Volume 2 Issue 1
January  2022
Turn off MathJax
Article Contents
Pengjie Guo, Chen Peng, Zhengxin Liu, Kai Liu, Zhongyi Lu. Symmetry-enforced two-dimensional Dirac node-line semimetals[J]. Materials Futures, 2023, 2(1): 011001. doi: 10.1088/2752-5724/aca816
Citation: Pengjie Guo, Chen Peng, Zhengxin Liu, Kai Liu, Zhongyi Lu. Symmetry-enforced two-dimensional Dirac node-line semimetals[J]. Materials Futures, 2023, 2(1): 011001. doi: 10.1088/2752-5724/aca816
Letter •
OPEN ACCESS

Symmetry-enforced two-dimensional Dirac node-line semimetals

© 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 2, Number 1
  • Received Date: 2022-11-18
  • Accepted Date: 2022-12-02
  • Publish Date: 2022-12-28
  • Based on symmetry analysis and lattice model calculations, we demonstrate that Dirac nodal line (DNL) can stably exist in two-dimensional (2D) nonmagnetic as well as antiferromagnetic systems. We focus on the situations where the DNLs are enforced by certain symmetries and the degeneracies on the DNLs are inevitable even if spin–orbit coupling is strong. After thorough analysis, we find that five space groups, namely 51, 54, 55, 57 and 127, can enforce the DNLs in 2D nonmagnetic semimetals, and four type-III magnetic space groups (51.293, 54.341, 55.355, 57.380) plus eight type-IV magnetic space groups (51.299, 51.300, 51.302, 54.348, 55.360, 55.361, 57.387 and 127.396) can enforce the DNLs in 2D antiferromagnetic semimetals. By breaking these symmetries, the different 2D topological phases can be obtained. Furthermore, by the first-principles electronic structure calculations, we predict that monolayer YB4C4 is a good material platform for studying the exotic properties of 2D symmetry-enforced Dirac node-line semimetals.

  • loading
  • [1]
    Weng H, Dai X and Fang Z 2016 Topological semimetals predicted from first-principles calculations J. Phys.: Condens. Matter 28 303001
    [2]
    Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X and Bernevig B A 2015 Type-II Weyl semimetals Nature 527 495
    [3]
    Huang H, Zhou S and Duan W 2016 Type-II Dirac fermions in the PtSe2 class of transition metal dichalcogenides Phys. Rev. B 94 121117
    [4]
    Guo P-J, Yang H-C, Liu K and Lu Z-Y 2017 Type-II Dirac semimetals in the YPd2Sn class Phys. Rev. B 95 155112
    [5]
    Wieder B J, Kim Y, Rappe A M and Kane C L 2016 Double Dirac semimetals in three dimensions Phys. Rev. Lett. 116 186402
    [6]
    Bradlyn B, Cano J, Wang Z, Vergniory M G, Felser C, Cava R J and Bernevig B A 2016 Beyond Dirac and Weyl fermions: unconventional quasiparticles in conventional crystals Science 353 aaf5037
    [7]
    Weng H, Fang C, Fang Z and Dai X 2016 Topological semimetals with triply degenerate nodal points in θ-phase tantalum nitride Phys. Rev. B 93 241202
    [8]
    Guo P-J, Yang H-C, Liu K and Lu Z-Y 2018 Triply degenerate nodal points in RRh6Ge4 (R = Y, La, Lu) Phys. Rev. B 98 045134
    [9]
    Fang C, Chen Y, Kee H-Y and Fu L 2015 Topological nodal line semimetals with and without spin-orbital coupling Phys. Rev. B 92 081201
    [10]
    Weng H, Liang Y, Xu Q, Yu R, Fang Z, Dai X and Kawazoe Y 2015 Topological node-line semimetal in three-dimensional graphene networks Phys. Rev. B 92 045108
    [11]
    Zhang X, Yu Z-M, Sheng X-L, Yang H Y and Yang S A 2017 Coexistence of four-band nodal rings and triply degenerate nodal points in centrosymmetric metal diborides Phys. Rev. B 95 235116
    [12]
    Yu R, Weng H, Fang Z, Dai X and Hu X 2015 Topological node-line semimetal and Dirac semimetal state in antiperovskite Cu 3PdN Phys. Rev. Lett. 115 036807
    [13]
    Li S, Liu Y, Wang S-S, Yu Z-M, Guan S, Sheng X-L, Yao Y and Yang S A 2018 Nonsymmorphic-symmetry-protected hourglass Dirac loop, nodal line and Dirac point in bulk and monolayer X3SiTe6 (X = Ta, Nb) Phys. Rev. B 97 045131
    [14]
    Gao Y, Guo P-J, Liu K and Lu Z-Y 2020 RRuB2 (R = Y,Lu), topological superconductor candidates with hourglass-type Dirac ring Phys. Rev. B 102 115137
    [15]
    Shao D and Fang C 2020 Filling-enforced Dirac nodal loops in nonmagnetic systems and their evolutions under various perturbations Phys. Rev. B 102 165135
    [16]
    Yang J, Fang C and Liu Z-X 2021 Symmetry-protected nodal points and nodal lines in magnetic materials Phys. Rev. B 103 245141
    [17]
    Cui X, Li Y, Guo D, Guo P, Lou C, Mei G, Lin C, Tan S, Zhengxin L, Liu K, Lu Z, Petek H, Cao L, Ji W and Feng M 2020 Two-dimensional Dirac nodal-line semimetal against strong spin-orbit coupling in real materials 2012 15220 (arXiv:2012.15220)
    [18]
    Guo D, Guo P, Tan S, Feng M, Cao L, Liu Z-X, Liu K, Lu Z and Ji W 2022 Two-dimensional Dirac-line semimetals resistant to strong spin–orbit coupling Sci. Bull. 67 1954
    [19]
    For details see the supplemental material
    [20]
    Guo P-J, Wei Y-W, Liu K, Liu Z-X and Lu Z-Y 2021 Eightfold degenerate fermions in two dimensions Phys. Rev. Lett. 127 176401
    [21]
    Jin Y J, Zheng B B, Xiao X L, Chen Z J, Xu Y and Xu H 2020 Two-dimensional Dirac semimetals without inversion symmetry Phys. Rev. Lett. 125 116402
    [22]
    Reckeweg O and DiSalvo F J 2014 Different structural models of YB2C2 and GdB2C2 on the basis of single-crystal x-ray data Z. Nat.forsch. B 69 289
    [23]
    Zhou J et al 2019 2dmatpedia, an open computational database of two-dimensional materials from top-down and bottom-up approaches Sci. Data 6 86
    [24]
    Young S M and Kane C L 2015 Dirac semimetals in two dimensions Phys. Rev. Lett. 115 126803
  • mfac44absupp1.pdf
  • 加载中

Catalog

    Figures(1)

    Article Metrics

    Article Views(489) PDF downloads(213)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return