留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Anode-less all-solid-state batteries: recent advances and future outlook

Nohjoon Lee Jihoon Oh Jang Wook Choi

Nohjoon Lee, Jihoon Oh, Jang Wook Choi. Anode-less all-solid-state batteries: recent advances and future outlook[J]. Materials Futures, 2023, 2(1): 013502. doi: 10.1088/2752-5724/acb3e8
Citation: Nohjoon Lee, Jihoon Oh, Jang Wook Choi. Anode-less all-solid-state batteries: recent advances and future outlook[J]. Materials Futures, 2023, 2(1): 013502. doi: 10.1088/2752-5724/acb3e8
Perspective •
OPEN ACCESS

Anode-less all-solid-state batteries: recent advances and future outlook

doi: 10.1088/2752-5724/acb3e8
More Information
  • Figure  1.  Schematic illustration of various anode structures for ASSBs.

    Figure  2.  (a) Schematic of Li plating-stripping on the current collector with a Ag-C nanocomposite layer during charging and discharging processes. (b) Schematic of pressurization process during the fabrication and operation of an ASSB. After cell assembly and stacking, pressurization was applied by using a warm isostatic press (WIP). During operation, external pressure of 2 MPa was uniformly applied to the prototype pouch cell using a pressure jig. (c) Cycling performance and CE of the Ag-C|SSE|NMC prototype pouch cell (0.6 Ah) plotted against the number of cycles. Constant current (CC) mode with the charge/discharge rate of 0.5 C/0.5 C was applied (voltage window, 2.5-4.25 V versus Li+/Li at 60 C). The areal capacity loading of the NMC cathode was 6.8 mAh cm-2 (1.0 C = 6.8 mA cm-2). (d) Schematic figures of evolution of an ASSB with an anode based on carbon black (CB) during charging. (e) Cross-sectional SEM image of an ASSB cell with a graphite-based anode after the first charge. (f) 3D graphic of elastic recovery during lithiation and delithiation of Ag particles. (g) Capacity versus voltage profiles at the 1st cycle of half-cell plating/stripping tests with current density of 1 mA cm-2 and capacity of 3.5 mAh cm-2. (a)-(c) Reproduced with permission [29], with permission from Springer Nature. (d), (e) Reproduced with permission [35]. CC BY 4.0. (f), (g) Reproduced with permission [36]. Copyright (2022) American Chemical Society.

    Figure  3.  (a) Schematic illustration of nucleation and growth process of LLZO anode-less type battery. (b) Preparation method and (c) electrochemical performance of the double-layer UFF/PEO/PAN/LiTFSI SSE. (d) Schematic illustration of the preparation of an ultrathin laminated LLZTO/PEO CPE. (a) Reproduced with permission [45]. CC BY 4.0. (b), (c) [51] John Wiley & Sons. [© 2021 Wiley-VCH GmbH]. (d) Reprinted with permission from [52]. Copyright (2020) American Chemical Society.

