Volume 1 Issue 1
March  2021
Turn off MathJax
Article Contents
Jun Hao Teo, Florian Strauss, Felix Walther, Yuan Ma, Seyedhosein Payandeh, Torsten Scherer, Matteo Bianchini, Jürgen Janek, Torsten Brezesinski. The Interplay between (Electro)chemical and (Chemo)mechanical Effects in the Cycling Performance of Thiophosphate-based Solid-State Batteries[J]. Materials Futures, 2022, 1(1): 015102. doi: 10.1088/2752-5724/ac3897
Citation: Jun Hao Teo, Florian Strauss, Felix Walther, Yuan Ma, Seyedhosein Payandeh, Torsten Scherer, Matteo Bianchini, Jürgen Janek, Torsten Brezesinski. The Interplay between (Electro)chemical and (Chemo)mechanical Effects in the Cycling Performance of Thiophosphate-based Solid-State Batteries[J]. Materials Futures, 2022, 1(1): 015102. doi: 10.1088/2752-5724/ac3897
Paper •
OPEN ACCESS

The Interplay between (Electro)chemical and (Chemo)mechanical Effects in the Cycling Performance of Thiophosphate-based Solid-State Batteries

© 2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures , Volume 1, Number 1
  • Received Date: 2021-10-07
  • Accepted Date: 2021-11-10
  • Publish Date: 2022-01-12
  • Solid-state batteries (SSBs) are a promising next step in electrochemical energy storage but are plagued by a number of problems. In this study, we demonstrate the recurring issue of mechanical degradation because of volume changes in layered Ni-rich oxide cathode materials in thiophosphate-based SSBs. Specifically, we explore superionic solid electrolytes of different crystallinity, namely glassy 1.5Li2S-0.5P2S5-LiI and argyrodite Li6PS5Cl, with emphasis on how they affect the cyclability of slurry-cast cathodes with NCM622 (60% Ni) or NCM851005 (85% Ni). The application of a combination of ex situ and in situ analytical techniques helped to reveal the benefits of using a solid electrolyte with a low Young's modulus. Through a synergistic interplay of (electro)chemical and (chemo)mechanical effects, the glassy solid electrolyte employed in this work was able to achieve robust and stable interfaces, enabling intimate contact with the cathode material while at the same time mitigating volume changes. Our results emphasize the importance of considering chemical, electrochemical, and mechanical properties to realize long-term cycling performance in high-loading SSBs.

