Volume 2 Issue 1
March  2022
Turn off MathJax
Article Contents
Tenglong Lu, Yanan Wang, Guanghui Cai, Huaxian Jia, Xinxin Liu, Cui Zhang, Sheng Meng, Miao Liu. Synthesizability of transition-metal dichalcogenides: a systematic first-principles evaluation[J]. Materials Futures, 2023, 2(1): 015001. doi: 10.1088/2752-5724/acbe10
Citation: Tenglong Lu, Yanan Wang, Guanghui Cai, Huaxian Jia, Xinxin Liu, Cui Zhang, Sheng Meng, Miao Liu. Synthesizability of transition-metal dichalcogenides: a systematic first-principles evaluation[J]. Materials Futures, 2023, 2(1): 015001. doi: 10.1088/2752-5724/acbe10
Paper •
OPEN ACCESS

Synthesizability of transition-metal dichalcogenides: a systematic first-principles evaluation

© 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 2, Number 1
  • Received Date: 2022-12-19
  • Accepted Date: 2023-02-22
  • Publish Date: 2023-03-08
  • Transition metal dichalcogenides (TMDs) are a class of materials with various useful properties, and it is worthwhile to have a thorough evaluation of the characteristics of the TMDs, most importantly, their structural stability and exfoliability, in a systematic fashion. Here, by employing high-throughput first-principles calculations, we investigate the vast phase space of TMDs, including 16 bulk phases and 6 monolayer phases for all possible TMD combinations [comprising (3d, 4d, 5d) transition-metal cations and (S, Se, Te) anions], totaling 1386 compounds. Through the 'bird-view' of the as-large-as-possible configurational and chemical space of TMDs, our work presents comprehensive energy landscapes to elucidate the thermodynamic stability as well as the exfoliability of TMDs, which are of vital importance for future synthesis and exploration towards large-scale industrial applications.
  • loading
  • [1]
    Wilson J A and Yoffe A D 1969 The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties Adv. Phys. 18 193–335
    [2]
    Nicolosi V, Chhowalla M, Kanatzidis M G, Strano M S and Coleman J N 2013 Liquid exfoliation of layered materials Science 340 1226419
    [3]
    Li J et al 2021 Printable two-dimensional superconducting monolayers Nat. Mater. 20 181–7
    [4]
    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G and Wang F 2010 Emerging photoluminescence in monolayer MoS2 Nano Lett. 10 1271–5
    [5]
    Xiao D, Liu G B, Feng W, Xu X and Yao W 2012 Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides Phys. Rev. Lett. 108 196802
    [6]
    Bhandavat R, David L and Singh G 2012 Synthesis of surface-functionalized WS2 nanosheets and performance as Li-ion battery anodes J. Phys. Chem. Lett. 3 1523–30
    [7]
    Liu C, Chen H, Wang S, Liu Q, Jiang Y-G, Zhang D W, Liu M and Zhou P 2020 Two-dimensional materials for next-generation computing technologies Nat. Nanotechnol. 15 545–57
    [8]
    Liu Z, Na G, Tian F, Yu L, Li J and Zhang L 2020 Computational functionality-driven design of semiconductors for optoelectronic applications InfoMat 2 879–904
    [9]
    Lu X-C, Lu Y-Z, Wang C and Cao Y 2022 Efficient photoelectrodes based on two-dimensional transition metal dichalcogenides heterostructures: from design to construction Rare Met. 41 1142–59
    [10]
    Niu H, Wang X, Shao C, Zhang Z and Guo Y 2020 Computational screening single-atom catalysts supported on g-CN for N2 reduction: high activity and selectivity ACS Sustain. Chem. Eng. 8 13749–58
    [11]
    Belsky A, Hellenbrandt M, Karen V L and Luksch P 2002 New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design Acta Crystallogr. B 58 364–9
    [12]
    Atomly Materials Database (available at: www.atomly.net)
    [13]
    Chhowalla M, Shin H S, Eda G, Li L J, Loh K P and Zhang H 2013 The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets Nat. Chem. 5 263–75
    [14]
    Keum D H et al 2015 Bandgap opening in few-layered monoclinic MoTe2 Nat. Phys. 11 482–6
    [15]
    Cho S et al 2015 Phase patterning for ohmic homojunction contact in MoTe2 Science 349 625–8
    [16]
    Lee C-H, Silva E C, Calderin L, Nguyen M A T, Hollander M J, Bersch B, Mallouk T E and Robinson J A 2015 Tungsten ditelluride: a layered semimetal Sci. Rep. 5 10013
    [17]
    Saha P, Ghosh B, Mazumder A, Glazyrin K and Dev Mukherjee G 2020 Pressure induced lattice expansion and phonon softening in layered ReS2 J. Appl. Phys. 128 085904
    [18]
    Wang Y, Li Y and Chen Z 2015 Not your familiar two dimensional transition metal disulfide: structural and electronic properties of the PdS2 monolayer J. Mater. Chem. C 3 9603–8
