Volume 2 Issue 2
May  2023
Turn off MathJax
Article Contents
Xue Chen, Bingkun Chen, Pengfei Zhao, Vellaisamy A L Roy, Su-Ting Han, Ye Zhou. Nanowire-based synaptic devices for neuromorphic computing[J]. Materials Futures, 2023, 2(2): 023501. doi: 10.1088/2752-5724/acc678
Citation: Xue Chen, Bingkun Chen, Pengfei Zhao, Vellaisamy A L Roy, Su-Ting Han, Ye Zhou. Nanowire-based synaptic devices for neuromorphic computing[J]. Materials Futures, 2023, 2(2): 023501. doi: 10.1088/2752-5724/acc678
Perspective •
OPEN ACCESS

Nanowire-based synaptic devices for neuromorphic computing

© 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 2, Number 2
  • Received Date: 2023-02-23
  • Accepted Date: 2023-03-21
  • Rev Recd Date: 2023-03-17
  • Publish Date: 2023-05-09
  • The traditional von Neumann structure computers cannot meet the demands of high-speed big data processing; therefore, neuromorphic computing has received a lot of interest in recent years. Brain-inspired neuromorphic computing has the advantages of low power consumption, high speed and high accuracy. In human brains, the data transmission and processing are realized through synapses. Artificial synaptic devices can be adopted to mimic the biological synaptic functionalities. Nanowire (NW) is an important building block for nanoelectronics and optoelectronics, and many efforts have been made to promote the application of NW-based synaptic devices for neuromorphic computing. Here, we will introduce the current progress of NW-based synaptic memristors and synaptic transistors. The applications of NW-based synaptic devices for neuromorphic computing will be discussed. The challenges faced by NW-based synaptic devices will be proposed. We hope this perspective will be beneficial for the application of NW-based synaptic devices in neuromorphic systems.
  • loading
  • [1]
    Merolla P A, et al 2014 A million spiking-neuron integrated circuit with a scalable communication network and interface Science 345 668-73 doi: 10.1126/science.1254642
    [2]
    Zidan M A, Strachan J P, Lu W D 2018 The future of electronics based on memristive systems Nat. Electron. 1 22-29 doi: 10.1038/s41928-017-0006-8
    [3]
    Liu C, Yan X, Song X, Ding S, Zhang D W, Zhou P 2018 A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications Nat. Nanotechnol. 13 404-10 doi: 10.1038/s41565-018-0102-6
    [4]
    Manipatruni S, Nikonov D E, Young I A 2018 Beyond CMOS computing with spin and polarization Nat. Phys. 14 338-43 doi: 10.1038/s41567-018-0101-4
    [5]
    Xia Q, Yang J J 2019 Memristive crossbar arrays for brain-inspired computing Nat. Mater. 18 309-23 doi: 10.1038/s41563-019-0291-x
    [6]
    Yang R, Huang H M, Guo X 2019 Memristive synapses and neurons for bioinspired computing Adv. Electron. Mater. 5 1900287 doi: 10.1002/aelm.201900287
    [7]
    Sun W, Gao B, Chi M, Xia Q, Yang J J, Qian H, Wu H 2019 Understanding memristive switching via in situ characterization and device modeling Nat. Commun. 10 3453 doi: 10.1038/s41467-019-11411-6
    [8]
    Van de Burgt Y, Lubberman E, Fuller E J, Keene S T, Faria G C, Agarwal S, Marinella M J, Alec Talin A, Salleo A 2017 A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing Nat. Mater. 16 414-8 doi: 10.1038/nmat4856
