Low-dimensional van der Waals materials for linear-polarization-sensitive photodetection: materials, polarizing strategies and applications
doi: 10.1088/2752-5724/acf9ba
-
Abstract: Detecting light from a wealth of physical degrees of freedom (e.g. wavelength, intensity, polarization state, phase, etc) enables the acquirement of more comprehensive information. In the past two decades, low-dimensional van der Waals materials (vdWMs) have established themselves as transformative building blocks toward lensless polarization optoelectronics, which is highly beneficial for optoelectronic system miniaturization. This review provides a comprehensive overview on the recent development of low-dimensional vdWM polarized photodetectors. To begin with, the exploitation of pristine 1D/2D vdWMs with immanent in-plane anisotropy and related heterostructures for filterless polarization-sensitive photodetectors is introduced. Then, we have systematically epitomized the various strategies to induce polarization photosensitivity and enhance the degree of anisotropy for low-dimensional vdWM photodetectors, including quantum tailoring, construction of core-shell structures, rolling engineering, ferroelectric regulation, strain engineering, etc, with emphasis on the fundamental physical principles. Following that, the ingenious optoelectronic applications based on the low-dimensional vdWM polarized photodetectors, including multiplexing optical communications and enhanced-contrast imaging, have been presented. In the end, the current challenges along with the future prospects of this burgeoning research field have been underscored. On the whole, the review depicts a fascinating landscape for the next-generation high-integration multifunctional optoelectronic systems.
-
Figure 1. Crystal structures of some typical 1D vdWMs. (a) Sb2S3. (b) Te. (c) Nb2Pd3Se8. (d) MoI3. (e) Se. (f) (TaSe4)2I. The members from the 1D vdWM family typically possess strong covalent bonds in only one direction, while being combined together by weak covalent/ionic bonds or van der Waals interactions in the other two directions.
Figure 2. (a) Schematic diagrams of the crystal structure of Bi2S3 viewed from various perspectives. (b) Calculated absorbance of Bi2S3 along a-axis (green line) and b-axis (blue line). (c) The corresponding linear dichroic ratio as a function of wavelength of the Bi2S3 crystal deduced from the absorbance. (d)-(e) Polar plots of the polarization angle-resolved photocurrent of the Bi2S3 nanowire device under 808 and 532 nm illuminations, respectively. The solid lines are the fitting results using the sinusoidal function. Reproduced from [81]. CC BY 4.0.
Figure 4. (a) Side view and (b) top view of the crystal structure of GeSe2. (c) Polarization angle-resolved Raman spectra of a GeSe2 nanosheet. (d) Theoretically calculated light absorption spectra along the x direction (blue line) and the y direction (red line). (e) Schematic diagram of the GeSe2 nanosheet photodetector and the measurement configuration for evaluating polarized photosensitivity. (f) Polar plot of the polarization angle-resolved photocurrent in a normalized way. Reprinted with permission from [120]. Copyright (2018) American Chemical Society.
Figure 5. (a)-(c) Linear dichroic ratio as a function of the channel width upon 405, 532, and 635 nm illuminations. (d)-(f) Linear dichroic ratio as a function of the channel height upon 405, 532, and 635 nm illuminations. (g)-(i) Anisotropic ratios of ACS (purple columns) and SCS (blue columns) as a function of the width/height of the Bi2S3 nanowire upon 405 nm, 532 nm, and 635 nm excitations. Reproduced from [97] with permission from the Royal Society of Chemistry.
Figure 6. (a) Schematic illustration of the SbI3/Sb2O3 core-shell heterojunction. The bottom images present the crystal structures of SbI3 (left) and Sb2O3 (right). (b) The theoretical absorbance curves along a-axis (solid lines) and b-axis (dashed lines) of the SbI3/Sb2O3 heterostructure, SbI3, and Sb2O3, respectively. (c) The corresponding linear dichroic ratio as a function of wavelength of the SbI3/Sb2O3 core-shell heterostructures (blue line), SbI3 (red line), and Sb2O3 (orange line). (d) Polar plots of the polarization angle dependent photocurrent upon 450 nm (blue stars) and 532 nm (red stars) illuminations. The blue and red lines are fitting curves by the function of Iph = Ipx cos2(
+ ) + Ipysin2( + ). (e) Polarization angle dependent photocurrent upon 450 and 532 nm illuminations in an orthogonal coordinate. [185] John Wiley & Sons. © 2020 WILEYVCH Verlag GmbH & Co. KGaA, Weinheim. Figure 7. (a) Schematic diagram of a 3D MoS2 phototransistor for polarization-discriminating photodetection. The polarization angle (
) is defined as the angle between the polarization direction of linearly polarized incident light and the axial direction of the MoS2 roll. (b) Normalized polarization angle dependent photocurrent of a 3D MoS2 phototransistor under different source-drain voltages, where Iph,0 represents the photocurrent measured under the polarization angle of 0. (c) The corresponding polar plots of the data in (b). (d) Responsivity as a function of light power density of 2D MoS2 photodetector (black line) and 3D MoS2 photodetectors with one winding (blue line) and two windings (red line). (e) The spacial distribution of the electric field magnitude in vicinity of a 3D MoS2 roll with one rolled-up winding under 395 nm illumination. (f) The average normalized electric field magnitude (E3D/E0) at the surface of 3D MoS2 rolls with various rolled-up windings. Reproduced from [195]. CC BY 4.0. Figure 8. (a) Output characteristics of the pristine (orange line) and polarized (blue line) black phosphorus phototransistors. The inset presents the device structure. (b) Normalized photocurrent of the device at the fresh (blue dots) and polarized (orange dots) states as a function of the polarization angle upon 520 (top panel) and 1450 (bottom panel) nm illuminations, respectively. (c) Schematic of black phosphorus in-plane p-n homojunction defined by ferroelectric domains. (d) Normalized photocurrent of the black phosphorus in-plane p-n homojunction as a function of the polarization angle upon 520 and 1450 nm illuminations, respectively. Polarization ratio (PR) is defined as the ratio of the maximum photocurrent to the minimum photocurrent. (e) Responsivity and PR of black phosphorus in-plane p-n homojunction defined by ferroelectric domains compared with black phosphorus, black phosphorus homojunctions defined by other methods, 2D heterojunctions, nanowires, and other anisotropic materials, showing that this work is at the leading level among most of the previously reported polarization photodetectors. Reproduced from [208]. CC BY 4.0.
Figure 9. (a) Comparison of the in-plane crystal structures of pristine MoS2 and MoS2 upon external tensile strain. (b) The Brillouin cells of pristine MoS2 and MoS2 upon external tensile strain. (c) Polarization angle-resolved photocurrent of a MoS2 photodetector under various strain values. Reprinted from [235], © 2019 Elsevier Ltd. All rights reserved. (d) Schematic diagram of the WSe2/CrOCl photodetector. (e) Photoswitching curves of the WSe2/CrOCl device under 532 nm illuminations with different polarization angles. (f) Polar plot of the photocurrent as function of polarization angle under 532 nm illumination. [236] John Wiley & Sons.© 2022 WileyVCH GmbH.
Figure 10. (a) Optical image and SEM images of a black phosphorus photodetector integrating a bowtie aperture array. (b) Polarization ratio as a function of light power of black phosphorus photodetectors with and without bowtie apertures upon 633 and 1550 nm illuminations. (c) Computed absorption as a function of wavelength along the armchair and zigzag directions of black phosphorus integrated with bowtie apertures. (d) Top view of the electric field distribution in vicinity of a bowtie aperture under illuminations along the armchair (left) and zigzag (right) directions, respectively. Reprinted with permission from [252]. Copyright (2018) American Chemical Society. (e) Schematic depiction of a graphene phototransistor with integrated plasmonic cavity. (f) Polarization angle dependent photoresponse in a polar plot of the graphene phototransistor integrated with plasmonic cavity under 1550 nm illumination. Reprinted from [253], with the permission of AIP Publishing. (g) 3D schematic diagram of a metasurface-mediated graphene photodetector. (h) Polarization angle dependent photovoltage of graphene photodetectors with metasurfaces of various geometries. Reproduced from [257]. CC BY 4.0. (i) Schematic illustration depicting the graphene photodetector integrated with monolithic metamaterial. (j) Polarization angle dependent photovoltage upon illuminations with frequencies of 2.52 and 3.11 THz. Reprinted with permission from [259]. Copyright (2022) American Chemical Society.
Figure 11. (a) Schematic diagram depicting the fabrication process of the GeSe sub-wavelength array photodetector and the measurement configuration. (b) Linear dichroic ratios of the pristine GeSe photodetector and the GeSe sub-wavelength array photodetector upon illuminations with various wavelengths. (c) Linear dichroic ratio as a function of period width with a series of nanostrip width/period width ratios. Calculated electric field intensity distribution of light of (d) the pristine GeSe flake and (e) the GeSe sub-wavelength array upon 800 nm irradiation. Reprinted from [264],© 2023 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
Figure 12. (a) Schematic diagram illustrating the principle of multiplexing optical communications based on a polarization-discriminating Bi2S3 nanowire photodetector. (b) Schematic diagram of the input light intensity signal and the corresponding polarization state signal from the signal output end. The
symbol represents perpendicular polarization, and the symbol represents parallel polarization. The weak light is denoted by 0’, and the strong light is denoted by 1’. (c) Output current of the Bi2S3 nanowire photodetector when 10011100’ and 00110110’ are transmitted synchronously through light intensity channel and polarization state channel, respectively. (d) The theoretical decoupled binary signal extracted from the output current in (c). Reproduced from [97] with permission from the Royal Society of Chemistry. Figure 14. Contrast-enhanced polarization imaging based on Te photodetectors. (a) Schematic illustration of the imaging configuration based on a Te photodetector. (b) Schematic of the polarization imaging mechanism for extract the degree of linear polarization (DoLP). (c) Normalized imaging contrast of S0 and DoLP by using various devices as light-sensing units. (d) Imaging DoLP result using the nonpolarized 2H-MoTe2 device upon 1.55 m illumination. (e)-(f) Imaging DoLP results using the Te photodetector upon 1.55 and 2.3 m illuminations, respectively. Reproduced from [277]. CC BY 4.0.
Table 1. A summary of the performance metrics of polarized photodetectors built of 1D vdWMs.
Devices R (A W-1) EQE (%) D (Jones) Rise/decay time Dichroic ratio References CNTa 28 mV/Wb N. A.c 4.69 103 N. A./32 s 2 [94] CNT 0.1 V/Wb N. A. N. A. N. A. 2 [85] CNT N. A. N. A. N. A. N. A. 5.06 [86] CNT 0.33 V/Wb 0.8 4.33 106 N. A. 16.4 [87] CNT 0.2925 N. A. N. A. 42 ms/34 ms 2 [88] Te 6650 N. A. 1.23 1012 31.7 s/25.5 s 5.8 [89] Te/MoSe2 2.106 645 2.91 1013 25 ms/22 ms 16.39 [90] Te/WS2 27.8 N. A. 9.5 1012 19.3 ms/17.6 ms 2.1 [91] WS2/Te 402 N. A. 9.28 1013 1.7 ms/3.2 ms 2.5 [84] Te 0.17 N. A. 4 109 33 ms/33 ms 2.8 [82] Te 327 26221 6.08 107 22 ms/23 ms 2.05 [93] Bi2S3 32 N. A. 4.36 1011 20 ms/10 ms 1.9 [81] Bi2S3 4.21 981.76 1.64 1010 12.25 ms/12.25 ms 1.79 [96] Bi2S3 23760 5.55 106 3.68 1013 1 ms/4.5 ms 2.4 [97] Sb2S3 0.3434 N. A. N. A. 0.47 ms/0.68 ms 2.54 [98] Sb2Se3 5.1 N. A. 4.4 109 32 ms/5 ms 1.63 [99] Sb2Se3 3.61 841.24 2.36 1011 30 ms/32 ms 1.71 [100] Sb2Se3/GaN 0.012 N. A. 5 1010 74 ms/75 ms 1.37 [83] Sb2Se3 4.39 655 9.63 1010 27 ms/27 ms 3.95 [101] SnIISnIVS3 290.5 8.4 104 5.2 1010 <0.4 s/< 0.2 s 1.3 [102] BiSeI 5.88 1.3 103 2.76 108 0.11 ms/0.17 ms 1.77 [63] Nb2Pd3Se8 2.74 10-3 N. A. 4.73 106 60 ms/55 ms 1.42 [103] MoS2/Ta2Pd3Se8 2.66 970 3.5 108 1.3 s/2.2 s 4.79 [104] CNT: carbon nanotube. The output signals of these devices are photovoltage. N. A.: not applicable. Table 2. A summary of the performance metrics of polarized photodetectors built of 2D vdWMs with in-plane anisotropy.
