Anode-less all-solid-state batteries: recent advances and future outlook
doi: 10.1088/2752-5724/acb3e8
-
Abstract: While all-solid-state batteries have built global consensus with regard to their impact in safety and energy density, their anode-less versions have attracted appreciable attention because of the possibility of further lowering the cell volume and cost. This perspective article summarizes recent research trends in anode-less all-solid-state batteries (ALASSBs) based on different types of solid electrolytes and anticipates future directions these batteries may take. We particularly aim to motivate researchers in the field to challenge remaining issues in ALASSBs by employing advanced materials and cell designs.
-
Key words:
- all-solid-state batteries /
- anode-free /
- anode-less /
- interface stability /
- lithium dendrite
-
Figure 2. (a) Schematic of Li plating-stripping on the current collector with a Ag-C nanocomposite layer during charging and discharging processes. (b) Schematic of pressurization process during the fabrication and operation of an ASSB. After cell assembly and stacking, pressurization was applied by using a warm isostatic press (WIP). During operation, external pressure of 2 MPa was uniformly applied to the prototype pouch cell using a pressure jig. (c) Cycling performance and CE of the Ag-C|SSE|NMC prototype pouch cell (0.6 Ah) plotted against the number of cycles. Constant current (CC) mode with the charge/discharge rate of 0.5 C/0.5 C was applied (voltage window, 2.5-4.25 V versus Li+/Li at 60 C). The areal capacity loading of the NMC cathode was 6.8 mAh cm-2 (1.0 C = 6.8 mA cm-2). (d) Schematic figures of evolution of an ASSB with an anode based on carbon black (CB) during charging. (e) Cross-sectional SEM image of an ASSB cell with a graphite-based anode after the first charge. (f) 3D graphic of elastic recovery during lithiation and delithiation of Ag particles. (g) Capacity versus voltage profiles at the 1st cycle of half-cell plating/stripping tests with current density of 1 mA cm-2 and capacity of 3.5 mAh cm-2. (a)-(c) Reproduced with permission [29], with permission from Springer Nature. (d), (e) Reproduced with permission [35]. CC BY 4.0. (f), (g) Reproduced with permission [36]. Copyright (2022) American Chemical Society.
Figure 3. (a) Schematic illustration of nucleation and growth process of LLZO anode-less type battery. (b) Preparation method and (c) electrochemical performance of the double-layer UFF/PEO/PAN/LiTFSI SSE. (d) Schematic illustration of the preparation of an ultrathin laminated LLZTO/PEO CPE. (a) Reproduced with permission [45]. CC BY 4.0. (b), (c) [51] John Wiley & Sons. [© 2021 Wiley-VCH GmbH]. (d) Reprinted with permission from [52]. Copyright (2020) American Chemical Society.
-
[1] Tarascon J M, Armand M 2001 Issues and challenges facing rechargeable lithium batteries Nature 414 359-67 doi: 10.1038/35104644 [2] Janek J, Zeier W G 2016 A solid future for battery development Nat. Energy 1 16141 doi: 10.1038/nenergy.2016.141 [3] Agubra V A, Fergus J W 2014 The formation and stability of the solid electrolyte interface on the graphite anode J. Power Sources 268 153-62 doi: 10.1016/j.jpowsour.2014.06.024 [4] BarTow D, Peled E, Burstein L A 1999 Study of highly oriented pyrolytic graphite as a model for the graphite anode in liion batteries J. Electrochem. Soc. 146 824-32 doi: 10.1149/1.1391688 [5] Peled E, Menachem C, BarTow D, Melman A 1996 Improved graphite anode for lithiumion batteries chemically: bonded solid electrolyte interface and nanochannel formation J. Electrochem. Soc. 143 L4-L7 doi: 10.1149/1.1836372 [6] Mahmood N, Tang T, Hou Y 2016 Nanostructured anode materials for lithium ion batteries: progress, challenge and perspective Adv. Energy Mater. 