Concentrated electrolytes for rechargeable lithium metal batteries
doi: 10.1088/2752-5724/acac68
-
Abstract: Traditional lithium-ion batteries with graphite anodes have gradually been limited by the glass ceiling of energy density. As a result, lithium metal batteries (LMBs), regarded as the ideal alternative, have attracted considerable attention. However, lithium is highly reactive and susceptible to most electrolytes, resulting in poor cycle performance. In addition, lithium grows Li dendrites during charging, adversely affecting the safety of LMBs. Therefore, LMBs are more sensitive to the chemical composition of electrolytes and their relative ratios (concentrations). Recently, concentrated electrolytes have been widely demonstrated to be friendly to lithium metal anodes (LMAs). This review focuses on the progress of concentrated electrolytes in LMBs, including the solvation structure varying with concentration, unique functions in stabilizing the LMA, and their interfacial chemistry with LMA.
-
Figure 1. (a) The overview of the available electrolytes. (b) The distribution map of non-aqueous liquid electrolytes with the weight and volume ratios of salt-to-solvent. The A, B and D regions are solvent-in-salt electrolytes, in which the ratio of salt-to-solvent is over 1.0 by volume or weight. The C region is [solvent] > [salt] by weight and volume. (a) and (b) Reproduced from [20], with permission from Springer Nature. (c) Schematic diagram of the solvation structure varied with the salt concentration.
Figure 2. Multiple functions of the concentrated electrolyte in lithium metal batteries. (a) Left: fluctuation diagrams of the LUMO levels of the anode and electrolyte components in LMBs as a function of concentration, where the numbers indicate the reaction order of the lithium anode and electrolyte components. Right: CEI layer formation mechanism in the dilute and concentrated electrolyte. Reproduced from [23]. CC BY 4.0. (b) The Al current collector corrosion in conventional LiPF6-based electrolytes, dilute LiFSI/AN electrolytes, and high concentration LiFSI/AN electrolytes. [30] John Wiley & Sons. [© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim]. (c) The polysulfide dissolution varied with the concentration (LiTFSI in DOL/DME). Reproduced from [20], with permission from Springer Nature. (d) Flame tests of a commercial dilute electrolyte (1.0M LiPF6 in EC/DMC (1:1, v/v)) and the concentrated electrolyte (LiFSI-1.1DMC (in mol)). Reproduced from [31]. CC BY 4.0.
Figure 3. (a), (b) Schematic diagram of corresponding Li growth mechanism in the dilute electrolyte (a) and fluorine-donating concentrated electrolyte (b). Reproduced with permission from [32]. © 2018 National Academy of Science. (c), (d) Calculated electronic structures (projected density of states, pDOS) of dilute (c) and concentrated (d) LiTFSI/AN electrolytes. Reproduced from [33], with permission from Springer Nature. The C 1s (e), F 1s (f), and N 1s (g) XPS spectra of the pristine NMC333 cathode and the NMC333 cathode after 60 cycles in the LiFSI-1.4DME (in mol) electrolyte (2.7-4.3 V voltage window). Reprinted with permission from [34] Copyright (2019) American Chemical Society. (h) Cycling performance of NMC622||Li batteries in 10 M LiFSI EC/DMC and 1 M LiPF6 EC/DMC electrolytes with 2.7-4.6 V cutoff voltage. Reprinted from [35], Copyright (2018), with permission from Elsevier.
Figure 4. (a) Schematic of carbonate-derived (organic-rich) CEI formed on the surface in 1 M electrolyte. (b) Schematic of inorganic-rich CEI formed on the surface in 3 M electrolytes. (c) The amount of transition metal deposited on the different cycled lithium plates in 1 M and 3 M electrolytes at 2 C. (a)-(c) Reproduced from [55]. CC BY 4.0. (d) The color changes of four samples with different salt concentrations containing the same amount of Li2S8 were recorded by the digital camera along with time: 0mol per l solvent, 2#: 2mol per l solvent, 4#: 4mol per l solvent, 7#: 7mol per l solvent. (e) Ultraviolet-visible spectrophotometry. (d) and (e) Reproduced from [20], with permission from Springer Nature.
