, Ashby D S, Choi C S and Dunn B S 2018 Sulfide solid electrolytes for lithium battery applications Adv. Energy Mater. 8 1800933
    [104]
    Wang S, Fang R, Li Y, Liu Y, Xin C, Richter F H and Nan C-W 2021 Interfacial challenges for all-solid-state batteries based on sulfide solid electrolytes J. Materiomics 7 209–18
    [105]
    Wang C, Liang J, Kim J T and Sun X 2022 Prospects of halide-based all-solid-state batteries: from material design to practical application Sci Adv. 8
    [106]
    Combs S R, Todd P K, Gorai P and Maughan A E 2022 Editors’ choice—review—designing defects and diffusion through substitutions in metal halide solid electrolytes J. Electrochem. Soc. 169 040551
    [107]
    Asano T, Sakai A, Ouchi S, Sakaida M, Miyazaki A and Hasegawa S 2018 Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries Adv. Mater. 30 1803075
    [108]
    Boaretto N, Garbayo I, Valiyaveettil-sobhanraj S, Quintela A, Li C, Casas-Cabanas M and Aguesse F 2021 Lithium solid-state batteries: state-of-the-art and challenges for materials, interfaces and processing J. Power Sources 502 229919
    [109]
    Balaish M, Gonzalez-Rosillo J C, Kim K J, Zhu Y, Hood Z D and Rupp J L M 2021 Processing thin but robust electrolytes for solid-state batteries Nat. Energy 6 227–39
    [110]
    López-Aranguren P, Reynaud M, Głuchowski P, Bustinza A, Galceran M, López Del Amo J M, Armand M and Casas-Cabanas M 2021 Crystalline LiPON as a bulk-type solid electrolyte ACS Energy Lett. 6 445–50
    [111]
    Manthiram A, Yu X and Wang S 2017 Lithium battery chemistries enabled by solid-state electrolytes Nat. Rev. Mater. 2 16103
    [112]
    Reddy M V, Julien C M, Mauger A and Zaghib K 2019 Sulfide and oxide inorganic solid electrolytes for all-solid-state li batteries: a review Nanomaterials 10 1–80
    [113]
    Campanella D, Belanger D and Paolella A 2021 Beyond garnets, phosphates and phosphosulfides solid electrolytes: new ceramic perspectives for all solid lithium metal batteries J. Power Sources 482 228949
    [114]
    Yan Y, Kühnel R-S, Remhof A, Duchˆene L, Reyes E C, Rentsch D, Łodziana Z and Battaglia C 2017 A lithium amide-borohydride solid-state electrolyte with lithium-ion conductivities comparable to liquid electrolytes Adv. Energy Mater. 7 1700294
    [115]
    Yamauchi A, Sakuda A, Hayashi A and Tatsumisago M 2013 Preparation and ionic conductivities of (100−X)(0.75Li2S·0.25P2S5)· xLiBH4 glass electrolytes J. Power Sources 244 707–10
    [116]
    Subramanian K, Alexander G V, Karthik K, Patra S, Indu M S, Sreejith O V, Viswanathan R, Narayanasamy J and Murugan R 2021 A brief review of recent advances in garnet structured solid electrolyte based lithium metal batteries J. Energy Storage 33 102157
    [117]
    Thokchom J S and Kumar B 2010 The effects of crystallization parameters on the ionic conductivity of a lithium aluminum germanium phosphate glass-ceramic J. Power Sources 195 2870–6
    [118]
    Fincher C D, Athanasiou C E, Gilgenbach C, Wang M, Sheldon B W, Carter W C and Chiang Y-M 2022 Controlling dendrite propagation in solid-state batteries with engineered stress Joule 6 2794–809
    [119]
    Wu J, Shen L, Zhang Z, Liu G, Wang Z, Zhou D, Wan H, Xu X and Yao X 2021 All-solid-state lithium batteries with sulfide electrolytes and oxide cathodes Electrochem. Energy Rev. 4 101–35
    [120]
    Yu T, Yang X, Yang R, Bai X, Xu G, Zhao S, Duan Y, Wu Y and Wang J 2021 Progress and perspectives on typical inorganic solid-state electrolytes J. Alloys Compd. 885 161013
    [121]
    Liu H, He P, Wang G, Liang Y, Wang C and Fan L-Z 2022 Thin, flexible sulfide-based electrolyte film and its interface engineering for high performance solid-state lithium metal batteries J. Chem. Eng. 430 132991
    [122]
    Keller M, Varzi A and Passerini S 2018 Hybrid electrolytes for lithium metal batteries J. Power Sources 392 206–25
    [123]
    Boaretto N, Meabe L, Martinez-Iba˜nez M, Armand M and Zhang H 2020 Review—polymer electrolytes for rechargeable batteries: from nanocomposite to nanohybrid J. Electrochem. Soc. 167 070524
    [124]
    Croce F, Settimi L and Scrosati B 2006 Superacid ZrO2-added, composite polymer electrolytes with improved transport properties Electrochem. Commun. 8 364–8
    [125]
    Dissanayake M A K L, Jayathilaka P A R D, Bokalawala R S P, Albinsson I and Mellander B E 2003 Effect of concentration and grain size of alumina filler on the ionic conductivity enhancement of the (PEO)9LiCF3SO3: al2O3 composite polymer electrolyte J. Power Sources 119–121 409–14