6 1600374 doi: 10.1002/aenm.201600374 [7] Oh P, Yun J, Choi J H, Saqib K S, Embleton T J, Park S, Lee C, Ali J, Ko K, Cho J 2022 Development of high energy anodes for all-solid-state lithium batteries based on sulfide electrolytes Angew. Chem., Int. Ed. 61 202201249 doi: 10.1002/anie.202201249 [8] Wu Y P, Rahm E, Holze R 2003 Carbon anode materials for lithium ion batteries J. Power Sources 114 228-36 doi: 10.1016/S0378-7753(02)00596-7 [9] Choi J W, Aurbach D 2016 Promise and reality of post-lithium-ion batteries with high energy densities Nat. Rev. Mater. 1 16013 doi: 10.1038/natrevmats.2016.13 [10] Qian J, Adams B D, Zheng J, Xu W, Henderson W A, Wang J, Bowden M E, Xu S, Hu J, Zhang J-G 2016 Anode-free rechargeable lithium metal batteries Adv. Funct. Mater. 26 7094-102 doi: 10.1002/adfm.201602353 [11] Tian Y, An Y, Wei C, Jiang H, Xiong S, Feng J, Qian Y 2020 Recently advances and perspectives of anode-free rechargeable batteries Nano Energy 78 105344 doi: 10.1016/j.nanoen.2020.105344 [12] Louli A J, et al 2020 Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis Nat. Energy 5 693-702 doi: 10.1038/s41560-020-0668-8 [13] Weber R, Genovese M, Louli A J, Hames S, Martin C, Hill I G, Dahn J R 2019 Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte Nat. Energy 4 683-9 doi: 10.1038/s41560-019-0428-9 [14] Gond R, van Ekeren W, Mogensen R, Naylor A J, Younesi R 2021 Non-flammable liquid electrolytes for safe batteries Mater. Horiz. 8 2913-28 doi: 10.1039/D1MH00748C [15] Arbizzani C, Gabrielli G, Mastragostino M 2011 Thermal stability and flammability of electrolytes for lithium-ion batteries J. Power Sources 196 4801-5 doi: 10.1016/j.jpowsour.2011.01.068 [16] Zheng F, Kotobuki M, Song S, Lai M O, Lu L 2018 Review on solid electrolytes for all-solid-state lithium-ion batteries J. Power Sources 389 198-213 doi: 10.1016/j.jpowsour.2018.04.022 [17] Heubner C, Maletti S, Auer H, Httl J, Voigt K, Lohrberg O, Nikolowski K, Partsch M, Michaelis A 2021 From lithium-metal toward anode-free solid-state batteries: current developments, issues, and challenges Adv. Funct. Mater. 31 2106608 doi: 10.1002/adfm.202106608 [18] Chen S, Zhang J, Nie L, Hu X, Huang Y, Yu Y, Liu W 2021 All-solid-state batteries with a limited lithium metal anode at room temperature using a garnet-based electrolyte Adv. Mater. 33 2002325 doi: 10.1002/adma.202002325 [19] Lee J, Lee T, Char K, Kim K J, Choi J W 2021 Issues and advances in scaling up sulfide-based all-solid-state batteries Acc. Chem. Res 54 3390-402 doi: 10.1021/acs.accounts.1c00333 [20] Kim S, Park G, Lee S J, Seo S, Ryu K, Kim C H, Choi J W 2022 Lithium metal batteries: from fundamental research to industrialization Adv. Mater. 2206625 doi: 10.1002/adma.202206625 [21] Xu R C, Wang X L, Zhang S Z, Xia Y, Xia X H, Wu J B, Tu J P 2018 Rational coating of Li7P3S11 solid electrolyte on Mos2 electrode for all-solid-state lithium ion batteries J. Power Sources 374 107-12 doi: 10.1016/j.jpowsour.2017.10.093 [22] Deiseroth H-J, Kong S-T, Eckert H, Vannahme J, Reiner C, Zai T, Schlosser M 2008 Li6ps5x: a class of crystalline li-rich solids with an unusually high Li+ mobility Angew. Chem., Int. Ed. 47 755-8 doi: 10.1002/anie.200703900 [23] Kamaya N, et al 2011 Lithium superionic conductor Nat. Mater. 