Figure 5. (a)-(c) Schematic illustrations of the behavior of Al electrodes in (a) conventional LiPF6-based electrolyte, (b) dilute LiFSI/AN electrolyte with a considerable amount of free solvent molecules, and (c) highly concentrated LiFSI/AN electrolyte without free solvent molecules. (a)-(c) [30] John Wiley & Sons. [© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim]. (d) Al corrosion in 1 m FF (1 m LiFSI in FEC) and 7 m HFF (7 m LiFSI in FEC) at the constant current (0.5 mA) charge to 5 V. Optical microscopy images (OMIs) of (d, 1) fresh Al foil, (d, 2) OMIs of Al foil in 1 m FF electrolyte after charging 1 h at 0.5 mA, and (d, 3) OMIs of Al foil in 7 m HFF after charging into 5 V at 0.2 mA. Reproduced with permission from [32]. © 2018 National Academy of Science. (e) LSV of an Al electrode in various concentrations of LiFSI/DMC electrolytes in a three-electrode cell. The scan rate was 1.0mVs-1. The insets are scanning electron microscopy images of the Al surface polarized in the dilute 1:10.8 (in mol, left) and high concentration 1:1.1 (in mol, right) electrolytes. The white scale bar represents 20
m. Reproduced from [31]. CC BY 4.0. Figure 6. (a), (b) Combustion test of 10 mAh pouch-type cells charged to 4.2 V: 4 M LiFSI in PC/FEC (93:7 v/v) (a) and 4 M LiTFSI in DOL/DME (1:1 v/v) (b) inset shows the result of 1 M LiTFSI in DOL/DME. (c) Capacity retention of 10 mAh pouch-type cells charged to 4.2 V after high-temperature storage test (60 C/24 h). (a)-(c) Reproduced from [65]. CC BY 4.0. (d) Thermogravimetric analysis (TGA) curves of the electrolytes with different salt concentrations. Commercial: 1 M LiPF6 in EC/DEC (1:1, v/v), TMP-1: 1 m LiFSI in TMP, TMP-2: 2 m LiFSI in TMP, TMP-4: 4 m LiFSI in TMP, TMP-6: 6 m LiFSI in TMP. Reprinted with permission from [66]. Copyright (2021) American Chemical Society.
Table 1. Coulombic efficiency and performances of the concentrated electrolyte in Li ||| Cu cells and Li metal batteries tested under different conditions.
Electrolyte Composition Test Conditions Cycling Performance CE(Li || Cu) CE(LMB cell) References 4 M LiFSI in DME Cu || LiFePO4 (1.6 mAh cm-2) 60% capacity after 50 cycles 99.1% >99.8% [79] LiFSI- 1.4DME (in mol) Li (450 m) || NMC333 (1.5 mAh cm-2) 92% capacity after 500 cycles 99.81% (300 cycles) [46] 2LiFSI-LiTFSI-4.8DME (in mol) Li (150 m) || NMC622 (1.44 mAh cm-2) 88% capacity after 300 cycles 98.2% (200 cycles) 98.6% (54 cycles, AFLMB (Cu || NCM622)) [80] 1 M LiFSI + 2 M LiTFSI in DOL/DME (1:1, v/v) Li|LiFePO4 (6.71 mg cm-2) 95.7% capacity after 100 cycles 98.7% (200 cycles) 99.40% (100 cycles) [81] 1 M LiTFSI + 2 M LiFSI + 3 wt% LiNO3 in DME/DOL (1:1 v/v) Li (600 m,excess 100) || LiFePO4 (5 mg cm-2) 92% capacity after 500 cycles 99.1% (450 cycles, excess Li 4) 99.8% (500 cycles) [47] Li (excess 0.44) || LiFePO4 (5 mg cm-2) 83% capacity after 100 cycles 99.8% (70 cycles) 2 m LiFSI + 2 m LiFTFSI in DOL/DME (1:1 v/v) Li (600 m) || LiFePO4 >92% (200 cycles) >95% [82] 4 m LiFSI in DOL + 3 wt% LiNO3 Li (7 m) || LiFePO4 (2.5 mAh cm-2) (electrolyte 60 l) 78.7% capacity after 120 cycles 