  • [1] Tarascon J M, Armand M 2001 Issues and challenges facing rechargeable lithium batteries Nature 414 359-67 doi: 10.1038/35104644
    [2] Janek J, Zeier W G 2016 A solid future for battery development Nat. Energy 1 16141 doi: 10.1038/nenergy.2016.141
    [3] Agubra V A, Fergus J W 2014 The formation and stability of the solid electrolyte interface on the graphite anode J. Power Sources 268 153-62 doi: 10.1016/j.jpowsour.2014.06.024
    [4] BarTow D, Peled E, Burstein L A 1999 Study of highly oriented pyrolytic graphite as a model for the graphite anode in liion batteries J. Electrochem. Soc. 146 824-32 doi: 10.1149/1.1391688
    [5] Peled E, Menachem C, BarTow D, Melman A 1996 Improved graphite anode for lithiumion batteries chemically: bonded solid electrolyte interface and nanochannel formation J. Electrochem. Soc. 143 L4-L7 doi: 10.1149/1.1836372
    [6] Mahmood N, Tang T, Hou Y 2016 Nanostructured anode materials for lithium ion batteries: progress, challenge and perspective Adv. Energy Mater. 6 1600374 doi: 10.1002/aenm.201600374
    [7] Oh P, Yun J, Choi J H, Saqib K S, Embleton T J, Park S, Lee C, Ali J, Ko K, Cho J 2022 Development of high energy anodes for all-solid-state lithium batteries based on sulfide electrolytes Angew. Chem., Int. Ed. 61 202201249 doi: 10.1002/anie.202201249
    [8] Wu Y P, Rahm E, Holze R 2003 Carbon anode materials for lithium ion batteries J. Power Sources 114 228-36 doi: 10.1016/S0378-7753(02)00596-7
    [9] Choi J W, Aurbach D 2016 Promise and reality of post-lithium-ion batteries with high energy densities Nat. Rev. Mater. 1 16013 doi: 10.1038/natrevmats.2016.13
    [10] Qian J, Adams B D, Zheng J, Xu W, Henderson W A, Wang J, Bowden M E, Xu S, Hu J, Zhang J-G 2016 Anode-free rechargeable lithium metal batteries Adv. Funct. Mater. 26 7094-102 doi: 10.1002/adfm.201602353
    [11] Tian Y, An Y, Wei C, Jiang H, Xiong S, Feng J, Qian Y 2020 Recently advances and perspectives of anode-free rechargeable batteries Nano Energy 78 105344 doi: 10.1016/j.nanoen.2020.105344
    [12] Louli A J, et al 2020 Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis Nat. Energy 5 693-702 doi: 10.1038/s41560-020-0668-8
    [13] Weber R, Genovese M, Louli A J, Hames S, Martin C, Hill I G, Dahn J R 2019 Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte Nat. Energy 4 683-9 doi: 10.1038/s41560-019-0428-9
    [14] Gond R, van Ekeren W, Mogensen R, Naylor A J, Younesi R 2021 Non-flammable liquid electrolytes for safe batteries Mater. Horiz. 8 2913-28 doi: 10.1039/D1MH00748C
    [15] Arbizzani C, Gabrielli G, Mastragostino M 2011 Thermal stability and flammability of electrolytes for lithium-ion batteries J. Power Sources 196 4801-5 doi: 10.1016/j.jpowsour.2011.01.068
    [16] Zheng F, Kotobuki M, Song S, Lai M O, Lu L 2018 Review on solid electrolytes for all-solid-state lithium-ion batteries J. Power Sources 389 198-213 doi: 10.1016/j.jpowsour.2018.04.022
    [17] Heubner C, Maletti S, Auer H, Httl J, Voigt K, Lohrberg O, Nikolowski K, Partsch M, Michaelis A 2021 From lithium-metal toward anode-free solid-state batteries: current developments, issues, and challenges Adv. Funct. Mater. 31 2106608 doi: 10.1002/adfm.202106608
    [18] Chen S, Zhang J, Nie L, Hu X, Huang Y, Yu Y, Liu W 2021 All-solid-state batteries with a limited lithium metal anode at room temperature using a garnet-based electrolyte Adv. Mater. 33 2002325 doi: 10.1002/adma.202002325
    [19] Lee J, Lee T, Char K, Kim K J, Choi J W 2021 Issues and advances in scaling up sulfide-based all-solid-state batteries Acc. Chem. Res 54 3390-402 doi: 10.1021/acs.accounts.1c00333
    [20] Kim S, Park G, Lee S J, Seo S, Ryu K, Kim C H, Choi J W 2022 Lithium metal batteries: from fundamental research to industrialization Adv. Mater. 2206625 doi: 10.1002/adma.202206625