10 682-6 doi: 10.1038/nmat3066 [24] Zhang Z, et al 2018 New horizons for inorganic solid state ion conductors Energy Environ. Sci. 11 1945-76 doi: 10.1039/C8EE01053F [25] Wang C, Yang T, Zhang W, Huang H, Gan Y, Xia Y, He X, Zhang J 2022 Hydrogen bonding enhanced SiO2/PEO composite electrolytes for solid-state lithium batteries J. Mater. Chem. A 10 3400-8 doi: 10.1039/D1TA10607D [26] Pang B, Gan Y, Xia Y, Huang H, He X, Zhang W 2022 Regulation of the interfaces between argyrodite solid electrolytes and lithium metal anode Front. Chem. 10 837978 doi: 10.3389/fchem.2022.837978 [27] Zheng C, Zhang J, Xia Y, Huang H, Gan Y, Liang C, He X, Tao X, Zhang W 2021 Unprecedented self-healing effect of Li6PS5Cl-Based all-solid-state lithium battery Small 17 2101326 doi: 10.1002/smll.202101326 [28] Zhang J, Zheng C, Li L, Xia Y, Huang H, Gan Y, Liang C, He X, Tao X, Zhang W 2020 Unraveling the intra and intercycle interfacial evolution of Li6Ps5CL-Based all-solid-state lithium batteries Adv. Energy Mater. 10 1903311 doi: 10.1002/aenm.201903311 [29] Lee Y-G, et al 2020 High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes Nat. Energy 5 299-308 doi: 10.1038/s41560-020-0575-z [30] Nanda S, Gupta A, Manthiram A 2021 Anode-free full cells: a pathway to high-energy density lithium-metal batteries Adv. Energy Mater. 11 2000804 doi: 10.1002/aenm.202000804 [31] Tamwattana O, Park H, Kim J, Hwang I, Yoon G, Hwang T-H, Kang Y-S, Park J, Meethong N, Kang K 2021 High-dielectric polymer coating for uniform lithium deposition in anode-free lithium batteries ACS Energy Lett. 6 4416-25 doi: 10.1021/acsenergylett.1c02224 [32] Chen W, Salvatierra R V, Ren M, Chen J, Stanford M G, Tour J M 2020 Laser-induced silicon oxide for anode-free lithium metal batteries Adv. Mater. 32 2002850 doi: 10.1002/adma.202002850 [33] Jin S, et al 2020 Solid-solution-based metal alloy phase for highly reversible lithium metal anode J. Am. Chem. Soc 142 8818-26 doi: 10.1021/jacs.0c01811 [34] Yan K, Lu Z, Lee H-W, Xiong F, Hsu P-C, Li Y, Zhao J, Chu S, Cui Y 2016 Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth Nat. Energy 1 16010 doi: 10.1038/nenergy.2016.10 [35] Suzuki N, Yashiro N, Fujiki S, Omoda R, Shiratsuchi T, Watanabe T, Aihara Y 2021 Highly cyclable all-solid-state battery with deposition-type lithium metal anode based on thin carbon black layer Adv. Energy Sustain. Res. 2 2100066 doi: 10.1002/aesr.202100066 [36] Oh J, et al 2022 Elastic binder for high-performance sulfide-based all-solid-state batteries ACS Energy Lett. 7 1374-82 doi: 10.1021/acsenergylett.2c00461 [37] Park S H, Jun D, Lee G H, Lee S G, Jung J E, Bae K Y, Son S, Lee Y J 2022 Designing 3d anode based on pore-size-dependent li deposition behavior for reversible li-free all-solid-state batteries Adv. Sci. 9 2203130 doi: 10.1002/advs.202203130 [38] Lee J, et al 2022 Room-temperature anode-less all-solid-state batteries via the conversion reaction of metal fluorides Adv. Mater. 34 2203580 doi: 10.1002/adma.202203580 [39] Bates J B, Dudney N J, Gruzalski G R, Zuhr R A, Choudhury A, Luck C F, Robertson J D 1993 Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries J. Power Sources 43 103-10 doi: 10.1016/0378-7753(93)80106-Y [40] Inaguma Y, Liquan C, Itoh M, Nakamura T, Uchida T, Ikuta H, Wakihara M 1993 High ionic conductivity in lithium lanthanum titanate Solid State Commun. 