Devices R (A/W) EQE (%) D (Jones) Rise/decay time Dichroic ratio References BP 1.43 52 8.67 108 1.8 ns/1.68 ns 25 [125] Black arsenic 0.44 56 N. A. N. A. 2.3 [126] b-AsPa 0.190 N. A.b N. A. N. A. 14 [127] BP/ReS2 1.8 10-3 0.14 N. A. N. A. 6.44 [128] HgCdTe/BP 0.168 N. A. 7.93 1010 0.15 ms/0.11 ms 1.45 [129] b-AsP/WS2/b-AsP 7.2 10-4 N. A. >107 0.2 ms/0.2 ms 55 [71] MoTe2 4 10-4 N. A. 1.07 108 31.7 s/N. A. 2.72 [130] WTe2 N. A. N. A. N. A. N. A. 1.1 [131] MoTe2/ReS2 0.54 N. A. 1.32 109 2.4 s/3 s 1.03 [132] 2H-MoTe2/1T-MoTe2/SnSe2 0.06423 N. A. 2.2 1011 9 ms/14 ms 2.02 [133] MoTe2/WS2/MoTe2 1.06 N. A. 5.64 1011 48 s/50 s 13 [134] TiS3 2500 N. A. N. A. N. A. 4 [135] ZrS3 5.25 N. A. 4.2 109 117 s/590 s 1.67 [136] ZrSe3 0.0119 N. A. 5.24 106 2.8 s/30 s 1.1 [137] NbS3 0.0247 N. A. 5.7 108 11.6 s/9.4 s 3.95 [138] TiS3/Si 0.0348 N. A. 1.04 1010 <0.02 s 4.56 [139] TiS3/MoS2 48666 N. A. 4.96 1014 0.4 s/0.4 s 1.17 [140] Nb1-xTixS3 2978 N. A. 3.23 1013 0.15 s/0.5 s 1.75 [141] HfTe5 17 V/Wc N. A. 2.7 108 0.749 ms/N. A. 1.2 [142] -InSe 194 N. A. 1.45 1012 620 s/540 s 5.66 [143] -InSe 127 4 104 2.73 1011 N. A. 2.07 [144] GeAs/InSe 1.2 N. A. 2 1011 25 ms/25 ms 18 [123] SiP 2.02 N. A. 1.88 1010 N. A. 1.4 [145] SiP2 0.31 105 1.28 1012 3 ms/3.5 ms 1.6 [146] SiAs 0.016 1.2 103 1 1010 <1 s/< 1 s 5.3 [147] GeAs N. A. N. A. N. A. 52 ms/55 ms 4.4 [148] GeAs2 N. A. N. A. N. A. N. A. 2 [149] GeAs/WS2 0.509 99.8 1.08 1012 1.5 ms/1.3 ms 4.5 [150] GeS N. A. N. A. N. A. N. A. 1.45 [152] GeS2 N. A. N. A. N. A. N. A. 2.1 [121] GeSe 1.6 105 3.9 107 2.9 1013 0.28 s/0.51 s 1.3 [153] GeSe2 N. A. N. A. N. A. N. A. 3.4 [120] SnS 310.5 8.56 104 N. A. 0.45 s/3.14 s 1.17 [154] SnSe 9.27 2077 4.08 1010 0.28 s/0.286 s 2.31 [155] GeSe/MoS2 0.105 24.2 1.46 1010 0.11 s/0.75 s 2.95 [156] ReS2 3.59 103 N. A. N. A. N. A. 4.15 [157] PdSe2 1.3 10-3 N. A 2.55 107 4 s/14 s 1.3 [158] PdSe2/FA1-xCsxPbI3 0.313 52.2 2.72 1013 3.5 s/4 s 6.04 [159] WS2/ReS2 1.85 10-3 N. A. N. A. 1.3 ms/0.85 ms 1.76 [160] ReS2/ReSe2 126.56 N. A. 3.16 1011 6 s/8.9 s 2 [161] WSe2/ReSe2 0.57 N. A. 109 2 s/2.5 s 2 [162] GaSe/ReS2 0.17 10 5 109 0.261 s/0.274 s 3.03 [163] GaAs/ReS2 6.86 1639 1.2 109 20 s/30 s 1.71 [164] TaIrTe4 3.4 10-4 N. A. 2.7 107 25.73 s/N. A. 1.88 [165] NbOI2 5.92 N. A. N. A. 3 s/4 s 1.7 [72] Ta2NiSe5 44 N. A. 1.2 1012 98 ms/82 ms 3.24 [166] CrPS4 1.37 10-7 N. A. 5.82 107 <2 s/ < 2 s 1.33 [167] PdPS 1.18 103 N. A. 4.4 1011 1.4 ms/1.2 ms 3.7 [168] ZrGeTe4 0.62565 145.9 1.73 107 4 ms/8 ms 2.04 [169] MnBi2Te4 0.76 N. A. N. A. 1 s/1.3 s >30 [73] Ta2NiS5 2.5 10-3 N. A. N. A. 31.1 s/N. A. 1.31 [170] NbIrTe4 9.48 N. A. N. A. 0.46 s/7.2 s 14.1 [171] TaIrTe4/WSe2 9.1 2776 3.89 1012 22.5 ms/25.1 ms 1.75 [172] WSe2/TaIrTe4/MoS2 1.48 N. A. 2.39 1011 12.44 ms/16.52 ms 9.1 [173] b-AsP: Black arsenic phosphorus. N. A.: not applicable. The output signals of these devices are photovoltage. Table 3. A summary of the performance metrics of low-dimensional vdWM polarized photodetectors integrated with various polarization strategies.
Devices R (A/W) EQE (%) D (Jones) Rise/decay time Dichroic ratio References Bi2S3 nanowire 23760 5.55 106 3.68 1013 1 ms/4.5 ms 2.4 [97] Core-shell SbI3/Sb2O3 heterostructure 1.11 10-3 0.307 1.8 109 19.61 ms/20.57 ms 3.14 [185] 3D MoS2 23.8 7486 N. A.a 0.4 s/0.04 s 1.64 [195] BP homojunction defined by ferroelectric domains 1.06 90.8 1.27 1011 0.361 ms/0.362 ms 288 [208] Strained MoS2 nanosheet 3.6 N. A. 2 1011 0.4 ms/0.7 ms 2.29 [235] MoS2/CrOCl heterostructure N. A. N. A. N. A. N. A. 1.23 [239] WSe2/CrOCl heterostructure 5.28 N. A. N. A. <0.4 ms 1.27 [236] BP with bowtie Ti/Au antennas 0.0142 N. A. N. A. <90 s 8.7 [252] MoS2 with elliptical Au antennas 26 N. A. N. A. N. A. 1.45 [254] Metamaterial-integrated graphene 3.16 V/Wb N. A. N. A. 25 ms/N. A. 115 [259] Graphene on Au nanogratings 2.95 10-3 N. A. 2.8 106 39 ms/32.1 ms 6.65 [256] GeSe-based SWA 30 N. A. N. A. N. A. 18 [264] N. A.: not applicable. The output signals of these devices are photovoltage. -
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Electric field effect in atomically thin carbon films Science 306 666-9 doi: 10.1126/science.1102896 [2] Yao J D, Zheng Z Q, Yang G W 2019 Production of large-area 2D materials for high-performance photodetectors by pulsed-laser deposition Prog. Mater. Sci. 106 100573 doi: 10.1016/j.pmatsci.2019.100573 [3] Fei H, Liu R, Zhang Y, Wang H, Wang M, Wang S, Ni M, Wu Z, Wang J 2023 Extending MoS2-based materials into the catalysis of non-acidic hydrogen evolution: challenges, progress, and perspectives Mater. Futures 2 022103 doi: 10.1088/2752-5724/acc51d [4] Qin J K, Wang C, Zhen L, Li L J, Xu C Y, Chai Y 2021 Van der Waals heterostructures with one-dimensional atomic crystals Prog. Mater. Sci. 122 100856 doi: 10.1016/j.pmatsci.2021.100856 [5] Mu H, Yu W, Yuan J, Lin S, Zhang G 2022 Interface and surface engineering of black phosphorus: a review for optoelectronic and photonic applications Mater. Futures 1 012301 doi: 10.1088/2752-5724/ac49e3 [6] An L, Yu Y, Cai Q, Mateti S, Li L H, Chen Y I 2023 Hexagonal boron nitride nanosheets: preparation, heat transport property and application as thermally conductive fillers Prog. Mater. Sci. 138 101154 doi: 10.1016/j.pmatsci.2023.101154 [7] Sun C B, Zhong Y W, Fu W J, Zhao Z Q, Liu J, Ding J, Han X P, Deng Y D, Hu W B, Zhong C 2020 Tungsten disulfide-based nanomaterials for energy conversion and storage Tungsten 2 109-33 doi: 10.1007/s42864-020-00038-6 [8] Xing S, Zhou J, Zhang X, Elliott S, Sun Z 2023 Theory, properties and engineering of 2D magnetic materials Prog. Mater. Sci. 132 101036 doi: 10.1016/j.pmatsci.2022.101036 [9] Wang C, Zhang L, Zhang Z, Zhao R, Zhao D, Ma R, Yin L 2020 Layered materials for supercapacitors and batteries: applications and challenges Prog. Mater. Sci. 118 100763 doi: 10.1016/j.pmatsci.2020.100763 [10] Balandin A A, Kargar F, Salguero T T, Lake R K 2022 One-dimensional van der Waals quantum materials Mater. Today 55 74-91 doi: 10.1016/j.mattod.2022.03.015 [11] Yao J, Yang G 2022 2D layered material alloys: synthesis and application in electronic and optoelectronic devices Adv. Sci. 9 2103036 doi: 10.1002/advs.202103036 [12] Angizi S, Alem S A A, Hasanzadeh Azar M, Shayeganfar F, Manning M I, Hatamie A, Pakdel A, Simchi A 2022 A comprehensive review on planar boron nitride nanomaterials: from 2D nanosheets towards 0D quantum dots Prog. Mater. Sci. 124 100884 doi: 10.1016/j.pmatsci.2021.100884 [13] Yao J, Yang G 2020 2D materials broadband photodetectors Nanoscale 12 454-76 doi: 10.1039/C9NR09070C [14] Ares P, Novoselov K S 2022 Recent advances in graphene and other 2D materials Nano Mater. Sci. 4 3-9 doi: 10.1016/j.nanoms.2021.05.002 [15] Yao J D, Yang G W 2021 All-2D architectures toward advanced electronic and optoelectronic devices Nano Today 36 101026 doi: 10.1016/j.nantod.2020.101026 [16] Liu X, Kang W, Li X, Zeng L, Li Y, Wang Q, Zhang C 2023 Solid-state mechanochemistry advancing two dimensional materials for lithium-ion storage applications: a mini review Nano Mater. Sci. 5 210-27 doi: 10.1016/j.nanoms.2022.03.005 [17] Yao J, Yang G W 2021 Multielement 2D layered material photodetectors Nanotechnology 32 392001 doi: 10.1088/1361-6528/ac0a16 [18] Liu H, You C Y, Li J, Galligan P R, You J, Liu Z, Cai Y, Luo Z 2021 Synthesis of hexagonal boron nitrides by chemical vapor deposition and their use as single photon emitters Nano Mater. Sci. 3 291-312 doi: 10.1016/j.nanoms.2021.03.002 [19] Yao J, Yang G 2022 Van der Waals heterostructures based on 2D layered materials: fabrication, characterization, and application in photodetection J. Appl. Phys. 131 161101 doi: 10.1063/5.0087503 [20] Zhao Y, Zheng X, Gao P, Li H 2023 Recent advances in defect-engineered molybdenum sulfides for catalytic applications Mater. Horiz. 10 3948-99 doi: 10.1039/D3MH00462G [21] Chen C, et al 2023 Growth of single-crystal black phosphorus and its alloy films through sustained feedstock release Nat. Mater. 22 717-24 doi: 10.1038/s41563-023-01516-1 [22] Lu J, He Y, Ma C, Ye Q, Yi H, Zheng Z, Yao J, Yang G 2023 Ultrabroadband imaging based on wafer-scale tellurene Adv. Mater. 35 2211562 doi: 10.1002/adma.202211562 [23] Wu W, et al 2023 High-speed carbon nanotube photodetectors for 2 m communications ACS Nano 17 15155-64 doi: 10.1021/acsnano.3c04619 [24] Koepfli S M, et al 2023 Metamaterial graphene photodetector with bandwidth exceeding 500 gigahertz Science 380 1169-74 doi: 10.1126/science.adg8017 [25] Dodda A, et al 2022 Active pixel sensor matrix based on monolayer MoS2 phototransistor array Nat. Mater. 21 1379-87 doi: 10.1038/s41563-022-01398-9 [26] Zhu J, et al 2023 Low-thermal-budget synthesis of monolayer molybdenum disulfide for silicon back-end-of-line integration on a 200mm platform Nat. Nanotechnol. 18 456-63 doi: 10.1038/s41565-023-01375-6 [27] Han W, et al 2023 Phase-controllable large-area two-dimensional In2Se3 and ferroelectric heterophase junction Nat. Nanotechnol. 18 55-63 doi: 10.1038/s41565-022-01257-3 [28] Nie J H, Li R, Miao M P, Fu Y S, Zhang W 2023 Atomically constructing a van der Waals heterostructure of CrTe2/Bi2Te3 by molecular beam epitaxy Mater. Futures 2 021001 doi: 10.1088/2752-5724/acbd64 [29] Wang F, Mao J 2023 2D TaSe2 as a zero-strain and high-performance anode material for Li+ storage Mater. Horiz. 10 1780-8 doi: 10.1039/D3MH00072A [30] Ye Q, Xu D, Cai B, Lu J, Yi H, Ma C, Zheng Z, Yao J, Ouyang G, Yang G 2022 High-performance hierarchical O-SnS/I-ZnIn2S4 photodetectors by leveraging the synergy of optical regulation and band tailoring Mater. Horiz. 9 2364-75 doi: 10.1039/D2MH00612J [31] Zou T, et al 2023 High-performance solution-processed 2D P-type WSe2 transistors and circuits through molecular doping Adv. Mater. 