    [9]
    Schneider M L, Donnelly C A, Russek S E, Baek B, Pufall M R, Hopkins P F, Dresselhaus P D, Benz S P, Rippard W H 2018 Ultralow power artificial synapses using nanotextured magnetic Josephson junctions Sci. Adv. 4 e1701329 doi: 10.1126/sciadv.1701329
    [10]
    Wang X, Lu W, Wei P, Qin Z, Qiao N, Qin X, Zhang M, Zhu Y, Bu L, Lu G 2022 Artificial tactile recognition enabled by flexible low-voltage organic transistors and low-power synaptic electronics ACS Appl. Mater. Interfaces 14 48948-59 doi: 10.1021/acsami.2c14625
    [11]
    Wang Z, et al 2018 Fully memristive neural networks for pattern classification with unsupervised learning Nat. Electron. 1 137-45 doi: 10.1038/s41928-018-0023-2
    [12]
    Tian H, Guo Q, Xie Y, Zhao H, Li C, Cha J J, Xia F, Wang H 2016 Anisotropic black phosphorus synaptic device for neuromorphic applications Adv. Mater. 28 4991-7 doi: 10.1002/adma.201600166
    [13]
    Zhao H, et al 2017 Atomically thin femtojoule memristive device Adv. Mater. 29 1703232 doi: 10.1002/adma.201703232
    [14]
    Hadiyawarman, Budiman F, Hernowo D G O, Pandey R R, Tanaka H 2018 Recent progress on fabrication of memristor and transistor-based neuromorphic devices for high signal processing speed with low power consumption Jpn. J. Appl. Phys. 57 03EA06 doi: 10.7567/JJAP.57.03EA06
    [15]
    Rachmuth G, Shouval Harel Z, Bear Mark F, Poon C S 2011 A biophysically-based neuromorphic model of spike rate- and timing-dependent plasticity Proc. Natl Acad. Sci. 108 E1266-74 doi: 10.1073/pnas.1106161108
    [16]
    Huang W, Xia X, Zhu C, Steichen P, Quan W, Mao W, Yang J, Chu L, Li X A 2021 Memristive artificial synapses for neuromorphic computing Nano-Micro Lett. 13 85 doi: 10.1007/s40820-021-00618-2
    [17]
    He H K, Yang R, Zhou W, Huang H M, Xiong J, Gan L, Zhai T Y, Guo X 2018 Photonic potentiation and electric habituation in ultrathin memristive synapses based on monolayer MoS2 Small 14 1800079 doi: 10.1002/smll.201800079
    [18]
    Gao S, Liu G, Yang H, Hu C, Chen Q, Gong G, Xue W, Yi X, Shang J, Li R W 2019 An oxide Schottky junction artificial optoelectronic synapse ACS Nano 13 2634-42 doi: 10.1021/acsnano.9b00340
    [19]
    Ni Y, Zhang S, Sun L, Liu L, Wei H, Xu Z, Xu W, Xu W 2021 A low-dimensional hybrid p-i-n heterojunction neuromorphic transistor with ultra-high UV sensitivity and immediate switchable plasticity Appl. Mater. Today 25 101223 doi: 10.1016/j.apmt.2021.101223
    [20]
    Li X, Yu B, Wang B, Bi R, Li H, Tu K, Chen G, Li Z, Huang R, Li M 2021 Complementary photo-synapses based on light-stimulated porphyrin-coated silicon nanowires field-effect transistors (LPSNFET) Small 17 2101434 doi: 10.1002/smll.202101434
    [21]
    Sun C, Liu X, Jiang Q, Ye X, Zhu X, Li R W 2023 Emerging electrolyte-gated transistors for neuromorphic perception Sci. Technol. Adv. Mater. 24 2162325 doi: 10.1080/14686996.2022.2162325
    [22]
    Liang K, et al 2022 Fully printed optoelectronic synaptic transistors based on quantum dot-metal oxide semiconductor heterojunctions ACS Nano 16 8651-61 doi: 10.1021/acsnano.2c00439
    [23]
    Meng Y, et al 2020 Artificial visual systems enabled by quasi-two-dimensional electron gases in oxide superlattice nanowires Sci. Adv. 6 eabc6389 doi: 10.1126/sciadv.abc6389
