留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ultrathin SrTiO3-based oxide memristor with both drift and diffusive dynamics as versatile synaptic emulators for neuromorphic computing

Fang Nie Jie Wang Hong Fang Shuanger Ma Feiyang Wu Wenbo Zhao Shizhan Wei Yuling Wang Le Zhao Shishen Yan Chen Ge Limei Zheng

Fang Nie, Jie Wang, Hong Fang, Shuanger Ma, Feiyang Wu, Wenbo Zhao, Shizhan Wei, Yuling Wang, Le Zhao, Shishen Yan, Chen Ge, Limei Zheng. Ultrathin SrTiO3-based oxide memristor with both drift and diffusive dynamics as versatile synaptic emulators for neuromorphic computing[J]. Materials Futures, 2023, 2(3): 035302. doi: 10.1088/2752-5724/ace3dc
Citation: Fang Nie, Jie Wang, Hong Fang, Shuanger Ma, Feiyang Wu, Wenbo Zhao, Shizhan Wei, Yuling Wang, Le Zhao, Shishen Yan, Chen Ge, Limei Zheng. Ultrathin SrTiO3-based oxide memristor with both drift and diffusive dynamics as versatile synaptic emulators for neuromorphic computing[J]. Materials Futures, 2023, 2(3): 035302. doi: 10.1088/2752-5724/ace3dc
Paper •
OPEN ACCESS

Ultrathin SrTiO3-based oxide memristor with both drift and diffusive dynamics as versatile synaptic emulators for neuromorphic computing

doi: 10.1088/2752-5724/ace3dc
More Information
  • Figure  1.  Device structure and the basic electrical characterization. (a) Schematic diagram of Au/Cr/STO/NSTO device. (b) I-V characteristic under positive and negative bias. (c) R-V loops measured with different pulse width. (d) Measured and fitted I-V curves of HRS and LRS for the device. (e) LRS resistance as a function of electrode sizes. (f) Schematic diagram of oxygen vacancy migration and the corresponding energy band diagrams for LRS and HRS. (g) Endurance behavior.

    Figure  2.  Short-term plasticity of the Au/Cr/STO/NSTO artificial synapse. (a) EPSC triggered by a single pulse of 0.9 V, 100 s. (b) The EPSCs triggered by a pair of positive pulses of 1 V, 100 s. (c) The varying of PPF as a function of the relative pulse interval t. (d) The EPSCs triggered by a pair of negative pulses of -1.2 V, 1 ms. (e) The variation of PPD as a function of t. (f) PTP as a function of t, and (g) EPSC under ten pulse stimulations with different pulse frequencies.

    Figure  3.  Long-term plasticity of the Au/Cr/STO/NSTO artificial synapse. (a) and (b) Long-term potentiation and long-term depression, respectively. EPSC response to the pulse sequence with different (c) pulse amplitude, (d) pulse width, (e) pulse interval, and (f) pulse number. (g) The EPSC triggered by 30 consecutive pulses with different frequencies. (h) Frequency dependence of EPSC gain A30/A1 and the fitting results by the sigmoidal-shaped function.

    Figure  4.  The learning-forgetting-relearning process achieved within a single Au/Cr/STO/NSTO memristor. (a), (c) and (e) Demonstrate the first, second and third learning stage, while (b), (d) and (f) give the first, second and third forgetting process. The amplitude and duration of the voltage pulses are 0.8 V and 100 s, respectively. The conductance responses are monitored with a small voltage of 0.1 V.

    Figure  5.  Schematic diagram of Pavlov’s dog experiment, where the bone’ and bell’ stimuli are simulated by the pulses of 1.1 V, 100 s and 1 V, 100 s, respectively. The displayed current values were obtained under the reading voltage of 0.1 V.