86 689-93 doi: 10.1016/0038-1098(93)90841-A [41] Fu J 1997 Fast Li+ ion conducting glass-ceramics in the system Li2O-Al2O3-TiO2-P2O5 Solid State Ion. 104 191-4 doi: 10.1016/S0167-2738(97)00434-7 [42] Fu J 1997 Superionic conductivity of glass-ceramics in the system Li2O- Al2O3-TiO2-P2O5 Solid State Ion. 96 195-200 doi: 10.1016/S0167-2738(97)00018-0 [43] Murugan R, Thangadurai V, Weppner W 2007 Fast lithium ion conduction in garnet-Type Li7La3Zr2O12 Angew. Chem., Int. Ed. 46 7778-81 doi: 10.1002/anie.200701144 [44] Neudecker B J, Dudney N J, Bates J B 2000 Lithium-free thin-film battery with in situ plated Li anode J. Electrochem. Soc. 147 517 doi: 10.1149/1.1393226 [45] Wang M J, Carmona E, Gupta A, Albertus P, Sakamoto J 2020 Enabling lithium-free manufacturing of pure lithium metal solid-state batteries through in situ plating Nat. Commun. 11 5201 doi: 10.1038/s41467-020-19004-4 [46] Kravchyk K V, Zhang H, Okur F, Kovalenko M V 2022 Li-garnet solid-state batteries with LLZO scaffolds Acc. Mater. Res. 3 411-5 doi: 10.1021/accountsmr.2c00004 [47] Faglioni F, Merinov B V, Goddard W A, Kozinsky B 2018 Factors affecting cyclic durability of all-solid-state lithium batteries using poly(ethylene oxide)-based polymer electrolytes and recommendations to achieve improved performance Phys. Chem. Chem. Phys 20 26098-104 doi: 10.1039/C8CP05440A [48] Xia Y, Fujieda T, Tatsumi K, Prosini P P, Sakai T 2001 Thermal and electrochemical stability of cathode materials in solid polymer electrolyte J. Power Sources 92 234-43 doi: 10.1016/S0378-7753(00)00533-4 [49] Seidl L, Grissa R, Zhang L, Trabesinger S, Battaglia C 2022 Unraveling the voltage-dependent oxidation mechanisms of poly(ethylene oxide)-based solid electrolytes for solid-state batteries Adv. Mater. Interfaces 9 2100704 doi: 10.1002/admi.202100704 [50] Assegie A A, Cheng J-H, Kuo L-M, Su W-N, Hwang B-J 2018 Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery Nanoscale 10 6125-38 doi: 10.1039/C7NR09058G [51] He F, Tang W, Zhang X, Deng L, Luo J 2021 High energy density solid state lithium metal batteries enabled by sub-5·m solid polymer electrolytes Adv. Mater. 33 2105329 doi: 10.1002/adma.202105329 [52] Zegeye T A, Su W-N, Fenta F W, Zeleke T S, Jiang S-K, Hwang B J 2020 Ultrathin Li6.75La3Zr1.75Ta0.25O12-based composite solid electrolytes laminated on anode and cathode surfaces for anode-free lithium metal batteries ACS Appl. Energy Mater. 3 11713-23 doi: 10.1021/acsaem.0c01714 [53] J-G Z 2019 Anode-Less Nat. Energy 4 637-8 doi: 10.1038/s41560-019-0449-4 [54] Xiao J, et al 2020 Understanding and applying coulombic efficiency in lithium metal batteries Nat. Energy 5 561-8 doi: 10.1038/s41560-020-0648-z [55] Yan K, Wang J, Zhao S, Zhou D, Sun B, Cui Y, Wang G 2019 Temperature-dependent nucleation and growth of dendrite-free lithium metal anodes Angew. Chem., Int. Ed. 58 11364-8 doi: 10.1002/anie.201905251 [56] Wang M J, Choudhury R, Sakamoto J 2019 Characterizing the Li-solid-electrolyte interface dynamics as a function of stack pressure and current density Joule 3 2165-78 doi: 10.1016/j.joule.2019.06.017 [57] Banerjee A, Wang X, Fang C, Wu E A, Meng Y S 2020 Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes Chem. Rev. 120 6878-933 doi: 10.1021/acs.chemrev.0c00101