    [24]
    Xie P, et al 2022 Ferroelectric P(VDF-TrFE) wrapped InGaAs nanowires for ultralow-power artificial synapses Nano Energy 91 106654 doi: 10.1016/j.nanoen.2021.106654
    [25]
    Zhai Y, Xie P, Hu J, Chen X, Feng Z, Lv Z, Ding G, Zhou K, Zhou Y, Han S T 2023 Reconfigurable 2D-ferroelectric platform for neuromorphic computing Appl. Phys. Rev. 10 011408 doi: 10.1063/5.0131838
    [26]
    Liu K, Zhang T, Dang B, Bao L, Xu L, Cheng C, Yang Z, Huang R, Yang Y 2022 An optoelectronic synapse based on -In2Se3 with controllable temporal dynamics for multimode and multiscale reservoir computing Nat. Electron. 5 761-73 doi: 10.1038/s41928-022-00847-2
    [27]
    Luo T, Liang B, Liu Z, Xie X, Lou Z, Shen G 2015 Single-GaSb-nanowire-based room temperature photodetectors with broad spectral response Sci. Bull. 60 101-8 doi: 10.1007/s11434-014-0687-6
    [28]
    Michel J, Liu J, Kimerling L C 2010 High-performance Ge-on-Si photodetectors Nat. Photon. 4 527-34 doi: 10.1038/nphoton.2010.157
    [29]
    Zheng D, Fang H, Long M, Wu F, Wang P, Gong F, Wu X, Ho J C, Liao L, Hu W 2018 High-performance near-infrared photodetectors based on p-type SnX (X = S, Se) nanowires grown via chemical vapor deposition ACS Nano 12 7239-45 doi: 10.1021/acsnano.8b03291
    [30]
    Liu J, et al 2021 Mixed-dimensional CsPbBr3@ZnO heterostructures for high-performance p-n diodes and photodetectors Nano Today 36 101055 doi: 10.1016/j.nantod.2020.101055
    [31]
    Zekentes K, Choi J, Stambouli V, Bano E, Karker O, Rogdakis K 2022 Progress in SiC nanowire field-effect-transistors for integrated circuits and sensing applications Microelectron. Eng. 255 111704 doi: 10.1016/j.mee.2021.111704
    [32]
    Lin L, Huo J, Peng P, Zou G, Liu L, Duley W W, Zhou Y N 2020 Contact engineering of single core/shell SiC/SiO2 nanowire memory unit with high current tolerance using focused femtosecond laser irradiation Nanoscale 12 5618-26 doi: 10.1039/C9NR10690A
    [33]
    Liu D, et al 2022 Schottky-contacted high-performance GaSb nanowires photodetectors enabled by lead-Free all-inorganic perovskites decoration Small 18 2200415 doi: 10.1002/smll.202200415
    [34]
    Mukherjee A, Ren D, Vullum P E, Huh J, Fimland B O, Weman H 2021 GaAs/AlGaAs nanowire array solar cell grown on Si with ultrahigh power-per-weight ratio ACS Photonics 8 2355-66 doi: 10.1021/acsphotonics.1c00527
    [35]
    Gou G, Sun J, Qian C, He Y, Kong L, Fu Y, Dai G, Yang J, Gao Y 2016 Artificial synapses based on biopolymer electrolyte-coupled SnO2 nanowire transistors J. Mater. Chem. C 4 11110-7 doi: 10.1039/C6TC03731C
    [36]
    Ting Y H, Chen J Y, Huang C W, Huang T K, Hsieh C Y, Wu W W 2018 Observation of resistive switching behavior in crossbar core-shell Ni/NiO nanowires memristor Small 14 1703153 doi: 10.1002/smll.201703153
    [37]
    Wu X, Cui N, Zhang Q, Xiong X, Zhu T, Xu Q 2022 ZnO single-nanowire schottky barrier resistive switching memory assembly with dielectrophoresis J. Electron. Mater. 51 7190-7 doi: 10.1007/s11664-022-09959-z
    [38]
    Chen J G, Cao G M, Liu Q, Meng P, Liu Z, Liu F C 2022 Two-dimensional Nb3Cl8 memristor based on desorption and adsorption of O2 molecules Rare Met. 41 325-32 doi: 10.1007/s12598-021-01794-1