99.14% (8.0 mA cm-2, 240 cycles) 99.7% (120 cycles) [83] 2.5 M LiFSI + 0.75 M LiNO3 in DOL Li || LiFePO4 no significant capacity decay within more than 100 cycles 98.8% (400 cyles) [84] 2 M LiFSI + 0.2 M LiNO3 in DME Li (500 m) || LiFePO4 (2 mAh cm-2) (electrolyte 40 l) 80% capacity after 500 cycles [85] 2 M LiFSI + 2 M LiNO3 in DME Cu || LiFePO4 (14 mg cm-2) 52.7% capacity after 100 cycles 98.50% (425 cycles) [86] Cu || NCM622 (12.5 mg cm-2) 47.3% capacity after 100 cycles 3 m LiFNFSI in DOL/DME (1:1, v/v) Li (600 m) || LiFePO4 (9.2 mg cm-2) 98.5% capacity after 200 cycles (First capacity 163 mAh g-1) 97% (180 cycles) 99.8% (200 cycles, ICE = 87.5%) [87] 4M LiFSI in DME Li || Cu (electrolyte 75 l, 4mAcm-2) 98.4% (1000 cycles) [88] 1.5 M LiTFSI + 0.2 M LiDFOB in DME/BN (3:1, v/v) + 5 wt% FEC Li (1.8-2.0 mg cm-2) || NCM523 (2.2-2.5 mg cm-2) 88.84% capacity after 150 cycles (-10 C) 99.96% (500 cycles, -10 C) [89] 4 M LiFSI in DME (can also expressed as LiFSI-1.4DME (in mol)) Cu || LiFePO4 (13.9 0.1 mg cm-2) 21.5% capacity after 100 cycles 98.9% (100 cycles) 98.2% (100 cycles) [90] Li (450 m)|FeS2 (4.3 0.1 mg cm-2) 34.4% capacity after 100 cycles 99% (100 cycles) 3 M LiFSI in DME Li (750 m) || S (1 mg cm-2) (60 C) 77% capacity after 1000 cycles 100% [58] 7 m LiTFSI in DME/DOL(1:1, v/v) Li || S 74% capacity after 100 cycles 100% (ICE = 93.7%) [20] 6 m LiFSI in DME (can also expressed as LiFSI-1.45DME (in mol)) Cu || Li1.37Ni0.8Co0.1Mn0.1O2 (31.25 mg cm2) (E/C ratio of 2 g Ah-1) 84% capacity after 100 cycles 93.2% (ICE) >99% (after 10 cycles) [11] 3 M LiTFSI in DOL/DME (1:1, v/v) Li (450 m) || S (1 mg cm-2) (electrolyte 60 l) 71.9% capacity after 200 cycles 96.60% (200 cycles) [91] 2 M LiTFSI + 2 M LiDFOB in DME Li (50 m) || NMC333 (1.7 mAh cm-2) 90% capacity after 300 cycles 94.60% (300 cycles) 99.8% [92] 5.5 mol LiTFSI per kg DOL/DME/TTE (5:5:2, v/v) Li(600 m) || NCM811(5 mg cm-2) (electrolyte 40 l) 100.20% [93] 7 m LiFSI in FEC (can also expressed as LiFSI-1.96FEC (in mol)) Li (10 m) || LiNi0.5Mn1.5O4 (1.43 mAh cm-2; N/P ratio = 1.4) 78% capacity after 130 cycles 97.7% (100 cycles) 99.64% (300-400 cycles) 99.0% [32] LiFSI- 1.1DMC (in mol) Gr || LiNi0.5Mn1.5O4 (electrolyte 160 l) >90% capacity after 100 cycles [31] Li || LiNi0.5Mn1.5O4 (electrolyte 160 l) >95% capacity after 100 cycles 100% 10 M LiFSI in EC/DMC (1:1, v/v) Li || NCM622 (2.5 mAh cm-2, 4.6 V) 86% capacity after 100 cycles 99.3% >99.6% (100 cycles) [35] 8 M LiFTFSI in EC/DMC (1:1, v/v) Li || Cu (0.2 mA cm-2) 98.5% [35] 4 M LiTFSI + 0.5M LiDFOB in FEC/DMC (3:7 v/v) Li (excess 3, full cell) || LiNi0.5Mn1.5O4 (1.8 mAh cm-2) (electrolyte 150 l, 4.9 V) 87.8% capacity after 100 cycles (full cell) 88.5% capacity after 500 cycles (half cell) >98% (900 cycles) 99.6% (500 cycles, half cell) [94] 2.5 mol LiFSI + 0.2 mol LiPF6 per kg FSA Li(60 m) || NCM622 (1.6 mAh cm-2) (electrolyte 40 l,) 89% capacity after 200 cycles 99.03% (400 cycles, ICE 91%) [95] 2.0 M LiDFOB + 1.4 M LiBF4 in FEC/DEC (1:2 v/v) Cu || NMC532 (3.1 mAh cm-2, pouch) 80% capacity after 200 cycles [96] LiFSI- 2TEP (in mol) + 0.05 M