    [21] Xu R C, Wang X L, Zhang S Z, Xia Y, Xia X H, Wu J B, Tu J P 2018 Rational coating of Li7P3S11 solid electrolyte on Mos2 electrode for all-solid-state lithium ion batteries J. Power Sources 374 107-12 doi: 10.1016/j.jpowsour.2017.10.093
    [22] Deiseroth H-J, Kong S-T, Eckert H, Vannahme J, Reiner C, Zai T, Schlosser M 2008 Li6ps5x: a class of crystalline li-rich solids with an unusually high Li+ mobility Angew. Chem., Int. Ed. 47 755-8 doi: 10.1002/anie.200703900
    [23] Kamaya N, et al 2011 Lithium superionic conductor Nat. Mater. 10 682-6 doi: 10.1038/nmat3066
    [24] Zhang Z, et al 2018 New horizons for inorganic solid state ion conductors Energy Environ. Sci. 11 1945-76 doi: 10.1039/C8EE01053F
    [25] Wang C, Yang T, Zhang W, Huang H, Gan Y, Xia Y, He X, Zhang J 2022 Hydrogen bonding enhanced SiO2/PEO composite electrolytes for solid-state lithium batteries J. Mater. Chem. A 10 3400-8 doi: 10.1039/D1TA10607D
    [26] Pang B, Gan Y, Xia Y, Huang H, He X, Zhang W 2022 Regulation of the interfaces between argyrodite solid electrolytes and lithium metal anode Front. Chem. 10 837978 doi: 10.3389/fchem.2022.837978
    [27] Zheng C, Zhang J, Xia Y, Huang H, Gan Y, Liang C, He X, Tao X, Zhang W 2021 Unprecedented self-healing effect of Li6PS5Cl-Based all-solid-state lithium battery Small 17 2101326 doi: 10.1002/smll.202101326
    [28] Zhang J, Zheng C, Li L, Xia Y, Huang H, Gan Y, Liang C, He X, Tao X, Zhang W 2020 Unraveling the intra and intercycle interfacial evolution of Li6Ps5CL-Based all-solid-state lithium batteries Adv. Energy Mater. 10 1903311 doi: 10.1002/aenm.201903311
    [29] Lee Y-G, et al 2020 High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes Nat. Energy 5 299-308 doi: 10.1038/s41560-020-0575-z
    [30] Nanda S, Gupta A, Manthiram A 2021 Anode-free full cells: a pathway to high-energy density lithium-metal batteries Adv. Energy Mater. 11 2000804 doi: 10.1002/aenm.202000804
    [31] Tamwattana O, Park H, Kim J, Hwang I, Yoon G, Hwang T-H, Kang Y-S, Park J, Meethong N, Kang K 2021 High-dielectric polymer coating for uniform lithium deposition in anode-free lithium batteries ACS Energy Lett. 6 4416-25 doi: 10.1021/acsenergylett.1c02224
    [32] Chen W, Salvatierra R V, Ren M, Chen J, Stanford M G, Tour J M 2020 Laser-induced silicon oxide for anode-free lithium metal batteries Adv. Mater. 32 2002850 doi: 10.1002/adma.202002850
    [33] Jin S, et al 2020 Solid-solution-based metal alloy phase for highly reversible lithium metal anode J. Am. Chem. Soc 142 8818-26 doi: 10.1021/jacs.0c01811
    [34] Yan K, Lu Z, Lee H-W, Xiong F, Hsu P-C, Li Y, Zhao J, Chu S, Cui Y 2016 Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth Nat. Energy 1 16010 doi: 10.1038/nenergy.2016.10
    [35] Suzuki N, Yashiro N, Fujiki S, Omoda R, Shiratsuchi T, Watanabe T, Aihara Y 2021 Highly cyclable all-solid-state battery with deposition-type lithium metal anode based on thin carbon black layer Adv. Energy Sustain. Res. 2 2100066 doi: 10.1002/aesr.202100066
    [36] Oh J, et al 2022 Elastic binder for high-performance sulfide-based all-solid-state batteries ACS Energy Lett. 7 1374-82 doi: 10.1021/acsenergylett.2c00461
    [37] Park S H, Jun D, Lee G H, Lee S G, Jung J E, Bae K Y, Son S, Lee Y J 2022 Designing 3d anode based on pore-size-dependent li deposition behavior for reversible li-free all-solid-state batteries Adv. Sci. 9 2203130 doi: 10.1002/advs.202203130
    [38] Lee J, et al 2022 Room-temperature anode-less all-solid-state batteries via the conversion reaction of metal fluorides Adv. Mater. 34 2203580 doi: 10.1002/adma.202203580
    [39] Bates J B, Dudney N J, Gruzalski G R, Zuhr R A, Choudhury A, Luck C F, Robertson J D 1993 Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries J. Power Sources 43 103-10 doi: 10.1016/0378-7753(93)80106-Y