    [39]
    Xiong W, Zhu L Q, Ye C, Ren Z Y, Yu F, Xiao H, Xu Z, Zhou Y, Zhou H, Lu H L 2020 Flexible poly(vinyl alcohol)-Graphene oxide hybrid nanocomposite based cognitive memristor with pavlovian-conditioned reflex activities Adv. Electron. Mater. 6 1901402 doi: 10.1002/aelm.201901402
    [40]
    Xu Y, Gao S, Li Z, Yang R, Miao X 2022 Adaptive Hodgkin-Huxley neuron for retina-inspired perception Adv. Intell. Syst. 4 2200210 doi: 10.1002/aisy.202200210
    [41]
    Li Q, Diaz Alvarez A, Iguchi R, Hochstetter J, Loeffler A, Zhu R, Shingaya Y, Kuncic Z, Uchida K, Nakayama T 2020 Dynamic electrical pathway tuning in neuromorphic nanowire networks Adv. Funct. Mater. 30 2003679 doi: 10.1002/adfm.202003679
    [42]
    Hosseini M, Frick N, Guilbaud D, Gao M, LaBean T H 2022 Resistive switching of two-dimensional Ag2S nanowire networks for neuromorphic applications J. Vac. Sci. Technol. B 40 043201 doi: 10.1116/6.0001867
    [43]
    Qin L, Cheng S, Xie B, Wei X, Jie W 2022 Co-existence of bipolar nonvolatile and volatile resistive switching based on WO3 nanowire for applications in neuromorphic computing and selective memory Appl. Phys. Lett. 121 093502 doi: 10.1063/5.0113433
    [44]
    Shan X, Wang Z, Lin Y, Zeng T, Zhao X, Xu H, Liu Y 2020 Silent synapse activation by plasma-induced oxygen vacancies in TiO2 nanowire-based memristor Adv. Electron. Mater. 6 2000536 doi: 10.1002/aelm.202000536
    [45]
    Wan J, Qiu W, Lai Y, Lin P, Zheng Q, Yu J, Cheng S, Zhang H 2020 Efficient implementation of synaptic learning rules for neuromorphic computing based on plasma-treated ZnO nanowire memristors J. Phys. D: Appl. Phys. 53 055303 doi: 10.1088/1361-6463/ab5382
    [46]
    Yeon H, et al 2020 Alloying conducting channels for reliable neuromorphic computing Nat. Nanotechnol. 15 574-9 doi: 10.1038/s41565-020-0694-5
    [47]
    Wang Y, Wang W, Zhang C, Kan H, Yue W, Pang J, Gao S, Li Y 2022 A digital-analog integrated memristor based on a ZnO NPs/CuO NWs heterostructure for neuromorphic computing ACS Appl. Electron. Mater. 4 3525-34 doi: 10.1021/acsaelm.2c00495
    [48]
    He H K, Yang R, Huang H M, Yang F F, Wu Y Z, Shaibo J, Guo X 2020 Multi-gate memristive synapses realized with the lateral heterostructure of 2D WSe2 and WO3 Nanoscale 12 380-7 doi: 10.1039/C9NR07941F
    [49]
    Huynh Van N, Lee J H, Whang D, Kang D J 2015 Ultralow-power non-volatile memory cells based on P(VDF-TrFE) ferroelectric-gate CMOS silicon nanowire channel field-effect transistors Nanoscale 7 11660-6 doi: 10.1039/C5NR02019K
    [50]
    Lee M, Park W, Son H, Seo J, Kwon O, Oh S, Hahm M G, Kim U J, Cho B 2021 Brain-inspired ferroelectric Si nanowire synaptic device APL Mater. 9 031103 doi: 10.1063/5.0035220
    [51]
    Li X, et al 2020 Multi-terminal ionic-gated low-power silicon nanowire synaptic transistors with dendritic functions for neuromorphic systems Nanoscale 12 16348-58 doi: 10.1039/D0NR03141K
    [52]
    Qin S, Wang F, Liu Y, Wan Q, Wang X, Xu Y, Shi Y, Wang X, Zhang R 2017 A light-stimulated synaptic device based on graphene hybrid phototransistor 2D Mater. 4 035022 doi: 10.1088/2053-1583/aa805e
    [53]