  • [1] Wang J R, Zhuge F 2019 Memristive synapses for brain-inspired computing Adv. Mater. Technol. 4 1800544 doi: 10.1002/admt.201800544
    [2] Xi F B, Han Y, Liu M S, Bae J H, Tiedemann A, Grützmacher D, Zhao Q T 2021 Artificial synapses based on ferroelectric Schottky barrier field-effect transistors for neuromorphic applications ACS Appl. Mater. Interfaces 13 32005-12 doi: 10.1021/acsami.1c07505
    [3] Zhang H Z, Ju X, Yew K S, Ang D S 2020 Implementation of simple but powerful trilayer oxide-based artificial synapses with a tailored bio-synapse-like structure ACS Appl. Mater. Interfaces 12 1036-45 doi: 10.1021/acsami.9b17026
    [4] Pereda A E 2014 Electrical synapses and their functional interactions with chemical synapses Nat. Rev. Neurosci. 15 250-63 doi: 10.1038/nrn3708
    [5] Chang T, Jo S H, Lu W 2011 Short-term memory to long-term memory transition in a nanoscale memristor ACS Nano 5 7669-76 doi: 10.1021/nn202983n
    [6] Yang S T, et al 2022 High-performance neuromorphic computing based on ferroelectric synapses with excellent conductance linearity and symmetry Adv. Funct. Mater. 32 2202366 doi: 10.1002/adfm.202202366
    [7] Kuzum D, Jeyasingh R G D, Lee B, Wong H S P 2012 Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing Nano Lett. 12 2179-86 doi: 10.1021/nl201040y
    [8] Sokolov A S, Jeon Y R, Kim S, Ku B, Choi C 2019 Bio-realistic synaptic characteristics in the cone-shaped ZnO memristive device NPG Asia Mater. 11 1-15 doi: 10.1038/s41427-018-0105-7
    [9] Ohno T, Hasegawa T, Tsuruoka T, Terabe K, Gimzewski J K, Aono M 2011 Short-term plasticity and long-term potentiation mimicked in single inorganic synapses Nat. Mater. 10 591-5 doi: 10.1038/nmat3054
    [10] Nayak A, Ohno T, Tsuruoka T, Terabe K, Hasegawa T, Gimzewski J K, Aono M 2012 Controlling the synaptic plasticity of a Cu2S gap-type atomic switch Adv. Funct. Mater. 22 3606-13 doi: 10.1002/adfm.201200640
    [11] Li J K, Ge C, Du J Y, Wang C, Yang G Z, Jin K J 2020 Reproducible ultrathin ferroelectric domain switching for high-performance neuromorphic computing Adv. Mater. 32 1905764 doi: 10.1002/adma.201905764
    [12] Yang Y, Wen J, Guo L Q, Wan X, Du P F, Feng P, Shi Y, Wan Q 2016 Long-term synaptic plasticity emulated in modified graphene oxide electrolyte gated IZO-based thin-film transistors ACS Appl. Mater. Interfaces 8 30281-6 doi: 10.1021/acsami.6b08515
    [13] John R A, et al 2022 Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing Nat. Commun. 13 2074 doi: 10.1038/s41467-022-29727-1
    [14] Wang Z R, et al 2017 Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing Nat. Mater. 16 101-8 doi: 10.1038/nmat4756
    [15] Midya R, et al 2019 Artificial neural network (ANN) to spiking neural network (SNN) converters based on diffusive memristors Adv. Electron. Mater. 5 1900060 doi: 10.1002/aelm.201900060
    [16] Li J K, Li N, Ge C, Huang H Y, Sun Y W, Gao P, He M, Wang C, Yang G Z, Jin K J 2019 Giant electroresistance in ferroionic tunnel junctions iScience 16 368-77 doi: 10.1016/j.isci.2019.05.043
    [17] Yang R, Huang H M, Guo X 2019 Memristive synapses and neurons for bioinspired computing Adv. Electron. Mater. 5 1900287 doi: 10.1002/aelm.201900287
    [18] Liu G, Wang C, Zhang W B, Pan L, Zhang C C, Yang X, Fan F, Chen Y, Li R W 2016 Organic biomimicking memristor for information storage and processing applications Adv. Electron. Mater. 2 1500298 doi: 10.1002/aelm.201500298
    [19] Yang J T, Ge C, Du J Y, Huang H Y, He M, Wang C, Lu H B, Yang G Z, Jin K J 2018 Artificial synapses emulated by an electrolyte-gated tungsten-oxide transistor Adv. Mater. 30 1801548 doi: 10.1002/adma.201801548
    [20] Liu Y H, Zhu L Q, Feng P, Shi Y, Wan Q 2015 Freestanding artificial synapses based on laterally proton-coupled transistors on chitosan membranes Adv. Mater. 27 5599-604 doi: 10.1002/adma.201502719
    [21] Shen Z H, Li W H, Tang X G, Hu J, Wang K Y, Jiang Y P, Guo X B 2022 An artificial synapse based on Sr(Ti, Co)O3 films Mater. Today Commun. 33 104754 doi: 10.1016/j.mtcomm.2022.104754
    [22] Ren Z Y, Zhu L Q, Guo Y B, Long T Y, Yu F, Xiao H, Lu H L 2020 Threshold tunable spike rate dependent plasticity originated from interfacial proton gating for pattern learning and memory ACS Appl. Mater. Interfaces 12 7833-9 doi: 10.1021/acsami.9b22369
    [23] Yin L, Huang W, Xiao R L, Peng W B, Zhu Y Y, Zhang Y Q, Pi X D, Yang D 2020 Optically stimulated synaptic devices based on the hybrid structure of silicon nanomembrane and perovskite Nano Lett. 20 3378-87 doi: 10.1021/acs.nanolett.0c00298
    [24] Zhao L, et al 2020 An artificial optoelectronic synapse based on a photoelectric memcapacitor Adv. Electron. Mater. 6 1900858 doi: 10.1002/aelm.201900858
    [25] Lao J, Xu W, Jiang C L, Zhong N, Tian B B, Lin H C, Luo C H, Sejdic J T, Peng H, Duan C G 2021 Artificial synapse based on organic-inorganic hybrid perovskite with electric and optical modulation Adv. Electron. Mater. 7 2100291 doi: 10.1002/aelm.202100291
  • mface3dcsupp1.docx
  • 加载中
图(6)
计量
  • 文章访问数:  661
  • HTML全文浏览量:  300
  • PDF下载量:  226
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-26
  • 录用日期:  2023-07-04
  • 修回日期:  2023-06-16
  • 刊出日期:  2023-07-26

目录

    /

    返回文章
    返回