35 2208934 doi: 10.1002/adma.202208934 [32] Noh G, et al 2022 Large memory window of van der Waals heterostructure devices based on MOCVD-grown 2D layered Ge4Se9 Adv. Mater. 34 2204982 doi: 10.1002/adma.202204982 [33] Jo H K, et al 2023 Wafer-scale production of two-dimensional tin monoselenide: expandable synthetic platform for van der Waals semiconductor-based broadband photodetectors ACS Nano 17 1372-80 doi: 10.1021/acsnano.2c09854 [34] Lu J, Deng Z, Ye Q, Zheng Z, Yao J, Yang G 2022 Promoting the performance of 2D material photodetectors by dielectric engineering Small Methods 6 2101046 doi: 10.1002/smtd.202101046 [35] Maiti R, et al 2020 Strain-engineered high-responsivity MoTe2 photodetector for silicon photonic integrated circuits Nat. Photon. 14 578-84 doi: 10.1038/s41566-020-0647-4 [36] Liu L, Sun Y, Huang X, Liu C, Tang Z, Zeng S, Zhang D W, Deng S, Zhou P 2022 Ultrafast flash memory with large self-rectifying ratio based on atomically thin MoS2 channel transistor Mater. Futures 1 025301 doi: 10.1088/2752-5724/ac7067 [37] Ding J Y, Liu Z T, Huang Z, Jiang Z C, Yang Y C, Liu Z H, Liu J S, Guo Y F, Shen D W 2023 Investigation of the room-temperature photoelectron spectroscopy of type-II Weyl semimetal candidate WTe2 Tungsten 5 350-6 doi: 10.1007/s42864-023-00209-1 [38] Jang H, Liu C, Hinton H, Lee M H, Kim H, Seol M, Shin H J, Park S, Ham D 2020 An atomically thin optoelectronic machine vision processor Adv. Mater. 32 2002431 doi: 10.1002/adma.202002431 [39] Li N, et al 2020 Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors Nat. Electron. 3 711-7 doi: 10.1038/s41928-020-00475-8 [40] Liu M, et al 2021 Controlled growth of large-sized and phase-selectivity 2D GaTe crystals Small 17 2007909 doi: 10.1002/smll.202007909 [41] Chang Y R, et al 2023 Shift-current photovoltaics based on a non-centrosymmetric phase in in-plane ferroelectric SnS Adv. Mater. 35 2301172 doi: 10.1002/adma.202301172 [42] Feng R, et al 2023 Selective control of phases and electronic structures of monolayer TaTe2 Adv. Mater. 35 2302297 doi: 10.1002/adma.202302297 [43] Li L, Wang W, Gong P, Zhu X, Deng B, Shi X, Gao G, Li H, Zhai T 2018 2D GeP: an unexploited low-symmetry semiconductor with strong in-plane anisotropy Adv. Mater. 30 1706771 doi: 10.1002/adma.201706771 [44] Xie X, et al 2023 Observation of optical anisotropy and a linear dichroism transition in layered silicon phosphide Nanoscale 15 12388-97 doi: 10.1039/D3NR01765F [45] Zhou L, et al 2022 Unconventional excitonic states with phonon sidebands in layered silicon diphosphide Nat. Mater. 21 773-8 doi: 10.1038/s41563-022-01285-3 [46] Yang Y, et al 2021 Intrinsic toughening and stable crack propagation in hexagonal boron nitride Nature 594 57-61 doi: 10.1038/s41586-021-03488-1 [47] Knobloch T, et al 2021 The performance limits of hexagonal boron nitride as an insulator for scaled CMOS devices based on two-dimensional materials Nat. Electron. 4 98-108 doi: 10.1038/s41928-020-00529-x [48] Li D, Xu Z, Yang M, Zhong J, Hao W, Du Y, Zhuang J 2023 Bandgap engineering and photodetector applications in Bi(I1-xBrx3 single crystals Appl. Phys. Lett. 123 011102 doi: 10.1063/5.0150907 [49] Grzeszczyk M, et al 2023 Strongly correlated exciton-magnetization system for optical spin pumping in CrBr3 and CrI3 Adv. Mater. 35 2209513 doi: 10.1002/adma.202209513 [50] Wu J, Yao Y, Lin M L, Rsner M, Du Z, Watanabe K, Taniguchi T, Tan P H, Haas S, Wang H 2022 Spin-phonon coupling in ferromagnetic monolayer chromium tribromide Adv. Mater. 34 2108506 doi: 10.1002/adma.202108506 [51] Zhang C, et al 2023 Single-crystalline van der Waals layered dielectric with high dielectric constant Nat. Mater. 22 832-7 doi: 10.1038/s41563-023-01502-7 [52] Lin Y, Xinxin P, Zhenhai W, Haitao H 2022 Solid-state Z-scheme assisted hydrated tungsten trioxide/ZnIn2S4 photocatalyst for efficient photocatalytic H2 production Mater. Futures 1 035103 doi: 10.1088/2752-5724/ac7faf [53] Li J, et al 2022 Chemical vapor deposition of quaternary 2D BiCuSeO p-type semiconductor with intrinsic degeneracy Adv. Mater. 34 2207796 doi: 10.1002/adma.202207796 [54] Fang Y, Yang K, Zhang E, Liu S, Jia Z, Zhang Y, Wu H, Xiu F, Huang F 2022 Quasi-1D van der Waals antiferromagnetic CrZr4Te14 with large in-plane anisotropic negative magnetoresistance Adv. Mater. 34 2200145 doi: 10.1002/adma.202200145 [55] Majed A, Kothakonda M, Wang F, Tseng E N, Prenger K, Zhang X, Persson P O , Wei J, Sun J, Naguib M 2022 Transition metal carbo-chalcogenide TMCC:’ a new family of 2D materials Adv. Mater. 34 2200574 doi: 10.1002/adma.202200574 [56] Ye Q, et al 2023 Quaternary AgInP2S6: a prospective robust van der Waals semiconductor for high-speed photodetectors and their application in high-temperature-proof optical communications Adv. Opt. Mater. 11 2300463 doi: 10.1002/adom.202300463 [57] Zeng Y, et al 2022 2D FeOCl: a highly in-plane anisotropic antiferromagnetic semiconductor synthesized via temperature-oscillation chemical vapor transport Adv. Mater. 34 2108847 doi: 10.1002/adma.202108847 [58] Zhang Y, et al 2023 Ternary GePdS3: 1D van der Waals nanowires for integration of high-performance flexible photodetectors ACS Nano 17 8743-54 doi: 10.1021/acsnano.3c01977 [59] Chen J, et al 2022 A submicrosecond-response ultraviolet-visible-near-infrared broadband photodetector based on 2D tellurosilicate InSiTe3 ACS Nano 16 7745-54 doi: 10.1021/acsnano.1c11628 [60] Guo T, et al 2023 High-performance flexible broadband photodetectors enabled by 2D Ta2NiSe5 nanosheets 2D Mater. 10 025004 doi: 10.1088/2053-1583/acb1c3 [61] Sun Z, Yu P, Wang F, Wang F, Yao Y, Zhan X, Wang Z, He J 2022 High-performance ultraviolet photodetectors based on 2D layered In4/3P2Se6 nanoflakes Appl. Phys. Lett. 120 103506 doi: 10.1063/5.0085766 [62] Lu Y, et al 2023 Synthesis and broadband photodetection of a P-Type 1D Van der Waals semiconductor HfSnS3 Small 19 2303903 doi: 10.1002/smll.202303903 [63] Li Y, et al 2023 Polarization-sensitive photodetector based on high crystallinity Quasi-1D BiSeI nanowires synthesized via chemical vapor deposition Small 19 2302623 doi: 10.1002/smll.202302623 [64] Shi X B, He P, Zhao W W 2023 Dual topology in van der Waals-type superconductor Nb2S2C Tungsten 5 357-63 doi: 10.1007/s42864-022-00135-8 [65] Boix-Constant C, Maas-Valero S, Ruiz A M, Rybakov A, Konieczny K A, Pillet S, Baldov J J, Coronado E 2022 Probing the spin dimensionality in single-layer CrSBr Van Der Waals heterostructures by magneto-transport measurements Adv. Mater. 34 2204940 doi: 10.1002/adma.202204940 [66] Zong A, et al 2023 Spin-mediated shear oscillators in a van der Waals antiferromagnet Nature 620 988-93 doi: 10.1038/s41586-023-06279-y [67] Xu Y, et al 2023 Scalable integration of hybrid high- dielectric materials on two-dimensional semiconductors Nat. Mater. 22 1078-84 doi: 10.1038/s41563-023-01626-w [68] Choi C, et al 2017 Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array Nat. Commun. 8 1664 doi: 10.1038/s41467-017-01824-6 [69] Lien M B, Liu C H, Chun I Y, Ravishankar S, Nien H, Zhou M, Fessler J A, Zhong Z, Norris T B 2020 Ranging and light field imaging with transparent photodetectors Nat. Photon. 14 143-8 doi: 10.1038/s41566-019-0567-3 [70] Bullock J, et al 2018 Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature Nat. Photon. 12 601-7 doi: 10.1038/s41566-018-0239-8 [71] Deng W, et al 2022 Switchable unipolar-barrier Van der Waals heterostructures with natural anisotropy for full linear polarimetry detection Adv. Mater. 34 2203766 doi: 10.1002/adma.202203766 [72] Fang Y, Wang F, Wang R, Zhai T, Huang F 2021 2D NbOI2: a chiral semiconductor with highly in-plane anisotropic electrical and optical properties Adv. Mater. 33 2101505 doi: 10.1002/adma.202101505 [73] Guo C, Chen Z, Yu X, Zhang L, Wang X, Chen X, Wang L 2022 Ultrasensitive anisotropic room-temperature terahertz photodetector based on an intrinsic magnetic topological insulator MnBi2Te4 Nano Lett. 22 7492-8 doi: 10.1021/acs.nanolett.2c02434 [74] Klein J, et al 2023 The bulk van der Waals layered magnet CrSBr is a quasi-1D material ACS Nano 17 5316-28 doi: 10.1021/acsnano.2c07316 [75] Guo J, Xiao Z, Wu Z, Liao X, Wan S, Fu X, Zhou Y 2022 Quasi-1D ZrS3 as an anisotropic nano-reflector for manipulating light-matter interactions Adv. Opt. Mater. 10 2201030 doi: 10.1002/adom.202201030 [76] Qin J K, et al 2020 Raman response and transport properties of tellurium atomic chains encapsulated in nanotubes Nat. Electron. 3 141-7 doi: 10.1038/s41928-020-0365-4 [77] Kim T Y, et al 2022 Colloidal synthesis of 1-D van der Waals material Nb2Se9: study of synergism of coordinating agent in a co-solvent system Nanoscale 14 17365-71 doi: 10.1039/D2NR04513C [78] Das B, Dolui K, Paramanik R, Kundu T, Maity S, Ghosh A, Palit M, Datta S 2023 Ultrahigh breakdown current density of van der Waals one dimensional PdBr2 Appl. Phys. Lett. 122 263504 doi: 10.1063/5.0150243 [79] Kargar F, et al 2022 Elemental excitations in MoI3 one-dimensional van der Waals nanowires Appl. Phys. Lett. 121 221901 doi: 10.1063/5.0129904 [80] Du L, et al 2021 Giant anisotropic photonics in the 1D van der Waals semiconductor fibrous red phosphorus Nat. Commun. 12 4822 doi: 10.1038/s41467-021-25104-6 [81] Yang W, et al 2021 Low-noise dual-band polarimetric image sensor based on 1D Bi2S3 nanowire Adv. Sci. 8 2100075 doi: 10.1002/advs.202100075 [82] Shui Z D, Wang S, Yang Z, Wang D, Tian B Z, Luo S, Wang Z, Yang L 2023 Polarization-sensitive self-powered tellurium microwire near-infrared photodetector Appl. Phys. Lett. 122 101902 doi: 10.1063/5.0142575 [83] Wan P, Jiang M, Wei Y, Xu T, Liu Y, Xia S, Su L, Shi D, Fang X, Kan C 2023 Junction-enhanced polarization sensitivity in self-powered near-infrared photodetectors based on Sb2Se3 microbelt/n-GaN heterojunction Adv. Opt. Mater. 