    Dai S, Zhao Y, Wang Y, Zhang J, Fang L, Jin S, Shao Y, Huang J 2019 Recent advances in transistor-based artificial synapses Adv. Funct. Mater. 29 1903700 doi: 10.1002/adfm.201903700
    [54]
    Shen Y, et al 2017 Deep learning with coherent nanophotonic circuits Nat. Photon. 11 441-6 doi: 10.1038/nphoton.2017.93
    [55]
    Xie D, Wei L, Xie M, Jiang L, Yang J, He J, Jiang J 2021 Photoelectric visual adaptation based on 0D-CsPbBr3-Quantum-Dots/2D-MoS2 mixed-dimensional heterojunction transistor Adv. Funct. Mater. 31 2010655 doi: 10.1002/adfm.202010655
    [56]
    Ren Z Y, Kong Y H, Ai L, Xiao H, Wang W S, Shi Z W, Zhu L Q 2022 Proton gated oxide neuromorphic transistors with bionic vision enhancement and information decoding J. Mater. Chem. C 10 7241-50 doi: 10.1039/D2TC00775D
    [57]
    Hu G, An H, Xi J, Lu J, Hua Q, Peng Z 2021 A ZnO micro/nanowire-based photonic synapse with piezo-phototronic modulation Nano Energy 89 106282 doi: 10.1016/j.nanoen.2021.106282
    [58]
    Shen C, Gao X, Chen C, Ren S, Xu J L, Xia Y D, Wang S D 2021 ZnO nanowire optoelectronic synapse for neuromorphic computing Nanotechnology 33 065205 doi: 10.1088/1361-6528/ac3687
    [59]
    Chen Y, Qiu W, Wang X, Liu W, Wang J, Dai G, Yuan Y, Gao Y, Sun J 2019 Solar-blind SnO2 nanowire photo-synapses for associative learning and coincidence detection Nano Energy 62 393-400 doi: 10.1016/j.nanoen.2019.05.064
    [60]
    Li B, Wei W, Yan X, Zhang X, Liu P, Luo Y, Zheng J, Lu Q, Lin Q, Ren X 2018 Mimicking synaptic functionality with an InAs nanowire phototransistor Nanotechnology 29 464004 doi: 10.1088/1361-6528/aadf63
    [61]
    Zha C, Yan X, Yuan X, Zhang Y, Zhang X 2021 An artificial optoelectronic synapse based on an InAs nanowire phototransistor with negative photoresponse Opt. Quantum Electron. 53 587 doi: 10.1007/s11082-021-03217-y
    [62]
    Zhu X, et al 2020 Enhancing performance of a GaAs/AlGaAs/GaAs nanowire photodetector based on the two-dimensional electron-hole tube structure Nano Lett. 20 2654-9 doi: 10.1021/acs.nanolett.0c00232
    [63]
    Lao J, et al 2022 Ultralow-power machine vision with self-powered sensor reservoir Adv. Sci. 9 2106092 doi: 10.1002/advs.202106092
    [64]
    Wang Y, et al 2021 Reconfigurable photovoltaic effect for optoelectronic artificial synapse based on ferroelectric p-n junction Nano Res. 14 4328-35 doi: 10.1007/s12274-021-3833-x
    [65]
    Yu S 2018 Neuro-inspired computing with emerging nonvolatile memorys Proc. IEEE 106 260-85 doi: 10.1109/JPROC.2018.2790840
    [66]
    Chen P, Peng X, Yu S 2018 NeuroSim: a circuit-level Macro model for benchmarking neuro-inspired architectures in online learning IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 37 3067-80 doi: 10.1109/TCAD.2018.2789723
    [67]
    Wu H, Cui Y, Xu J, Yan Z, Xie Z, Hu Y, Zhu S 2022 Multifunctional half-floating-gate field-effect transistor based on MoS2-BN-Graphene van der Waals heterostructures Nano Lett. 22 2328-33 doi: 10.1021/acs.nanolett.1c04737
    [68]
    Zhang B W, Fang D, Fang X, Zhao H B, Wang D K, Li J H, Wang X H, Wang D B 2022 InAs/InAsSb type-II superlattice with near room-temperature long-wave emission through interface engineering Rare Met. 41 982-91 doi: 10.1007/s12598-021-01833-x
    [69]