  • loading
  • [1]
    Blomgren G E 2017 J. Electrochem. Soc. 164 A5019–25
    [2]
    Tarascon J-M and Armand M 2001 Nature 414 359–67
    [3]
    Larcher D and Tarascon J-M 2015 Nat. Chem. 7 19–29
    [4]
    Wang Q, Ping P, Zhao X, Chu G, Sun J and Chen C 2012 J. Power Sources 208 210–24
    [5]
    Etacheri V, Marom R, Elazari R, Salitra G and Aurbach D 2011 Energy Environ. Sci. 4 3243–62
    [6]
    Janek J and Zeier W G 2016 Nat. Energy 1 16141
    [7]
    Conforto G, Ruess R, Schröder D, Trevisanello E, Fantin R, Richter F H and Janek J 2021 J. Electrochem. Soc. 168 070546
    [8]
    Ruess R, Schweidler S, Hemmelmann H, Conforto G, Bielefeld A, Weber D A, Sann J, Elm M T and Janek J 2020 J. Electrochem. Soc. 167 100532
    [9]
    Ma Y, Teo J H, Kitsche D, Diemant T, Strauss F, Ma Y, Goonetilleke D, Janek J, Bianchini M and Brezesinski T 2021 ACS Energy Lett. 6 3020–8
    [10]
    de Biasi L, Kondrakov A O, Geßwein H, Brezesinski T, Hartmann P and Janek J 2017 J. Phys. Chem. C 121 26163–71
    [11]
    Jung S H, Kim U-H, Kim J-H, Jun S, Yoon C S, Jung Y S and Sun Y-K 2020 Adv. Energy Mater. 10 1903360
    [12]
    Li W, Erickson E M and Manthiram A 2020 Nat. Energy 5 26–34
    [13]
    Deng Z, Wang Z, Chu I-H, Luo J and Ong S P 2016 J. Electrochem. Soc. 163 A67–A74
    [14]
    McGrogan F P, Swamy T, Bishop S R, Eggleton E, Porz L, Chen X, Chiang Y-M and Van Vliet K J 2017 Adv. Energy Mater. 7 1602011
    [15]
    Kato A, Yamamoto M, Sakuda A, Hayashi A and Tatsumisago M 2018 ACS Appl. Energy Mater. 1 1002–7
    [16]
    Han F, Yue J, Zhu X and Wang C 2018 Adv. Energy Mater. 8 1703644
    [17]
    Han Y, Jung S H, Kwak H, Jun S, Kwak H H, Lee J H, Hong S-T and Jung Y S 2021 Adv. Energy Mater. 11 2100126
    [18]
    Koerver R, Aygün I, Leichtweiß T, Dietrich C, Zhang W, Binder J O, Hartmann P, Zeier W G and Janek J 2017 Chem. Mater. 29 5574–82
    [19]
    Park K H, Bai Q, Kim D H, Oh D Y, Zhu Y, Mo Y and Jung Y S 2018 Adv. Energy Mater. 8 1800035
    [20]
    Richards W D, Miara L J, Wang Y, Kim J C and Ceder G 2016 Chem. Mater. 28 266–73
    [21]
    Wang S, Xu H, Li W, Dolocan A and Manthiram A 2018 J. Am. Chem. Soc. 140 250–7
    [22]
    Takada K, Ohta N, Zhang L, Fukuda K, Sakaguchi I, Ma R, Osada M and Sasaki T 2008 Solid State Ion. 179 1333–7
    [23]
    Ohta N, Takada K, Sakaguchi I, Zhang L, Ma R, Fukuda K, Osada M and Sasaki T 2007 Electrochem. Commun. 9 1486–90
    [24]
    Machida N, Kashiwagi J, Naito M and Shigematsu T 2012 Solid State Ion. 225 354–8
    [25]
    Kim A-Y, Strauss F, Bartsch T, Teo J H, Hatsukade T, Mazilkin A, Janek J, Hartmann P and Brezesinski T 2019 Chem. Mater. 31 9664–72
    [26]
    Strauss F, Teo J H, Maibach J, Kim A-Y, Mazilkin A, Janek J and Brezesinski T 2020 ACS Appl. Mater. Interfaces 12 57146–54
    [27]
    Walther F, Randau S, Schneider Y, Sann J, Rohnke M, Richter F H, Zeier W G and Janek J 2020 Chem. Mater. 32 6123–36
    [28]
    Wang S et al 2021 Adv. Energy Mater. 11 2100654
    [29]
    Strauss F, Teo J H, Janek J and Brezesinski T 2020 Inorg. Chem. Front. 7 3953–60
    [30]
    Koerver R, Zhang W, de Biasi L, Schweidler S, Kondrakov A O, Kolling S, Brezesinski T, Hartmann P, Zeier W G and Janek J 2018 Energy Environ. Sci. 11 2142–58
    [31]
    Shi T, Zhang Y-Q, Tu Q, Wang Y, Scott M C and Ceder G 2020 J. Mater. Chem. A 8 17399–404
    [32]
    Strauss F, de Biasi L, Kim A-Y, Hertle J, Schweidler S, Janek J, Hartmann P and Brezesinski T 2020 ACS Mater. Lett. 2 84–8
    [33]
    Reuter F, Baasner A, Pampel J, Piwko M, Dörfler S, Althues H and Kaskel S 2019 J. Electrochem. Soc. 166 A3265–A3271
    [34]
    Chen S, Zhang J, Nie L, Hu X, Huang Y, Yu Y and Liu W 2021 Adv. Mater. 33 2002325
    [35]