11 2202080 doi: 10.1002/adom.202202080 [84] Luo Z, et al 2023 High-performance and polarization-sensitive imaging photodetector based on WS2/Te tunneling heterostructure Small 19 2207615 doi: 10.1002/smll.202207615 [85] He X, et al 2016 Wafer-scale monodomain films of spontaneously aligned single-walled carbon nanotubes Nat. Nanotechnol. 11 633-8 doi: 10.1038/nnano.2016.44 [86] Balestrieri M, et al 2017 Polarization-sensitive single-wall carbon nanotubes all-in-one photodetecting and emitting device working at 1.55 m Adv. Funct. Mater. 27 1702341 doi: 10.1002/adfm.201702341 [87] Zubair A, Wang X, Mirri F, Tsentalovich D E, Fujimura N, Suzuki D, Soundarapandian K P, Kawano Y, Pasquali M, Kono J 2018 Carbon nanotube woven textile photodetector Phys. Rev. Mater. 2 015201 doi: 10.1103/PhysRevMaterials.2.015201 [88] Zhou H, Wang J, Ji C, Liu X, Han J, Yang M, Gou J, Xu J, Jiang Y 2019 Polarimetric Vis-NIR photodetector based on self-aligned single-walled carbon nanotubes Carbon 143 844-50 doi: 10.1016/j.carbon.2018.11.072 [89] Peng M, et al 2021 Blackbody-sensitive room-temperature infrared photodetectors based on low-dimensional tellurium grown by chemical vapor deposition Sci. Adv. 7 eabf7358 doi: 10.1126/sciadv.abf7358 [90] Zhao Q, Gao F, Chen H, Gao W, Xia M, Pan Y, Shi H, Su S, Fang X, Li J 2021 High performance polarization-sensitive self-powered imaging photodetectors based on a p-Te/n-MoSe2 van der Waals heterojunction with strong interlayer transition Mater. Horiz. 8 3113-23 doi: 10.1039/D1MH01287H [91] Zhou Y, Han L, Song Q, Gao W, Yang M, Zheng Z, Huang L, Yao J, Li J 2022 Hybrid 1D/2D heterostructure with electronic structure engineering toward high-sensitivity and polarization-dependent photodetector Sci. China Mater. 65 732-40 doi: 10.1007/s40843-021-1847-7 [92] Ma W, et al 2022 Ultrabroadband tellurium photoelectric detector from visible to millimeter wave Adv. Sci. 9 2103873 doi: 10.1002/advs.202103873 [93] Wei X, Wang S, Zhang N, Li Y, Tang Y, Jing H, Lu J, Xu Z, Xu H 2023 Single-orientation epitaxy of quasi-1D tellurium nanowires on M-plane sapphire for highly uniform polarization sensitive short-wave infrared photodetection Adv. Funct. Mater. 33 2300141 doi: 10.1002/adfm.202300141 [94] Nanot S, Cummings A W, Pint C L, Ikeuchi A, Akiho T, Sueoka K, Hauge R H, Lonard F, Kono J 2013 Broadband, polarization-sensitive photodetector based on optically-thick films of macroscopically long, dense and aligned carbon nanotubes Sci. Rep. 3 1335 doi: 10.1038/srep01335 [95] Xu X, Fan C, Wang Y, Qi Z, Dai B, Jiang H, Wang S, Zhang Q 2020 In-plane epitaxy of Bi2S3 nanowire arrays for ultrasensitive NIR photodetectors Phys. Status Solidi 14 2000384 doi: 10.1002/pssr.202000384 [96] Wang H, Liu R, Zhang S, Wang Y, Luo H, Sun X, Ren Y, Lei W 2022 Controlled growth of high-quality Bi2S3 nanowires and their application in near-infrared photodetection Opt. Mater. 134 113174 doi: 10.1016/j.optmat.2022.113174 [97] Yi H, et al 2023 Quantum tailoring for polarization-discriminating Bi2S3 nanowire photodetectors and their multiplexing optical communication and imaging applications Mater. Horiz. 10 3369-81 doi: 10.1039/D3MH00733B [98] Zhao K, et al 2021 Direct polarimetric image sensor and wide spectral response based on quasi-1D Sb2S3 nanowire Adv. Funct. Mater. 31 2006601 doi: 10.1002/adfm.202006601 [99] Ma Z, et al 2019 Chemical vapor deposition growth of high crystallinity Sb2Se3 nanowire with strong anisotropy for near-infrared photodetectors Small 15 1805307 doi: 10.1002/smll.201805307 [100] Zhang S, Wang H, Kirchner M M, Liu J, Luo H, Ren Y, Yuan C, Hattori H T, Miroshnichenko A E, Lei W 2022 Ultrathin Sb2Se3 nanowires for polarimetric imaging photodetectors with a high signal/noise ratio Adv. Mater. Interfaces 9 2200448 doi: 10.1002/admi.202200448 [101] Zhang S, Wang H, Pan W, Luo H, Ren Y, Liang Y, Tan J, Yuan C, Lei W 2023 Polarization-sensitive near-infrared photodetectors based on quasi-one-dimensional Sb2Se3 nanotubes J. Alloys Compd. 937 168284 doi: 10.1016/j.jallcom.2022.168284 [102] Yang H, Pan L, Wang X, Deng H X, Zhong M, Zhou Z, Lou Z, Shen G, Wei Z 2019 Mixed-valence-driven quasi-1D SnIISnIVS3 with highly polarization-sensitive UV-vis-NIR photoresponse Adv. Funct. Mater. 29 1904416 doi: 10.1002/adfm.201904416 [103] Qin Q, et al 2023 Self-powered, ultra-broadband, and polarization-sensitive photodetectors based on 1D van der Waals layered material Nb2Pd3Se8 J. Mater. Chem. A 11 11517-25 doi: 10.1039/D3TA01223A [104] Ke S, et al 2023 Ultrafast polarization sensitive photodetector based on MoS2/Ta2Pd3Se8 hybrid dimensional heterostructure Adv. Opt. Mater. 11 2300593 doi: 10.1002/adom.202300593 [105] Li Z, Xu B, Liang D, Pan A 2020 Polarization-dependent optical properties and optoelectronic devices of 2D materials Research 2020 5464258 doi: 10.34133/2020/5464258 [106] Wang X, Jones A M, Seyler K L, Tran V, Jia Y, Zhao H, Wang H, Yang L, Xu X, Xia F 2015 Highly anisotropic and robust excitons in monolayer black phosphorus Nat. Nanotechnol. 10 517-21 doi: 10.1038/nnano.2015.71 [107] Chen Y, et al 2018 Black arsenic: a layered semiconductor with extreme in-plane anisotropy Adv. Mater. 30 1800754 doi: 10.1002/adma.201800754 [108] Xing Z, Xiaozong H, Shasha Z, Qi Z, Huiqiao L, Tianyou Z 2017 Ultrathin 2D GeSe2 rhombic flakes with high anisotropy realized by van der Waals epitaxy Adv. Funct. Mater. 27 1703858 doi: 10.1002/adfm.201703858 [109] Yang Y, et al 2019 In-plane optical anisotropy of low-symmetry 2D GeSe Adv. Opt. Mater. 7 1801311 doi: 10.1002/adom.201801311 [110] Sun J, Deacon R S, Luo W, Yuan Y, Liu X, Xie H, Gao Y, Ishibashi K 2020 Asymmetric Fermi velocity induced chiral magnetotransport anisotropy in the type-II Dirac semi-metal PtSe2 Commun. Phys. 3 93 doi: 10.1038/s42005-020-0357-8 [111] Lu L, et al 2020 Layer-dependent and in-plane anisotropic properties of low-temperature synthesized few-layer PdSe2 single crystals ACS Nano 14 4963-72 doi: 10.1021/acsnano.0c01139 [112] Wang J P, et al 2023 Non-centrosymmetric 2D Nb3SeI7 with high in-plane anisotropy and optical nonlinearity Adv. Opt. Mater. 11 2300031 doi: 10.1002/adom.202300031 [113] Liu S, et al 2023 Anisotropic optical and mechanical properties in few-layer GaPS4 Adv. Opt. Mater. 11 2202288 doi: 10.1002/adom.202202288 [114] Su J, Shen W, Chen J, Yang S, Liu J, Feng X, Zhao Y, Hu C, Li H, Zhai T 2021 2D ternary vanadium phosphorous chalcogenide with strong in-plane optical anisotropy Inorg. Chem. Front. 8 2999-3006 doi: 10.1039/D1QI00390A [115] Ghosh S, Kargar F, Sesing N R, Barani Z, Salguero T T, Yan D, Rumyantsev S, Balandin A A 2023 Low-frequency current fluctuations in quasi-1D (TaSe42I Weyl semimetal nanoribbons Adv. Electron. Mater. 9 2200860 doi: 10.1002/aelm.202200860 [116] Sun Z, Zhang B, Zhao Y, Khurram M, Yan Q 2021 Synthesis, exfoliation, and transport properties of quasi-1D van der Waals fibrous red phosphorus Chem. Mater. 33 6240-8 doi: 10.1021/acs.chemmater.1c02136 [117] Qiao L, et al 2021 Ultralong single-crystal -Bi4Br4 nanobelts with a high current-carrying capacity by mechanical exfoliation J. Phys. Chem. C 125 22312-7 doi: 10.1021/acs.jpcc.1c06702 [118] Wu Z, Lyu Y, Zhang Y, Ding R, Zheng B, Yang Z, Lau S P, Chen X H, Hao J 2021 Large-scale growth of few-layer two-dimensional black phosphorus Nat. Mater. 20 1203-9 doi: 10.1038/s41563-021-01001-7 [119] Yang Q, Wang X, He Z, Chen Y, Li S, Chen H, Wu S 2023 A centimeter-scale type-II Weyl semimetal for flexible and fast ultra-broadband photodetection from ultraviolet to sub-millimeter wave regime Adv. Sci. 10 2205609 doi: 10.1002/advs.202205609 [120] Yang Y, et al 2018 Air-stable in-plane anisotropic GeSe2 for highly polarization-sensitive photodetection in short wave region J. Am. Chem. Soc. 140 4150-6 doi: 10.1021/jacs.8b01234 [121] Yang Y, Liu S C, Wang X, Li Z, Zhang Y, Zhang G, Xue D J, Hu J S 2019 Polarization-sensitive ultraviolet photodetection of anisotropic 2D GeS2 Adv. Funct. Mater. 29 1900411 doi: 10.1002/adfm.201900411 [122] Dai M, Wang C, Ye M, Zhu S, Han S, Sun F, Chen W, Jin Y, Chua Y, Wang Q J 2022 High-performance, polarization-sensitive, long-wave infrared photodetection via photothermoelectric effect with asymmetric van der Waals contacts ACS Nano 16 295-305 doi: 10.1021/acsnano.1c06286 [123] Xiong J, Sun Y, Wu L, Wang W, Gao W, Huo N, Li J 2021 High performance self-driven polarization-sensitive photodetectors based on GeAs/InSe heterojunction Adv. Opt. Mater. 9 2101017 doi: 10.1002/adom.202101017 [124] Li S, Zhang J, Zhu L, Zhang K, Gao W, Li J, Huo N 2023 Reconfigurable and broadband polarimetric photodetector Adv. Funct. Mater. 33 2210268 doi: 10.1002/adfm.202210268 [125] Chang T Y, Chen P L, Yan J H, Li W Q, Zhang Y Y, Luo D I, Li J X, Huang K P, Liu C H 2020 Ultra-broadband, high speed, and high-quantum-efficiency photodetectors based on black phosphorus ACS Appl. Mater. Interfaces 12 1201-9 doi: 10.1021/acsami.9b13472 [126] Usman M, Nisar S, Kim D K, Golovynskyi S, Imran M, Dastgeer G, Wang L 2023 Polarization-sensitive photodetection of anisotropic 2D black arsenic J. Phys. Chem. C 127 9076-82 doi: 10.1021/acs.jpcc.2c08630 [127] Yuan S, et al 2018 Air-stable room-temperature mid-infrared photodetectors based on hBN/black arsenic phosphorus/hBN heterostructures Nano Lett. 18 3172-9 doi: 10.1021/acs.nanolett.8b00835 [128] Zhu W, Wei X, Yan F, Lv Q, Hu C, Wang K 2019 Broadband polarized photodetector based on p-BP/n-ReS2 heterojunction J. Semicond. 