    Liu M, et al 2023 Interfacial characteristics and optical properties of InAs/InAsSb Type II superlattices for the mid-infrared operation Phys. Status Solidi 17 2200412 doi: 10.1002/pssr.202200412
    [70]
    Zhang Q, Jin T, Ye X, Geng D, Chen W, Hu W 2021 Organic field effect transistor-based photonic synapses: materials, devices, and applications Adv. Funct. Mater. 31 2106151 doi: 10.1002/adfm.202106151
    [71]
    Xie D, Wei L, Wei Z, He J, Jiang J 2022 Water-induced dual ultrahigh mobilities over 400 cm2 V-1 s-1 in 2D MoS2 transistors for ultralow-voltage operation and photoelectric synapse perception J. Mater. Chem. C 10 5249-56 doi: 10.1039/D1TC06010D
    [72]
    Wang W S, Ren Z Y, Shi Z W, Xiao H, Zeng Y H, Zhu L Q 2022 Flexible nanocellulose gated pseudo-diode for neuromorphic electronic applications IEEE Electron Device Lett. 43 737-40 doi: 10.1109/LED.2022.3160494
    [73]
    Liu X, Sun C, Guo Z, Zhang Y, Zhang Z, Shang J, Zhong Z, Zhu X, Yu X, Li R-W 2022 A flexible dual-gate hetero-synaptic transistor for spatiotemporal information processing Nanoscale Adv. 4 2412-9 doi: 10.1039/D2NA00146B
    [74]
    Xie Z, Zhu X, Wang W, Guo Z, Zhang Y, Liu H, Sun C, Tang M, Gao S, Li R W 2022 Temporal pattern coding in ionic memristor-based spiking neurons for adaptive tactile perception Adv. Electron. Mater. 8 2200334 doi: 10.1002/aelm.202200334
    [75]
    Ansari M H, Kannan U M, Cho S 2021 Core-shell dual-gate nanowire charge-trap memory for synaptic operations for neuromorphic applications Nanomaterials 11 1773 doi: 10.3390/nano11071773
    [76]
    Zhang Z, Zhao X, Zhang X, Hou X, Ma X, Tang S, Zhang Y, Xu G, Liu Q, Long S 2022 In-sensor reservoir computing system for latent fingerprint recognition with deep ultraviolet photo-synapses and memristor array Nat. Commun. 13 6590 doi: 10.1038/s41467-022-34230-8
    [77]
    Milano G, Pedretti G, Montano K, Ricci S, Hashemkhani S, Boarino L, Ielmini D, Ricciardi C 2022 In materia reservoir computing with a fully memristive architecture based on self-organizing nanowire networks Nat. Mater. 21 195-202 doi: 10.1038/s41563-021-01099-9
    [78]
    Bao H, et al 2022 Toward memristive in-memory computing: principles and applications Front. Optoelectron. 15 23 doi: 10.1007/s12200-022-00025-4
    [79]
    Poddar S, et al 2022 Image processing with a multi-level ultra-fast three dimensionally integrated perovskite nanowire array Nanoscale Horiz. 7 759-69 doi: 10.1039/D2NH00183G
    [80]
    Wang P, Li G, Liu J, Hou Z, Meng C, Guo S, Liu C, Fan S 2021 Tailorable capacitive tactile sensor based on stretchable and dissolvable porous silver nanowire/polyvinyl alcohol nanocomposite hydrogel for wearable human motion detection Adv. Mater. Interfaces 8 2100998 doi: 10.1002/admi.202100998
    [81]
    Takiguchi M, Sasaki S, Tateno K, Chen E, Nozaki K, Sergent S, Kuramochi E, Zhang G, Shinya A, Notomi M 2020 Hybrid nanowire photodetector integrated in a silicon photonic crystal ACS Photonics 7 3467-73 doi: 10.1021/acsphotonics.0c01356
    [82]
    Tersoff J 2015 Stable self-catalyzed growth of III-V nanowires Nano Lett. 15 6609-13 doi: 10.1021/acs.nanolett.5b02386
  • 加载中

Catalog

    Figures(8)

    Article Metrics

    Article Views(531) PDF downloads(150)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return