    Minnmann P, Quillman L, Burkhardt S, Richter F H and Janek J 2021 J. Electrochem. Soc. 168 040537
    [36]
    Kim M-J, Park J-W, Kim B G, Lee Y-J, Ha Y-C, Lee S-M and Baeg K-J 2020 Sci. Rep. 10 11923
    [37]
    Teo J H, Strauss F, Tripkovi´c Ð, Schweidler S, Ma Y, Bianchini M, Janek J and Brezesinski T 2021 Cell Rep. Phys. Sci. 2 100465
    [38]
    Zhang W, Schröder D, Arlt T, Manke I, Koerver R, Pinedo R, Weber D A, Sann J, Zeier W G and Janek J 2017 J. Mater. Chem. A 5 9929–36
    [39]
    Zhang W et al 2017 ACS Appl. Mater. Interfaces 9 17835–45
    [40]
    Sakuda A, Hayashi A and Tatsumisago M 2010 Chem. Mater. 22 949–56
    [41]
    Ohzuku T, Ueda A and Yamamoto N 1995 J. Electrochem. Soc. 142 1431–5
    [42]
    Wagemaker M, Simon D R, Kelder E M, Schoonman J, Ringpfeil C, Haake U, Lützenkirchen-Hecht D, Frahm R and Mulder F M 2006 Adv. Mater. 18 3169–73
    [43]
    Haetge J, Hartmann P, Brezesinski K, Janek J and Brezesinski T 2011 Chem. Mater. 23 4384–93
    [44]
    Sun G, Sui T, Song B, Zheng H, Lu L and Korsunsky A M 2016 Extreme Mech. Lett. 9 449–58
    [45]
    Sakuda A, Hayashi A, Takigawa Y, Higashi K and Tatsumisago M 2013 J. Ceram. Soc. Japan 121 946–9
    [46]
    Wang S et al 2021 Adv. Energy Mater. 11 2101370
    [47]
    Ujiie S, Hayashi A and Tatsumisago M 2013 J. Solid State Electrochem. 17 675–80
    [48]
    Ujiie S, Hayashi A and Tatsumisago M 2012 Solid State Ion. 211 42–5
    [49]
    Auvergniot J, Cassel A, Ledeuil J-B, Viallet V, Seznec V and Dedryvère R 2017 Chem. Mater. 29 3883–90
    [50]
    Bernhard R, Meini S and Gasteiger H A 2014 J. Electrochem. Soc. 161 A497–A505
    [51]
    Calpa M, Rosero-Navarro N C, Miura A, Jalem R, Tateyama Y and Tadanaga K 2021 Appl. Mater. Today 22 100918
    [52]
    Jung R, Metzger M, Maglia F, Stinner C and Gasteiger H A 2017 J. Electrochem. Soc. 164 A1361–A1377
    [53]
    Jung R, Strobl P, Maglia F, Stinner C and Gasteiger H A 2018 J. Electrochem. Soc. 165 A2869–A2879
    [54]
    Bartsch T, Strauss F, Hatsukade T, Schiele A, Kim A-Y, Hartmann P, Janek J and Brezesinski T 2018 ACS Energy Lett. 3 2539–43
    [55]
    Strauss F, Teo J H, Schiele A, Bartsch T, Hatsukade T, Hartmann P, Janek J and Brezesinski T 2020 ACS Appl. Mater. Interfaces 12 20462–8
    [56]
    Wandt J, Freiberg A T S, Ogrodnik A and Gasteiger H A 2018 Mater. Today 21 825–33
    [57]
    Jung R, Metzger M, Maglia F, Stinner C and Gasteiger H A 2017 J. Phys. Chem. Lett. 8 4820–5
    [58]
    Mahne N, Renfrew S E, McCloskey B D and Freunberger S A 2018 Angew. Chem., Int. Ed. 57 5529–33
    [59]
    Hatsukade T, Schiele A, Hartmann P, Brezesinski T and Janek J 2018 ACS Appl. Mater. Interfaces 10 38892–9
    [60]
    Walther F, Strauss F, Wu X, Mogwitz B, Hertle J, Sann J, Rohnke M, Brezesinski T and Janek J 2021 Chem. Mater. 33 2110–25
    [61]
    Auvergniot J, Cassel A, Foix D, Viallet V, Seznec V and Dedryvère R 2017 Solid State Ion. 300 78–85
    [62]
    Dietrich C, Koerver R, Gaultois M W, Kieslich G, Cibin G, Janek J and Zeier W G 2018 Phys. Chem. Chem. Phys. 20 20088–95
    [63]
    Walther F, Koerver R, Fuchs T, Ohno S, Sann J, Rohnke M, Zeier W G and Janek J 2019 Chem. Mater. 31 3745–55
    [64]
    Minami K, Hayashi A and Tatsumisago M 2010 Solid State Ion. 181 1505–9
    [65]
    Franke R, Chassé T, Streubel P and Meisel A 1991 J. Electron Spectrosc. Relat. Phenom. 56 381–8
    [66]
    Cronau M, Szabo M, König C, Wassermann T B and Roling B 2021 ACS Energy Lett. 6 3072–7
    [67]
    Vizintin A, Lozinšek M, Chellappan R K, Foix D, Krajnc A, Mali G, Drazic G, Genorio B, Dedryvère R and Dominko R 2015 Chem. Mater. 27 7070–81
  • mfac3568supp1.pdf
  • 加载中

Catalog

    Figures(1)

    Article Metrics

    Article Views(907) PDF downloads(39)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return