40 092001 doi: 10.1088/1674-4926/40/9/092001 [129] Jiao H, et al 2022 HgCdTe/black phosphorus van der Waals heterojunction for high-performance polarization-sensitive midwave infrared photodetector Sci. Adv. 8 eabn1811 doi: 10.1126/sciadv.abn1811 [130] Lai J, et al 2018 Anisotropic broadband photoresponse of layered type-II Weyl semimetal MoTe2 Adv. Mater. 30 1707152 doi: 10.1002/adma.201707152 [131] Wang Q, et al 2019 Robust edge photocurrent response on layered type II Weyl semimetal WTe2 Nat. Commun. 10 5736 doi: 10.1038/s41467-019-13713-1 [132] Ahn J, Kyhm J H, Kang H K, Kwon N, Kim H K, Park S, Hwang D K 2021 2D MoTe2/ReS2 van der Waals heterostructure for high-performance and linear polarization-sensitive photodetector ACS Photonics 8 2650-8 doi: 10.1021/acsphotonics.1c00598 [133] Sun Y, Xiong J, Wu X, Gao W, Huo N, Li J 2021 Highly sensitive infrared polarized photodetector enabled by out-of-plane PSN architecture composing of p-MoTe2, semimetal-MoTe2 and n-SnSe2 Nano Res. 15 5384-91 doi: 10.1007/s12274-021-4008-5 [134] Wu J, et al 2022 Engineering the polarization sensitivity in all-2D photodetectors composed of semimetal MoTe2 and semiconductor WS2 Adv. Opt. Mater. 10 2201902 doi: 10.1002/adom.202201902 [135] Liu S, Xiao W, Zhong M, Pan L, Wang X, Deng H X, Liu J, Li J, Wei Z 2018 Highly polarization sensitive photodetectors based on quasi-1D titanium trisulfide (TiS3) Nanotechnology 29 184002 doi: 10.1088/1361-6528/aaafa2 [136] Chen F, Liu G, Xiao Z, Zhou H, Fei L, Wan S, Liao X, Yuan J, Zhou Y 2023 Quasi-one-dimensional ZrS3 nanoflakes for broadband and polarized photodetection with high tuning flexibility ACS Appl. Mater. Interfaces 15 16999-7008 doi: 10.1021/acsami.3c00273 [137] Wang X, Xiong T, Xin K, Yang J, Liu Y, Zhao Z, Liu J, Wei Z 2022 Polarization sensitive photodetector based on quasi-1D ZrSe3 J. Semicond. 43 102001 doi: 10.1088/1674-4926/43/10/102001 [138] Wang Y, et al 2020 Air-stable low-symmetry narrow-bandgap 2D sulfide niobium for polarization photodetection Adv. Mater. 32 2005037 doi: 10.1002/adma.202005037 [139] Niu Y, Frisenda R, Flores E, Ares J R, Jiao W, Perez de Lara D, Snchez C, Wang R, Ferrer I J, Castellanos-Gomez A 2018 Polarization-sensitive and broadband photodetection based on a mixed-dimensionality TiS3/Si p-n junction Adv. Opt. Mater. 6 1800351 doi: 10.1002/adom.201800351 [140] Lv T, et al 2022 High-responsivity multiband and polarization-sensitive photodetector based on the TiS3/MoS2 heterojunction ACS Appl. Mater. Interfaces 14 48812-20 doi: 10.1021/acsami.2c12332 [141] Yang S, et al 2019 Highly sensitive polarization photodetection using a pseudo-one-dimensional Nb(1-x)TixS3 alloy ACS Appl. Mater. Interfaces 11 3342-50 doi: 10.1021/acsami.8b19050 [142] Niu Y, et al 2020 Ultrabroadband, fast, and flexible photodetector based on HfTe5 crystal Adv. Opt. Mater 8 2000833 doi: 10.1002/adom.202000833 [143] Guo Z, et al 2021 High-performance polarization-sensitive photodetectors on two-dimensional -InSe Nat. Sci. Rev. 9 nwab098 doi: 10.1093/nsr/nwab098 [144] Pan Y, Zhao Q, Gao F, Dai M, Gao W, Zheng T, Su S, Li J, Chen H 2022 Strong in-plane optical and electrical anisotropies of multilayered -InSe for high-responsivity polarization-sensitive photodetectors ACS Appl. Mater. Interfaces 14 21383-91 doi: 10.1021/acsami.2c04204 [145] Hou S, et al 2022 Optical and electronic anisotropy of a 2D semiconductor SiP Nano Res. 15 8579-86 doi: 10.1007/s12274-022-4481-5 [146] Wang Z, et al 2021 Strong in-plane anisotropic SiP2 as a IV-V 2D semiconductor for polarized photodetection ACS Nano 15 20442-52 doi: 10.1021/acsnano.1c08892 [147] Kim D, Park K, Lee J H, Kwon I S, Kwak I H, Park J 2021 Anisotropic 2D SiAs for high-performance UV-visible photodetectors Small 17 2006310 doi: 10.1002/smll.202006310 [148] Zhou Z, et al 2018 Perpendicular optical reversal of the linear dichroism and polarized photodetection in 2D GeAs ACS Nano 12 12416-23 doi: 10.1021/acsnano.8b06629 [149] Li L, et al 2018 Highly in-plane anisotropic 2D GeAs2 for polarization-sensitive photodetection Adv. Mater. 30 1804541 doi: 10.1002/adma.201804541 [150] Xiong J, Dan Z, Li H, Li S, Sun Y, Gao W, Huo N, Li J 2022 Multifunctional GeAs/WS2 heterojunctions for highly polarization-sensitive photodetectors in the short-wave infrared range ACS Appl. Mater. Interfaces 14 22607-14 doi: 10.1021/acsami.2c03246 [151] Zhang J, Shang C, Dai X, Zhang Y, Zhu T, Zhou N, Xu H, Yang R, Li X 2023 Effective passivation of anisotropic 2D GeAs via graphene encapsulation for highly stable near-infrared photodetectors ACS Appl. Mater. Interfaces 15 13281-9 doi: 10.1021/acsami.2c20030 [152] Li Z, Yang Y, Wang X, Shi W, Xue D J, Hu J S 2019 Three-dimensional optical anisotropy of low-symmetry layered GeS ACS Appl. Mater. Interfaces 11 24247-53 doi: 10.1021/acsami.9b05543 [153] Zhou X, Hu X, Jin B, Yu J, Liu K, Li H, Zhai T 2018 Highly anisotropic GeSe nanosheets for phototransistors with ultrahigh photoresponsivity Adv. Sci. 5 1800478 doi: 10.1002/advs.201800478 [154] Cui Y, Zhou Z, Wang X, Wang X, Ren Z, Pan L, Yang J 2021 Wavelength-selectivity polarization dependence of optical absorption and photoresponse in SnS nanosheets Nano Res. 14 2224-30 doi: 10.1007/s12274-020-3197-7 [155] Yu Y, Xiong T, Guo Z, Hou S, Yang J, Liu Y Y, Gu H, Wei Z 2022 Wide-spectrum polarization-sensitive and fast-response photodetector based on 2D group IV-VI semiconductor tin selenide Fundam. Res. 2 985-92 doi: 10.1016/j.fmre.2022.02.008 [156] Xin Y, et al 2020 Polarization-sensitive self-powered type-II GeSe/MoS2 van der Waals heterojunction photodetector ACS Appl. Mater. Interfaces 12 15406-13 doi: 10.1021/acsami.0c01405 [157] Fucai L, et al 2016 Highly sensitive detection of polarized light using anisotropic 2D ReS2 Adv. Funct. Mater. 26 1169-77 doi: 10.1002/adfm.201504546 [158] Li G, Yin S, Tan C, Chen L, Yu M, Li L, Yan F 2021 Fast photothermoelectric response in CVD-grown PdSe2 photodetectors with in-plane anisotropy Adv. Funct. Mater. 31 2104787 doi: 10.1002/adfm.202104787 [159] Zeng L H, Chen Q M, Zhang Z X, Wu D, Yuan H, Li Y Y, Qarony W, Lau S P, Luo L B, Tsang Y H 2019 Multilayered PdSe2/perovskite Schottky junction for fast, self-powered, polarization-sensitive, broadband photodetectors, and image sensor application Adv. Sci. 6 1901134 doi: 10.1002/advs.201901134 [160] Tang Y, Hao H, Kang Y, Liu Q, Sui Y, Wei K, Cheng X A, Jiang T 2020 Distinctive interfacial charge behavior and versatile photoresponse performance in isotropic/anisotropic WS2/ReS2 heterojunctions ACS Appl. Mater. Interfaces 12 53475-83 doi: 10.1021/acsami.0c14886 [161] Li K, Du C, Gao H, Yin T, Zheng L, Leng J, Wang W 2022 Ultrafast and polarization-sensitive ReS2/ReSe2 heterostructure photodetectors with ambipolar photoresponse ACS Appl. Mater. Interfaces 14 33589-97 doi: 10.1021/acsami.2c09674 [162] Ahn J, et al 2021 Near-infrared self-powered linearly polarized photodetection and digital incoherent holography using WSe2/ReSe2 van der Waals heterostructure ACS Nano 15 17917-25 doi: 10.1021/acsnano.1c06234 [163] Quan S, Guo S, Weller D, Fu S, Wang Y, Liu R 2022 Air-stable GaSe/ReS2 heterojunctions for self-powered polarization-sensitive photodetectors ACS Appl. Nano Mater. 5 7365-72 doi: 10.1021/acsanm.2c01303 [164] Zhang J, Duan L, Zhou N, Zhang L, Shang C, Xu H, Yang R, Wang X, Li X 2023 Modulating the function of GeAs/ReS2 van der Waals heterojunction with its potential application for short-wave infrared and polarization-sensitive photodetection Small 19 2303335 doi: 10.1002/smll.202303335 [165] Lai J, Liu Y, Ma J, Zhuo X, Peng Y, Lu W, Liu Z, Chen J, Sun D 2018 Broadband anisotropic photoresponse of the hydrogen atom’ version type-II Weyl semimetal candidate TaIrTe4 ACS Nano 12 4055-61 doi: 10.1021/acsnano.8b01897 [166] Qiao J, Feng F, Wang Z, Shen M, Zhang G, Yuan X, Somekh M G 2021 Highly in-plane anisotropic two-dimensional ternary Ta2NiSe5 for polarization-sensitive photodetectors ACS Appl. Mater. Interfaces 13 17948-56 doi: 10.1021/acsami.1c00268 [167] Zhang H, et al 2021 In-plane anisotropic 2D CrPS4 for promising polarization-sensitive photodetection Appl. Phys. Lett. 119 171102 doi: 10.1063/5.0066143 [168] Wang X, Xiong T, Zhao K, Zhou Z, Xin K, Deng H X, Kang J, Yang J, Liu Y Y, Wei Z 2021 Polarimetric image sensor and Fermi level shifting induced multichannel transition based on 2D PdPS Adv. Mater. 34 2107206 doi: 10.1002/adma.202107206 [169] Bai R, et al 2022 Polarization-sensitive and wide-spectrum photovoltaic detector based on quasi-1D ZrGeTe4 nanoribbon InfoMat 4 e12258 doi: 10.1002/inf2.12258 [170] Meng X, et al 2023 Giant superlinear power dependence of photocurrent based on layered Ta2NiS5 photodetector Adv. Sci. 10 2300413 doi: 10.1002/advs.202300413 [171] Yang L, et al 2023 Low-power polarization sensitive terahertz photodetection driven by ternary type-II Weyl semimetal NbIrTe4 IEEE Electron Device Lett. 44 686-9 doi: 10.1109/LED.2023.3250468 [172] Ye Q, Lu J, Yi H, Zheng Z, Ma C, Du C, Zou Y, Yao J, Yang G 2022 A flexibly switchable TaIrTe4-WSe2 van der Waals heterojunction photodetector with linear-polarization-dependent photosensitivity Appl. Phys. Lett. 120 181104 doi: 10.1063/5.0091084 [173] Han X, Wen P, Zhang L, Gao W, Chen H, Gao F, Zhang S, Huo N, Zou B, Li J 2021 A polarization-sensitive self-powered photodetector based on a p-WSe2/TaIrTe4/n-MoS2 van der Waals heterojunction ACS Appl. Mater. Interfaces 13 61544-54 doi: 10.1021/acsami.1c19526 [174] Tan J, Nan H, Fu Q, Zhang X, Liu X, Ni Z, Ostrikov K, Xiao S, Gu X 2022 Fourfold polarization-sensitive photodetector based on GaTe/MoS2 van der Waals heterojunction Adv. Electron. Mater. 