    [126]
    Jiang G, Maeda S, Yang H, Saito Y, Tanase S and Sakai T 2005 All solid-state lithium-polymer battery using poly(urethane acrylate)/nano-SiO2 composite electrolytes J. Power Sources 141 143–8
    [127]
    Chung S H, Wang Y, Persi L, Croce F, Greenbaum S G, Scrosati B and Plichta E 2001 Enhancement of ion transport in polymer electrolytes by addition of nanoscale inorganic oxides J. Power Sources 97–98 644–8
    [128]
    Croce F, Persi L, Scrosati B, Serraino-Fiory F, Plichta E and Hendrickson M A 2001 Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes Electrochim. Acta. 46 2457–61
    [129]
    Kalnaus S, Tenhaeff W E, Sakamoto J, Sabau A S, Daniel C and Dudney N J 2013 Analysis of composite electrolytes with sintered reinforcement structure for energy storage applications J. Power Sources 241 178–85
    [130]
    Zagórski J, López Del Amo J M, Cordill M J, Aguesse F, Buannic L and Llordés A 2019 Garnet-polymer composite electrolytes: new insights on local li-ion dynamics and electrodeposition stability with Li metal anodes ACS Appl. Energy Mater. 2 1734–46
    [131]
    Keller M, Appetecchi G B, Kim G-T, Sharova V, Schneider M, Schuhmacher J, Roters A and Passerini S 2017 Electrochemical performance of a solvent-free hybrid ceramic-polymer electrolyte based on Li7La3Zr2O12 in P(EO) 15LiTFSI J. Power Sources 353 287–97
    [132]
    Chen R, Qu W, Guo X, Li L and Wu F 2016 The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons Mater. Horiz. 3 487–516
    [133]
    Jung Y C, Lee S M, Choi J H, Jang S S and Kim D W 2015 All solid-state lithium batteries assembled with hybrid solid electrolytes J. Electrochem. Soc. 162 A1236–45
    [134]
    López-Aranguren P, Judez X, Chakir M, Armand M and Buannic L 2020 High voltage solid state batteries: targeting high energy density with polymer composite electrolytes J. Electrochem. Soc. 167 020548
    [135]
    Wang C, Yang Y, Liu X, Zhong H, Xu H, Xu Z, Shao H and Ding F 2017 Suppression of lithium dendrite formation by using LAGP-PEO (LiTFSI) composite solid electrolyte and lithium metal anode modified by PEO (LiTFSI) in all-solid-state lithium batteries ACS Appl. Mater. Interfaces 9 13694–702
    [136]
    Wang X et al 2019 Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanoparticle/polymer composite electrolyte Nano Energy 60 205–12
    [137]
    Yu G, Wang Y, Li K, Sun S, Sun S, Chen J, Pan L and Sun Z M 2022 Plasma optimized Li7La3Zr2O12 with vertically aligned ion diffusion pathways in composite polymer electrolyte for stable solid-state lithium metal batteries J. Chem. Eng. 430 132874
    [138]
    Zhang X, Xie J, Shi F, Lin D, Liu Y, Liu W, Xiang Y and Cui Y 2018 Vertically aligned and continuous nanoscale ceramic-polymer interfaces in composite solid polymer electrolytes for enhanced ionic conductivity Nano Lett. 18 3829–38
    [139]
    Li Y, Zhai Y, Xu S, Tang M, Zhang S and Zou Z 2022 Using LLTO with vertically aligned and oriented structures to improve the ion conductivity of composite solid-state electrolytes Mater. Today Commun. 33 104243
    [140]
    Zhai H, Xu P, Ning M, Cheng Q, Mandal J and Yang Y 2017 Composite electrolyte with vertically aligned and connected ion-conducting nanoparticles for lithium batteries Nano Lett. 17 3182–7
    [141]
    Li Y, Tang M, Xu S, Zhang S, Zhai Y, Yin J and Zou Z 2022 Enhanced ionic conductivity of composite solid electrolyte by directionally ordered structures of linear Li1.3Al0.3Ti1.7(PO4)3 J. Ind. Eng. Chem. 114 126–33
    [142]
    Zha W, Li W, Ruan Y, Wang J and Wen Z 2021 In situ fabricated ceramic/polymer hybrid electrolyte with vertically aligned structure for solid-state lithium batteries Energy Storage Mater. 36 171–8
    [143]
    Liu W, Liu N, Sun J, Hsu P-C, Li Y, Lee H-W and Cui Y 2015 Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers Nano Lett. 15 2740–5
    [144]
    Liu W, Lee S W, Lin D, Shi F, Wang S, Sendek A D and Cui Y 2017 Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires Nat. Energy 2 17035
    [145]
    Tan D H S, Meng Y S and Jang J 2022 Scaling up high-energy-density sulfidic solid-state batteries: a lab-to-pilot perspective Joule 6 1755–69
  • mfacdd86supp1.pdf
  • 加载中

Catalog

    Figures(1)

    Article Metrics

    Article Views(366) PDF downloads(70)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return