    [19]
    Sun W, Dacek S T, Ong S P, Hautier G, Jain A, Richards W D, Gamst A C, Persson K A and Ceder G 2016 The thermodynamic scale of inorganic crystalline metastability Sci. Adv. 2 e1600225
    [20]
    Yang H, Kim S W, Chhowalla M and Lee Y H 2017 Structural and quantum-state phase transitions in van der Waals layered materials Nat. Phys. 13 931–7
    [21]
    Yu Y G and Ross N L 2011 First-principles study on thermodynamic properties and phase transitions in TiS2 J. Phys.: Condens. Matter 23 055401
    [22]
    Brostigen G and Kjekshus A 1970 Compounds with the marcasite type crystal structure Acta Chem. Scand. 24 1925–40
    [23]
    Bither T A, Bouchard R J, Cloud W H, Donohue P C and Siemons W J 1968 Transition metal pyrite dichalcogenides high-pressure synthesis and correlation of properties Inorg. Chem. 7 2208–20
    [24]
    Kimber S A, Salamat A, Evans S R, Jeschke H O, Muthukumar K, Tomi´c M, Salvat-Pujol F, Valentí R, Kaisheva M V and Zizak I 2014 Giant pressure-induced volume collapse in the pyrite mineral MnS2 Proc. Natl Acad. Sci. 111 5106–10
    [25]
    Elliott N 1937 The crystal structure of manganese diselenide and manganese ditelluride J. Am. Chem. Soc. 59 1958–62
    [26]
    Soulard C, Rocquefelte X, Petit P E, Evain M, Jobic S, Itié J P, Munsch P, Koo H J and Whangbo M H 2004 Experimental and theoretical investigation on the relative stability of the PdS2- and pyrite-type structures of PdSe2 Inorg. Chem. 43 1943–9
    [27]
    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Electronics and optoelectronics of two-dimensional transition metal dichalcogenides Nat. Nanotechnol. 7 699–712
    [28]
    Wang C T and Du S 2020 A unique pentagonal network structure of the NiS2 monolayer with high stability and a tunable bandgap Phys. Chem. Chem. Phys. 22 7483–8
    [29]
    Zhang H, Dai Y-M and Liu L-M 2015 Novel monolayer pyrite FeS2 with atomic-thickness for magnetic devices Comput. Mater. Sci. 101 255–9
    [30]
    Kan M, Adhikari S and Sun Q 2014 Ferromagnetism in MnX2 (X = S, Se) monolayers Phys. Chem. Chem. Phys. 16 4990
    [31]
    Gjerding M N et al 2021 Recent progress of the computational 2D materials database (C2DB) 2D Mater. 8 044002
    [32]
    Bjorkman T, Gulans A, Krasheninnikov A V and Nieminen R M 2012 van der Waals bonding in layered compounds from advanced density-functional first-principles calculations Phys. Rev. Lett. 108 235502
    [33]
    Revard B C, Tipton W W, Yesypenko A and Hennig R G 2016 Grand-canonical evolutionary algorithm for the prediction of two-dimensional materials Phys. Rev. B 93 054117
    [34]
    Mounet N et al 2018 Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds Nat. Nanotechnol. 13 246–52
    [35]
    Ashton M, Paul J, Sinnott S B and Hennig R G 2017 Topology-scaling identification of layered solids and stable exfoliated 2D materials Phys. Rev. Lett. 118 106101
    [36]
    Zeng Z, Yin Z, Huang X, Li H, He Q, Lu G, Boey F and Zhang H 2011 Single-layer semiconducting nanosheets: high-yield preparation and device fabrication Angew. Chem., Int. Ed. Engl. 50 11093–7
    [37]
    Qian X, Liu J, Fu L and Li J 2014 Quantum spin Hall effect in two-dimensional transition metal dichalcogenides Science 346 1344–7
    [38]
    Bastos C M O, Besse R, Da Silva J L F and Sipahi G M 2019 Ab initio investigation of structural stability and exfoliation energies in transition metal dichalcogenides based on Ti-, V-, and Mo-group elements Phys. Rev. Mater. 3 044002
    [39]
    Pauling L 1932 The nature of the chemical bond IV. The energy of single bonds and the relative electronegativity of atoms J. Am. Chem. Soc. 54 3570–82
    [40]
    Perdew J P, Burke K and Ernzerhof M 1996 Generalized gradient approximation made simple Phys. Rev. Lett. 77 3865–8
    [41]
    Grimme S, Antony J, Ehrlich S and Krieg H 2010 A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J. Chem. Phys. 132 154104
    [42]
    Kresse G and Furthmüller J 1996 Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set Phys. Rev. B 54 11169–86
    [43]
    Ong S P, Richards W D, Jain A, Hautier G, Kocher M, Cholia S, Gunter D, Chevrier V L, Persson K A and Ceder G 2013 Python materials genomics (pymatgen): a robust, open-source Python library for materials analysis Comput. Mater. Sci. 68 314–9
  • mfacbe10supp1.docx
  • 加载中

Catalog

    Figures(1)

    Article Metrics

    Article Views(312) PDF downloads(59)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return