8 2100673 doi: 10.1002/aelm.202100673 [175] Lu J, Ye Q, Ma C, Zheng Z, Yao J, Yang G 2022 Dielectric contrast tailoring for polarized photosensitivity toward multiplexing optical communications and dynamic encrypt technology ACS Nano 16 12852-65 doi: 10.1021/acsnano.2c05114 [176] Yi H, et al 2023 Multilayer SnS2/few-layer MoS2 heterojunctions with in-situ floating photogate toward high-performance photodetectors and optical imaging application Sci. China Mater. 66 1879-90 doi: 10.1007/s40843-022-2338-9 [177] Dong Z, et al 2021 Highly efficient, ultrabroad PdSe2 phototransistors from visible to terahertz driven by mutiphysical mechanism ACS Nano 15 20403-13 doi: 10.1021/acsnano.1c08756 [178] Zhang F, Mo Z, Cui B, Liu S, Xia Q, Li B, Li L, Zhang Z, He J, Zhong M 2023 Bandgap engineering of BiInS nanowire for wide-spectrum, high-responsivity, and polarimetric-sensitive detection Adv. Funct. Mater. 33 2306077 doi: 10.1002/adfm.202306077 [179] Ghoshal D, Wang T, Tsai H Z, Chang S W, Crommie M, Koratkar N, Shi S F 2019 Catalyst-free and morphology-controlled growth of 2D perovskite nanowires for polarized light detection Adv. Opt. Mater. 7 1900039 doi: 10.1002/adom.201900039 [180] Johnston M B, Joyce H J 2022 Polarization anisotropy in nanowires: fundamental concepts and progress towards terahertz-band polarization devices Prog. Quantum Electron. 85 100417 doi: 10.1016/j.pquantelec.2022.100417 [181] Gruba Z, Kati J, Metiko-Hukovi M 2019 Energy-band structure as basis for semiconductor n-Bi2S3/n-Bi2O3 photocatalyst design J. Electrochem. Soc. 166 H433-H7 doi: 10.1149/2.0481910jes [182] Gates B, Mayers B, Grossman A, Xia Y 2002 A sonochemical approach to the synthesis of crystalline selenium nanowires in solutions and on solid supports Adv. Mater. 14 1749-52 doi: 10.1002/1521-4095(20021203)14:23<1749::AID-ADMA1749>3.0.CO;2-Z [183] Thunich S, Prechtel L, Spirkoska D, Abstreiter G, Fontcuberta I Morral A, Holleitner A W 2009 Photocurrent and photoconductance properties of a GaAs nanowire Appl. Phys. Lett. 95 083111 doi: 10.1063/1.3193540 [184] Persano A, Nabet B, Taurino A, Prete P, Lovergine N, Cola A 2011 Polarization anisotropy of individual core/shell GaAs/AlGaAs nanowires by photocurrent spectroscopy Appl. Phys. Lett. 98 153106 doi: 10.1063/1.3578189 [185] Xiao M, et al 2020 Symmetry-reduction enhanced polarization-sensitive photodetection in core-shell SbI3/Sb2O3 van der Waals heterostructure Small 16 1907172 doi: 10.1002/smll.201907172 [186] Cheng Y, Gong M, Xu T, Liu E, Fan J, Miao H, Hu X 2022 Epitaxial grown Sb2Se3@Sb2S3 core-shell nanorod radial-axial hierarchical heterostructure with enhanced photoelectrochemical water splitting performance ACS Appl. Mater. Interfaces 14 23785-96 doi: 10.1021/acsami.2c05551 [187] Li W, Li J, Ma T, Liao G, Gao F, Duan W, Luo K, Wang C 2023 Construction of core-shell Sb2S3@CdS nanorod with enhanced heterointerface interaction for chromium-containing wastewater treatment Small 19 2302737 doi: 10.1002/smll.202302737 [188] Guo L, Shinde P S, Ma Y, Li L, Pan S, Yan F 2020 Scalable core-shell MoS2/Sb2Se3 nanorod array photocathodes for enhanced photoelectrochemical water splitting Sol. RRL 4 1900442 doi: 10.1002/solr.201900442 [189] Cao B, Liu Q, Zheng Y, Tang X, Chai J, Ma S, Wang W, Li G 2022 Wafer-scale InN/In2S3 core-shell nanorod array for ultrafast self-powered photodetection Adv. Funct. Mater. 32 2110715 doi: 10.1002/adfm.202110715 [190] Dai G, Xiang Y, Mo X, Xiao Z, Yuan H, Wan J, Liu B, Yang J 2022 High-performance CdS@CsPbBr3 core-shell microwire heterostructure photodetector J. Appl. Phys. 55 194002 doi: 10.1088/1361-6463/ac520b [191] Chen T A, et al 2020 Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111) Nature 579 219-23 doi: 10.1038/s41586-020-2009-2 [192] Li T, et al 2021 Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire Nat. Nanotechnol. 16 1201-7 doi: 10.1038/s41565-021-00963-8 [193] Wang J, et al 2022 Dual-coupling-guided epitaxial growth of wafer-scale single-crystal WS2 monolayer on vicinal a-plane sapphire Nat. Nanotechnol. 17 33-38 doi: 10.1038/s41565-021-01004-0 [194] Li J, et al 2022 Wafer-scale single-crystal monolayer graphene grown on sapphire substrate Nat. Mater. 21 740-7 doi: 10.1038/s41563-021-01174-1 [195] Deng T, Li S, Li Y, Zhang Y, Sun J, Yin W, Wu W, Zhu M, Wang Y, Liu Z 2020 Polarization-sensitive photodetectors based on three-dimensional molybdenum disulfide (MoS2) field-effect transistors Nanophotonics 9 4719-28 doi: 10.1515/nanoph-2020-0401 [196] Zhang X, Dai M, Deng W, Zhang Y, Wang Q J 2023 A broadband, self-powered, and polarization-sensitive PdSe2 photodetector based on asymmetric van der Waals contacts Nanophotonics 12 607-18 doi: 10.1515/nanoph-2022-0660 [197] Yang B, et al 2023 Visible and infrared photodiode based on -InSe/Ge van der Waals heterojunction for polarized detection and imaging Nanoscale 15 3520-31 doi: 10.1039/D2NR06642D [198] Deng T, et al 2019 Three-dimensional graphene field-effect transistors as high-performance photodetectors Nano Lett. 19 1494-503 doi: 10.1021/acs.nanolett.8b04099 [199] Shi T, Yao Y, Hong Y, Li Y, Lu S, Qin W, Wu X 2023 Scrolling reduced graphene oxides to induce room temperature magnetism via spatial coupling of defects Mater. Horiz. 10 4344-53 doi: 10.1039/D3MH00734K [200] Hou X, Pan R, Yu Q, Zhang K, Huang G, Mei Y, Zhang D W, Zhou P 2019 Tubular 3D resistive random access memory based on rolled-up h-BN tube Small 15 1803876 doi: 10.1002/smll.201803876 [201] Zhou X, Tian Z, Kim H J, Wang Y, Xu B, Pan R, Chang Y J, Di Z, Zhou P, Mei Y 2019 Rolling up MoSe2 nanomembranes as a sensitive tubular photodetector Small 15 1902528 doi: 10.1002/smll.201902528 [202] Xia H, et al 2021 Probing the chiral domains and excitonic states in individual WS2 tubes by second-harmonic generation Nano Lett. 21 4937-43 doi: 10.1021/acs.nanolett.1c00497 [203] Zhang Y, Li Y, You Q, Sun J, Li K, Hong H, Kong L, Zhu M, Deng T, Liu Z 2023 A broadband 3D microtubular photodetector based on a single wall carbon nanotube-graphene heterojunction Nanoscale 15 1402-11 doi: 10.1039/D2NR05819G [204] Xiang R, et al 2020 One-dimensional van der Waals heterostructures Science 367 537-42 doi: 10.1126/science.aaz2570 [205] Zhang S, Gao F, Feng W, Yang H, Hu Y, Zhang J, Xiao H, Li Z, Hu P A 2022 High-responsivity photodetector based on scrolling monolayer MoS2 hybridized with carbon quantum dots Nanotechnology 33 105301 doi: 10.1088/1361-6528/ac3ce1 [206] An Q, Xiong W, Hu F, Yu Y, Lv P, Hu S, Gan X, He X, Zhao J, Yuan S 2023 Direct growth of single-chiral-angle tungsten disulfide nanotubes using gold nanoparticle catalysts Nat. Mater. doi: 10.1038/s41563-023-01590-5 [207] Wang R, Zhou F, Lv L, Zhou S, Yu Y, Zhuge F, Li H, Gan L, Zhai T 2019 Modulation of the anisotropic electronic properties in ReS2 via ferroelectric film CCS Chem. 1 268-77 doi: 10.31635/ccschem.019.20180024 [208] Wu S, et al 2022 Ultra-sensitive polarization-resolved black phosphorus homojunction photodetector defined by ferroelectric domains Nat. Commun. 13 3198 doi: 10.1038/s41467-022-30951-y [209] Ju L, Shang J, Tang X, Kou L 2020 Tunable photocatalytic water splitting by the ferroelectric switch in a 2D AgBiP2Se6 monolayer J. Am. Chem. Soc. 142 1492-500 doi: 10.1021/jacs.9b11614 [210] Singh P, Baek S, Yoo H H, Niu J, Park J H, Lee S 2022 Two-dimensional CIPS-InSe van der Waal heterostructure ferroelectric field effect transistor for nonvolatile memory applications ACS Nano 16 5418-26 doi: 10.1021/acsnano.1c09136 [211] Han M, et al 2022 Continuously tunable ferroelectric domain width down to the single-atomic limit in bismuth tellurite Nat. Commun. 13 5903 doi: 10.1038/s41467-022-33617-x [212] Liu K, Dang B, Zhang T, Yang Z, Bao L, Xu L, Cheng C, Huang R, Yang Y 2022 Multilayer reservoir computing based on ferroelectric -In2Se3 for hierarchical information processing Adv. Mater. 34 2108826 doi: 10.1002/adma.202108826 [213] Guo F, Io W F, Dang Z, Ding R, Pang S Y, Zhao Y, Hao J 2023 Achieving reinforcement learning in a three-active-terminal neuromorphic device based on a 2D vdW ferroelectric material Mater. Horiz. 10 3719-28 doi: 10.1039/D3MH00714F [214] Zhang Z, Nie J, Zhang Z, Yuan Y, Fu Y S, Zhang W 2022 Atomic visualization and switching of ferroelectric order in -In2Se3 films at the single layer limit Adv. Mater. 34 2106951 doi: 10.1002/adma.202106951 [215] Yan Y, Deng Q, Li S, Guo T, Li X, Jiang Y, Song X, Huang W, Yang J, Xia C 2021 In-plane ferroelectricity in few-layered GeS and its van der Waals ferroelectric diodes Nanoscale 13 16122-30 doi: 10.1039/D1NR03807A [216] Liu C, Guan S, Yin H, Wan W, Wang Y, Zhang Y 2019 -GeSe: a two-dimensional ferroelectric material with doping-induced ferromagnetism Appl. Phys. Lett. 115 252904 doi: 10.1063/1.5133022 [217] Li W, et al 2023 Emergence of ferroelectricity in a nonferroelectric monolayer Nat. Commun. 14 2757 doi: 10.1038/s41467-023-38445-1 [218] Luo Y, et al 2023 Electrically switchable anisotropic polariton propagation in a ferroelectric van der Waals semiconductor Nat. Nanotechnol. 18 350-6 doi: 10.1038/s41565-022-01312-z [219] Wang W, et al 2023 Electrically switchable polarization in Bi2O2Se ferroelectric semiconductors Adv. Mater. 35 2210854 doi: 10.1002/adma.202210854 [220] Neumayer S M, Bauer N, Basun S, Conner B S, Susner M A, Lavrentovich M O, Maksymovych P 2023 Dynamic stabilization of metastable states in triple-well ferroelectric Sn2P2S6 Adv. Mater. 35 2211194 doi: 10.1002/adma.202211194 [221] He Z, Du W, Dou K, Dai Y, Huang B, Ma Y 2023 Ferroelectrically tunable magnetic skyrmions in two-dimensional multiferroics Mater. Horiz. 