    [40] Inaguma Y, Liquan C, Itoh M, Nakamura T, Uchida T, Ikuta H, Wakihara M 1993 High ionic conductivity in lithium lanthanum titanate Solid State Commun. 86 689-93 doi: 10.1016/0038-1098(93)90841-A
    [41] Fu J 1997 Fast Li+ ion conducting glass-ceramics in the system Li2O-Al2O3-TiO2-P2O5 Solid State Ion. 104 191-4 doi: 10.1016/S0167-2738(97)00434-7
    [42] Fu J 1997 Superionic conductivity of glass-ceramics in the system Li2O- Al2O3-TiO2-P2O5 Solid State Ion. 96 195-200 doi: 10.1016/S0167-2738(97)00018-0
    [43] Murugan R, Thangadurai V, Weppner W 2007 Fast lithium ion conduction in garnet-Type Li7La3Zr2O12 Angew. Chem., Int. Ed. 46 7778-81 doi: 10.1002/anie.200701144
    [44] Neudecker B J, Dudney N J, Bates J B 2000 Lithium-free thin-film battery with in situ plated Li anode J. Electrochem. Soc. 147 517 doi: 10.1149/1.1393226
    [45] Wang M J, Carmona E, Gupta A, Albertus P, Sakamoto J 2020 Enabling lithium-free manufacturing of pure lithium metal solid-state batteries through in situ plating Nat. Commun. 11 5201 doi: 10.1038/s41467-020-19004-4
    [46] Kravchyk K V, Zhang H, Okur F, Kovalenko M V 2022 Li-garnet solid-state batteries with LLZO scaffolds Acc. Mater. Res. 3 411-5 doi: 10.1021/accountsmr.2c00004
    [47] Faglioni F, Merinov B V, Goddard W A, Kozinsky B 2018 Factors affecting cyclic durability of all-solid-state lithium batteries using poly(ethylene oxide)-based polymer electrolytes and recommendations to achieve improved performance Phys. Chem. Chem. Phys 20 26098-104 doi: 10.1039/C8CP05440A
    [48] Xia Y, Fujieda T, Tatsumi K, Prosini P P, Sakai T 2001 Thermal and electrochemical stability of cathode materials in solid polymer electrolyte J. Power Sources 92 234-43 doi: 10.1016/S0378-7753(00)00533-4
    [49] Seidl L, Grissa R, Zhang L, Trabesinger S, Battaglia C 2022 Unraveling the voltage-dependent oxidation mechanisms of poly(ethylene oxide)-based solid electrolytes for solid-state batteries Adv. Mater. Interfaces 9 2100704 doi: 10.1002/admi.202100704
    [50] Assegie A A, Cheng J-H, Kuo L-M, Su W-N, Hwang B-J 2018 Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery Nanoscale 10 6125-38 doi: 10.1039/C7NR09058G
    [51] He F, Tang W, Zhang X, Deng L, Luo J 2021 High energy density solid state lithium metal batteries enabled by sub-5·m solid polymer electrolytes Adv. Mater. 33 2105329 doi: 10.1002/adma.202105329
    [52] Zegeye T A, Su W-N, Fenta F W, Zeleke T S, Jiang S-K, Hwang B J 2020 Ultrathin Li6.75La3Zr1.75Ta0.25O12-based composite solid electrolytes laminated on anode and cathode surfaces for anode-free lithium metal batteries ACS Appl. Energy Mater. 3 11713-23 doi: 10.1021/acsaem.0c01714
    [53] J-G Z 2019 Anode-Less Nat. Energy 4 637-8 doi: 10.1038/s41560-019-0449-4
    [54] Xiao J, et al 2020 Understanding and applying coulombic efficiency in lithium metal batteries Nat. Energy 5 561-8 doi: 10.1038/s41560-020-0648-z
    [55] Yan K, Wang J, Zhao S, Zhou D, Sun B, Cui Y, Wang G 2019 Temperature-dependent nucleation and growth of dendrite-free lithium metal anodes Angew. Chem., Int. Ed. 58 11364-8 doi: 10.1002/anie.201905251
    [56] Wang M J, Choudhury R, Sakamoto J 2019 Characterizing the Li-solid-electrolyte interface dynamics as a function of stack pressure and current density Joule 3 2165-78 doi: 10.1016/j.joule.2019.06.017
    [57] Banerjee A, Wang X, Fang C, Wu E A, Meng Y S 2020 Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes Chem. Rev. 120 6878-933 doi: 10.1021/acs.chemrev.0c00101
  • 加载中
图(4)
计量
  • 文章访问数:  1010
  • HTML全文浏览量:  531
  • PDF下载量:  260
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-19
  • 录用日期:  2023-01-15
  • 修回日期:  2022-12-25
  • 刊出日期:  2023-02-02

目录

    /

    返回文章
    返回