10 3450-7 doi: 10.1039/D3MH00572K [222] Yang Q, et al 2023 Ferroelectricity in layered bismuth oxide down to 1 nanometer Science 379 1218-24 doi: 10.1126/science.abm5134 [223] Li L, Liu X, Li Y, Xu Z, Wu Z, Han S, Tao K, Hong M, Luo J, Sun Z 2019 Two-dimensional hybrid perovskite-type ferroelectric for highly polarization-sensitive shortwave photodetection J. Am. Chem. Soc. 141 2623-9 doi: 10.1021/jacs.8b12948 [224] Ji C, Dey D, Peng Y, Liu X, Li L, Luo J 2020 Ferroelectricity-driven self-powered ultraviolet photodetection with strong polarization sensitivity in a two-dimensional halide hybrid perovskite Angew. Chem., Int. Ed. 59 18933-7 doi: 10.1002/anie.202005092 [225] Lu L, Weng W, Ma Y, Liu Y, Han S, Liu X, Xu H, Lin W, Sun Z, Luo J 2022 Anisotropy in a 2D perovskite ferroelectric drives self-powered polarization-sensitive photoresponse for ultraviolet solar-blind polarized-light detection Angew. Chem., Int. Ed. 61 e202205030 doi: 10.1002/anie.202205030 [226] Xu Z, Dong X, Wang L, Wu H, Liu Y, Luo J, Hong M, Li L 2023 Precisely tailoring a FAPbI3-derived ferroelectric for sensitive self-driven broad-spectrum polarized photodetection J. Am. Chem. Soc. 145 1524-9 doi: 10.1021/jacs.2c12300 [227] Liu Y, Guo W, Hua L, Zeng X, Yang T, Fan Q, Ma Y, Gao C, Sun Z, Luo J 2023 Giant polarization sensitivity via the anomalous photovoltaic effect in a two-dimensional perovskite ferroelectric J. Am. Chem. Soc. 145 16193-9 doi: 10.1021/jacs.3c05020 [228] Zhang W, et al 2022 Rapid solid-phase sulfurization growth and nonlinear optical characterization of transfer-free TiS3 nanoribbons Chem. Mater. 34 2790-7 doi: 10.1021/acs.chemmater.2c00068 [229] Empante T A, et al 2019 Low resistivity and high breakdown current density of 10 nm diameter van der Waals TaSe3 nanowires by chemical vapor deposition Nano Lett. 19 4355-61 doi: 10.1021/acs.nanolett.9b00958 [230] Chen Z, et al 2021 Direct growth of wafer-scale highly oriented graphene on sapphire Sci. Adv. 7 eabk0115 doi: 10.1126/sciadv.abk0115 [231] Li J, et al 2021 Single-crystal MoS2 monolayer wafer grown on Au (111) film substrates Small 17 2100743 doi: 10.1002/smll.202100743 [232] Hoang A T, et al 2023 Low-temperature growth of MoS2 on polymer and thin glass substrates for flexible electronics Nat. Nanotechnol. doi: 10.1038/s41565-023-01460-w [233] Martella C, Mennucci C, Cinquanta E, Lamperti A, Cappelluti E, Buatier de Mongeot F, Molle A 2017 Anisotropic MoS2 nanosheets grown on self-organized nanopatterned substrates Adv. Mater. 29 1605785 doi: 10.1002/adma.201605785 [234] He C, Wu R, Zhu L, Huang Y, Du W, Qi M, Zhou Y, Zhao Q, Xu X 2022 Anisotropic second-harmonic generation induced by reduction of in-plane symmetry in 2D materials with strain engineering J. Phys. Chem. Lett. 13 352-61 doi: 10.1021/acs.jpclett.1c03571 [235] Tong L, et al 2019 Artificial control of in-plane anisotropic photoelectricity in monolayer MoS2 Appl. Mater. Today 15 203-11 doi: 10.1016/j.apmt.2019.02.001 [236] Wei Z, et al 2023 Van der Waals interlayer coupling induces distinct linear dichroism in WSe2 photodetectors Adv. Opt. Mater. 11 2201962 doi: 10.1002/adom.202201962 [237] He Z, et al 2023 Broadband, polarization-sensitive, and self-powered high-performance photodetection of hetero-integrated MoS2 on lithium niobate Research 6 0199 doi: 10.34133/research.0199 [238] Duan R, et al 2022 2D Cairo pentagonal PdPS: air-stable anisotropic ternary semiconductor with high optoelectronic performance Adv. Funct. Mater. 32 2113255 doi: 10.1002/adfm.202113255 [239] Zheng X, et al 2022 Symmetry engineering induced in-plane polarization in MoS2 through Van der Waals interlayer coupling Adv. Funct. Mater. 32 2202658 doi: 10.1002/adfm.202202658 [240] Li Z, et al 2020 Efficient strain modulation of 2D materials via polymer encapsulation Nat. Commun. 11 1151 doi: 10.1038/s41467-020-15023-3 [241] Lu J, Yao J, Yan J, Gao W, Huang L, Zheng Z, Zhang M, Li J 2020 Strain engineering coupled with optical regulation towards high-sensitivity In2S3 photodetector Mater. Horiz. 7 1427-35 doi: 10.1039/D0MH00243G [242] Dirnberger F, Ziegler J D, Junior P E F, Bushati R, Taniguchi T, Watanabe K, Fabian J, Bougeard D, Chernikov A, Menon V M 2021 Quasi-1D exciton channels in strain-engineered 2D materials Sci. Adv. 7 eabj3066 doi: 10.1126/sciadv.abj3066 [243] Yang M, Gao W, Song Q, Zhou Y, Huang L, Zheng Z, Zhao Y, Yao J, Li J 2021 Universal strategy integrating strain and interface engineering to drive high-performance 2D material photodetectors Adv. Opt. Mater. 9 2100450 doi: 10.1002/adom.202100450 [244] Lu D, et al 2022 Strain-plasmonic coupled broadband photodetector based on monolayer MoS2 Small 18 2107104 doi: 10.1002/smll.202107104 [245] Wang Y, Yao S, Liao P, Jin S, Wang Q, Kim M J, Cheng G J, Wu W 2020 Strain-engineered anisotropic optical and electrical properties in 2D chiral-chain tellurium Adv. Mater. 32 2002342 doi: 10.1002/adma.202002342 [246] Li Y, Hu Z, Lin S, Lai S K, Ji W, Lau S P 2017 Giant anisotropic Raman response of encapsulated ultrathin black phosphorus by uniaxial strain Adv. Funct. Mater. 27 1600986 doi: 10.1002/adfm.201600986 [247] Li H, Sanchez-Santolino G, Puebla S, Frisenda R, Al-Enizi A M, Nafady A, D’Agosta R, Castellanos-Gomez A 2022 Strongly anisotropic strain-tunability of excitons in exfoliated ZrSe3 Adv. Mater. 34 2103571 doi: 10.1002/adma.202103571 [248] Wang J, et al 2021 Strained epitaxy of monolayer transition metal dichalcogenides for wrinkle arrays ACS Nano 15 6633-44 doi: 10.1021/acsnano.0c09983 [249] Gant P, Huang P, Prez de Lara D, Guo D, Frisenda R, Castellanos-Gomez A 2019 A strain tunable single-layer MoS2 photodetector Mater. Today 27 8-13 doi: 10.1016/j.mattod.2019.04.019 [250] Bai Y, et al 2020 Excitons in strain-induced one-dimensional moir potentials at transition metal dichalcogenide heterojunctions Nat. Mater. 19 1068-73 doi: 10.1038/s41563-020-0730-8 [251] Kats M A, Genevet P, Aoust G, Yu N, Blanchard R, Aieta F, Gaburro Z, Capasso F 2012 Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy Proc. Natl Acad. Sci. USA 109 12364-8 doi: 10.1073/pnas.1210686109 [252] Venuthurumilli P K, Ye P D, Xu X 2018 Plasmonic resonance enhanced polarization-sensitive photodetection by black phosphorus in near infrared ACS Nano 12 4861-7 doi: 10.1021/acsnano.8b01660 [253] Zhang D, Zhou J, Liu C, Guo S, Deng J, Cai Q, Li Z, Zhang Y, Zhang W, Chen X 2019 Enhanced polarization sensitivity by plasmonic-cavity in graphene phototransistors J. Appl. Phys. 126 074301 doi: 10.1063/1.5109249 [254] Chen S, Cao R, Chen X, Wu Q, Zeng Y, Gao S, Guo Z, Zhao J, Zhang M, Zhang H 2020 Anisotropic plasmonic nanostructure induced polarization photoresponse for MoS2-based photodetector Adv. Mater. Interfaces 7 1902179 doi: 10.1002/admi.201902179 [255] Wei J, Xu C, Dong B, Qiu C W, Lee C 2021 Mid-infrared semimetal polarization detectors with configurable polarity transition Nat. Photon. 15 614-21 doi: 10.1038/s41566-021-00819-6 [256] Fan C, Sun X, Shi Z, L B, Chen Y, Li S, Liu J M 2023 Wafer-scale fabrication of graphene-based plasmonic photodetector with polarization-sensitive, broadband, and enhanced response Adv. Opt. Mater 11 2202860 doi: 10.1002/adom.202202860 [257] Wei J, Li Y, Wang L, Liao W, Dong B, Xu C, Zhu C, Ang K W, Qiu C W, Lee C 2020 Zero-bias mid-infrared graphene photodetectors with bulk photoresponse and calibration-free polarization detection Nat. Commun. 11 6404 doi: 10.1038/s41467-020-20115-1 [258] Xie J, Ren Z, Wei J, Liu W, Zhou J, Lee C 2023 Zero-bias long-wave infrared nanoantenna-mediated graphene photodetector for polarimetric and spectroscopic sensing Adv. Opt. Mater. 11 2202867 doi: 10.1002/adom.202202867 [259] Chen M, Wang Y, Zhao Z 2022 Monolithic metamaterial-integrated graphene terahertz photodetector with wavelength and polarization selectivity ACS Nano 16 17263-73 doi: 10.1021/acsnano.2c07968 [260] Lin T, Yao W, Liu Z, Li D, Zhang X 2023 High performance broadband full linear polarimeter based on ReS2 nanobelts Adv. Opt. Mater. 11 2300345 doi: 10.1002/adom.202300345 [261] Zhao S, Luo P, Yang S, Zhou X, Wang Z, Li C, Wang S, Zhai T, Tao X 2021 Low-symmetry and nontoxic 2D SiP with strong polarization-sensitivity and fast photodetection Adv. Opt. Mater. 9 2100198 doi: 10.1002/adom.202100198 [262] Wu J B, Zhao H, Li Y, Ohlberg D, Shi W, Wu W, Wang H, Tan P H 2016 Monolayer molybdenum disulfide nanoribbons with high optical anisotropy Adv. Opt. Mater. 4 756-62 doi: 10.1002/adom.201500707 [263] Dhakal K P, Ghimire G, Chung K, Duong D L, Kim S W, Kim J 2019 Probing multiphased transition in bulk MoS2 by direct electron injection ACS Nano 13 14437-46 doi: 10.1021/acsnano.9b08037 [264] Zhou Z, et al 2023 Low symmetric sub-wavelength array enhanced lensless polarization-sensitivity photodetector of germanium selenium Sci. Bull. 68 173-9 doi: 10.1016/j.scib.2023.01.013 [265] Alavi S K, Senkovskiy B V, Hertel D, Haberer D, Ando Y, Meerholz K, Fischer F R, Grneis A, Lindfors K 2020 Photodetection using atomically precise graphene nanoribbons ACS Appl. Nano Mater. 3 8343-51 doi: 10.1021/acsanm.0c01549 [266] Chen S, Kim S P, Chen W, Yuan J, Bashir R, Lou J, van der Zande A M, King W P 2019 Monolayer MoS2 nanoribbon transistors fabricated by scanning probe lithography Nano Lett. 19 2092-8 doi: 10.1021/acs.nanolett.9b00271 [267] Kotekar-Patil D, Deng J, Wong S L, Lau C S, Goh K E J 2019 Single layer MoS2 nanoribbon field effect transistor Appl. Phys. Lett. 114 013508 doi: 10.1063/1.5079860 [268] Watts M C, Picco L, Russell-Pavier F S, Cullen P L, Miller T S, Bartu S P, Payton O D, Skipper N T, Tileli V, Howard C A 2019 Production of phosphorene nanoribbons Nature 568 216-20 doi: 10.1038/s41586-019-1074-x [269] Deng Y, Zhu C, Wang Y, Wang X, Zhao X, Wu Y, Tang B, Duan R, Zhou K, Liu Z 2022 Lithography-free, high-density MoTe2 nanoribbon arrays Mater. Today 58 8-17 doi: 10.1016/j.mattod.2022.06.002 [270] Abu U O, Akter S, Nepal B, Pitton K A, Guiton B S, Strachan D R, Sumanasekera G, Wang H, Jasinski J B 2022 Ultra-narrow phosphorene nanoribbons produced by facile electrochemical process Adv. Sci. 9 2203148 doi: 10.1002/advs.202203148 [271] Chen C, et al 2023 Water-induced bandgap engineering in nanoribbons of hexagonal boron nitride Adv. Mater. 35 2303198 doi: 10.1002/adma.202303198 [272] Wang X, Wen B, Gao S, Li X, Lin Z, Du L, Zhang X 2022 Strong anisotropy of multilayer -InSe-enabled polarization division multiplexing photodetection Adv. Photon. Res. 3 2200119 doi: 10.1002/adpr.202200119 [273] Gao Y, et al 2017 Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes Nat. Photon. 11 301-8 doi: 10.1038/nphoton.2017.37 [274] Hooten S, Van Vaerenbergh T, Sun P, Mathai S, Huang Z, Beausoleil R G 2020 Adjoint optimization of efficient CMOS-compatible Si-SiN vertical grating couplers for DWDM applications J. Lightwave Technol. 38 3422-30 doi: 10.1109/JLT.2020.2969097 [275] Zha J, et al 2023 Electronic/optoelectronic memory device enabled by tellurium-based 2D van der Waals heterostructure for in-sensor reservoir computing at the optical communication band Adv. Mater. 35 2211598 doi: 10.1002/adma.202211598 [276] Wang D, Zhao F, Zhang F, Mo Z, Cui B, Xia Q, Li B, He J, Zhong M 2022 Ultrasensitive and broadband polarization-sensitive topological insulator photodetector induced by element substitution Appl. Phys. Lett. 121 061104 doi: 10.1063/5.0102450 [277] Tong L, et al 2020 Stable mid-infrared polarization imaging based on quasi-2D tellurium at room temperature Nat. Commun. 11 2308 doi: 10.1038/s41467-020-16125-8 [278] Kong L, Li G, Su Q, Tan X, Zhang X, Liu Z, Liao G, Sun B, Shi T 2023 Polarization-sensitive, self-powered, and broadband semimetal MoTe2/MoS2 van der Waals heterojunction for photodetection and imaging ACS Appl. Mater. Interfaces 15 43135-44 doi: 10.1021/acsami.3c07709 [279] Yu Y, Xiong T, Kang J, Zhou Z, Long H, Liu D Y, Liu L, Liu Y Y, Yang J, Wei Z 2023 Dual-band real-time object identification via polarization reversal based on 2D GeSe image sensor Sci. Bull. 68 1867-70 doi: 10.1016/j.scib.2023.08.004 [280] Pan J, Wu Y, Zhang X, Chen J, Wang J, Cheng S, Wu X, Zhang X, Jie J 2022 Anisotropic charge trapping in phototransistors unlocks ultrasensitive polarimetry for bionic navigation Nat. Commun. 13 6629 doi: 10.1038/s41467-022-34421-3 [281] Chen Q, et al 2023 Three-dimensional laser writing aligned perovskite quantum dots in glass for polarization-sensitive anti-counterfeiting Adv. Opt. Mater. 11 2300090 doi: 10.1002/adom.202300090 [282] Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A, Marrazzo A, Sohier T, Castelli I E, Cepellotti A, Pizzi G 2018 Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds Nat. Nanotechnol. 13 246-52 doi: 10.1038/s41565-017-0035-5 [283] Meng Y, Wang W, Ho J C 2022 One-dimensional atomic chains for ultimate-scaled electronics ACS Nano 16 13314-22 doi: 10.1021/acsnano.2c06359 [284] Guo J, Xiang R, Cheng T, Maruyama S, Li Y 2022 One-dimensional van der Waals heterostructures: a perspective ACS Nanosci. Au 2 3-11 doi: 10.1021/acsnanoscienceau.1c00023 [285] Balandin A A, Lake R K, Salguero T T 2022 One-dimensional van der Waals materialsadvent of a new research field Appl. Phys. Lett. 121 40401 doi: 10.1063/5.0108414 [286] Chen M, Li L, Xu M, Li W, Zheng L, Wang X 2023 Quasi-one-dimensional van der Waals transition metal trichalcogenides Research 6 0066 doi: 10.34133/research.0066 [287] Lee W G, Chae S, Chung Y K, Oh S, Choi J Y, Huh J 2019 New one-dimensional material Nb2Se9: theoretical prediction of indirect to direct band gap transition due to dimensional reduction Phys. Status Solidi 13 1800517 doi: 10.1002/pssr.201800517 [288] Choi K H, et al 2021 Ta2Ni3Se8: 1D van der Waals material with ambipolar behavior Small 17 2102602 doi: 10.1002/smll.202102602 [289] Qu Y, Arguilla M Q, Zhang Q, He X, Dinc M 2021 Ultrathin, high-aspect ratio, and free-standing magnetic nanowires by exfoliation of ferromagnetic quasi-one-dimensional van der Waals lattices J. Am. Chem. Soc. 143 19551-8 doi: 10.1021/jacs.1c09607 [290] Hu H J, Zhen W L, Weng S R, Li Y D, Niu R, Yue Z L, Xu F, Pi L, Zhang C J, Zhu W K 2022 Enhanced optoelectronic performance and photogating effect in quasi-one-dimensional BiSeI wires Appl. Phys. Lett. 120 201101 doi: 10.1063/5.0080334 [291] Pan Z, Lee S H, Wang K, Mao Z, Li D 2022 Elastic stiffening induces one-dimensional phonons in thin Ta2Se3 nanowires Appl. Phys. Lett. 120 062201 doi: 10.1063/5.0083980 [292] Long H, et al 2023 Machine vision based on an ultra-wide bandgap 2D semiconductor AsSbO3 Adv. Funct. Mater. 33 2306241 doi: 10.1002/adfm.202306241 [293] Tripathi R P N, Yang X, Gao J 2021 Van der Waals layered mineral getchellite with anisotropic linear and nonlinear optical responses Laser Photonics Rev. 15 2100182 doi: 10.1002/lpor.202100182 [294] Bindi L, Zhou X, Deng T, Li Z, Wolverton C 2023 Kanatzidisite: a natural compound with distinctive van der Waals heterolayered architecture J. Am. Chem. Soc. 145 18227-32 doi: 10.1021/jacs.3c06433 [295] Li S, Pam M E, Li Y, Chen L, Chien Y C, Fong X, Chi D, Ang K W 2022 Wafer-scale 2D hafnium diselenide based memristor crossbar array for energy-efficient neural network hardware Adv. Mater. 34 2103376 doi: 10.1002/adma.202103376 [296] Song S, Jeon S, Rahaman M, Lynch J, Rhee D, Kumar P, Chakravarthi S, Kim G, Du X, Blanton E W 2023 Wafer-scale growth of two-dimensional, phase-pure InSe Matter 6 3483-98 doi: 10.1016/j.matt.2023.07.012 [297] Yang P, Liu F, Li X, Hu J, Zhou F, Zhu L, Chen Q, Gao P, Zhang Y 2023 Highly reproducible epitaxial growth of wafer-scale single-crystal monolayer MoS2 on sapphire Small Methods 7 2300165 doi: 10.1002/smtd.202300165 [298] Mennucci C, et al 2021 Geometrical engineering of giant optical dichroism in rippled MoS2 nanosheets Adv. Opt. Mater 9 2001408 doi: 10.1002/adom.202001408 [299] Wei J, Chen Y, Li Y, Li W, Xie J, Lee C, Novoselov K S, Qiu C W 2023 Geometric filterless photodetectors for mid-infrared spin light Nat. Photon. 17 171-8 doi: 10.1038/s41566-022-01115-7 [300] Bu Y, et al 2023 Configurable circular-polarization-dependent optoelectronic silent state for ultrahigh light ellipticity discrimination Light Sci. Appl. 12 176 doi: 10.1038/s41377-023-01193-4 [301] Lu J, Zhang L, Ma C, Huang W, Ye Q, Yi H, Zheng Z, Yang G, Liu C, Yao J 2022 In situ integration of Te/Si 2D/3D heterojunction photodetectors toward UV-vis-IR ultra-broadband photoelectric technologies Nanoscale 14 6228-38 doi: 10.1039/D1NR08134A [302] Song S, et al 2020 Wafer-scale production of patterned transition metal ditelluride layers for two-dimensional metal-semiconductor contacts at the Schottky-Mott limit Nat. Electron. 3 207-15 doi: 10.1038/s41928-020-0396-x [303] Ma L, et al 2023 Van der Waals self-epitaxial growth of inch-sized superconducting niobium diselenide films Nano Lett. 23 6892-9 doi: 10.1021/acs.nanolett.3c01283 [304] Chen S, et al 2020 Wafer-scale integration of two-dimensional materials in high-density memristive crossbar arrays for artificial neural networks Nat. Electron. 3 638-45 doi: 10.1038/s41928-020-00473-w [305] Kim K, Kim S U, Choi S, Heo K, Ahn S K, Na J H 2020 High-definition optophysical image construction using mosaics of pixelated wrinkles Adv. Sci. 7 2002134 doi: 10.1002/advs.202002134 [306] Tang P, Xu J, Wang R K 2018 Imaging and visualization of the polarization state of the probing beam in polarization-sensitive optical coherence tomography Appl. Phys. Lett. 113 231101 doi: 10.1063/1.5050208 [307] Wang Y, Wu D, Yang M, Bai S, Huang S, Wang M, Liu R, Li Z, Li D, Shen Y 2023 Microscopic single-pixel polarimetry for biological tissue Appl. Phys. Lett. 122 203701 doi: 10.1063/5.0150136 [308] Ballesta-Garcia M, Pea-Gutirrez S, Rodrguez-Aramenda A, Garca-Gmez P, Rodrigo N, Bobi A R, Royo S 2022 Analysis of the performance of a polarized LiDAR imager in fog Opt. Express 30 41524-40 doi: 10.1364/OE.471872 [309] Kumar M, Seo H 2023 Reconfigurable polarized photodetector with centrosymmetric silicon enabled by flexoelectric effect for encrypted communication Adv. Opt. Mater. 2301165 doi: 10.1002/adom.202301165 [310] Cao A, Li S, Chen H, Deng M, Xu X, Shang L, Li Y, Cui A, Hu Z 2023 A polar-switchable and controllable negative phototransistor for information encryption Mater. Horiz. doi: 10.1039/D3MH01120H [311] Flry N, Ma P, Salamin Y, Emboras A, Taniguchi T, Watanabe K, Leuthold J, Novotny L 2020 Waveguide-integrated Van der Waals heterostructure photodetector at telecom wavelengths with high speed and high responsivity Nat. Nanotechnol. 15 118-24 doi: 10.1038/s41565-019-0602-z [312] Yu L, Zhang S, Zhang G, He Z, Feng X, Liu Z, Wang G, Tao W, Zheng L, Yang S 2022 Dual-enhanced photodetectors combining graphene plasmonic nanoresonators with germanium-on-insulator optical cavities IEEE Trans. Electron Devices 69 3246-50 doi: 10.1109/TED.2022.3168528 [313] Lan H Y, Hsieh Y H, Chiao Z Y, Jariwala D, Shih M H, Yen T J, Hess O, Lu Y J 2021 Gate-tunable plasmon-enhanced photodetection in a monolayer MoS2 phototransistor with ultrahigh photoresponsivity Nano Lett. 21 3083-91 doi: 10.1021/acs.nanolett.1c00271 [314] Wang X, et al 2023 Ultrasensitive photodetector based on 2D WS2/AgInGaS quantum dots heterojunction with interfacial charge transfer 2D Mater. 10 045020 doi: 10.1088/2053-1583/acf2ab [315] Wang Z, Wei L, Wang S, Wu T, Sun L, Ma C, Tao X, Wang S 2023 2D SiP2/h-BN for a gate-controlled phototransistor with ultrahigh sensitivity ACS Appl. Mater. Interfaces 15 15810-8 doi: 10.1021/acsami.2c19803