LiBOB + 5% FEC (by volume) Gr || LiCoO2 (29.4 mg cm-2) 91% capacity after 100 cycles >99% 99.8% (100 cycles, LIB) [22] Li || LiCoO2 (29.4 mg cm-2) 88% capacity after 350 cycles 99.7% (350 cycles, LMB) 1.5M LiFSI in TMP + 5% FEC Li || LiFePO4 (2 mg cm-2) 93.4% capacity after 100 cycles 95.07% (100 cycles) near 100% [97] LiFSI-3TMS (in mol) Li (50 m) || NCM333(1.5 mAh cm-2) (electrolyte 75 l) 75% capacity after 300 cycles 98.2% (150 cycles) >99.8% (300 cycles) [98] 0.52LiFSI- 1AN- 0.09VC (in mol) Li || NMC333 (1.8 mAh cm-2) 80% capacity after 400 cycles 99.2% [48] -
[1] Zhamu A, Chen G, Liu C, Neff D, Fang Q, Yu Z, Xiong W, Wang Y, Wang X, Jang B Z 2011 Reviving rechargeable lithium metal batteries: enabling next-generation high-energy and high-power cells Energy Environ. Sci. 5 5701-7 doi: 10.1039/C2EE02911A [2] Tarascon J-M, Armand M 2001 Issues and challenges facing rechargeable lithium batteries Nature 414 359-67 doi: 10.1038/35104644 [3] Ben L, Zhou J, Ji H, Yu H, Zhao W, Huang X 2021 Si nanoparticles seeded in carbon-coated Sn nanowires as an anode for high-energy and high-rate lithium-ion batteries Mater. Futures 1 015101 doi: 10.1088/2752-5724/ac3257 [4] Tong B, Song Z, Wu H, Wang X, Feng W, Zhou Z, Zhang H 2022 Ion transport and structural design of lithium-ion conductive solid polymer electrolytes: a perspective Mater. Futures 1 042103 doi: 10.1088/2752-5724/ac9e6b [5] Fu J, Ji X, Chen J, Chen L, Fan X, Mu D, Wang C 2020 Lithium nitrate regulated sulfone electrolytes for lithium metal batteries Angew. Chem., Int. Ed. 59 22194-201 doi: 10.1002/anie.202009575 [6] Lin D, Liu Y, Cui Y 2017 Reviving the lithium metal anode for high-energy batteries Nat. Nanotechnol. 12 194-206 doi: 10.1038/nnano.2017.16 [7] Cohen Y S, Cohen Y, Aurbach D 2000 Micromorphological studies of lithium electrodes in alkyl carbonate solutions using in situ atomic force microscopy J. Phys. Chem. B 104 12282-91 doi: 10.1021/jp002526b [8] Guo Y P, Li H Q, Zhai T Y 2017 Reviving lithium-metal anodes for next-generation high-energy batteries Adv. Mater. 29 1700007 doi: 10.1002/adma.201700007 [9] Yamaki J-I, Tobishima S-I, Hayashi K, Keiichi Saito K, Nemoto Y, Arakawa M 1998 A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte J. Power Sources 74 219-27 doi: 10.1016/S0378-7753(98)00067-6 [10] Ding F, et al 2013 Dendrite-free lithium deposition via self-healing electrostatic shield mechanism J. Am. Chem. Soc. 135 4450-6 doi: 10.1021/ja312241y [11] Lin L D, Qin K, Zhang Q H, Gu L, Suo L M, Hu Y S, Li H, Huang X J, Chen L Q 2021 Li-rich Li2[Ni0.8Co0.1Mn0.1]O2 for anode-free lithium metal batteries Angew. Chem., Int. Ed. 60 8289-96 doi: 10.1002/anie.202017063 [12] Seo D M, Borodin O, Balogh D, O’Connell M, Ly Q, Han S-D, Passerini S, Henderson W A 2013 Electrolyte solvation and ionic association III. Acetonitrile-lithium salt mixtures-transport properties J. Electrochem. Soc. 160 A1061-70 doi: 10.1149/2.018308jes [13] Yamada Y 2017 Developing new functionalities of superconcentrated electrolytes for lithium-ion batteries Electrochemistry 85 559-65 doi: 10.5796/electrochemistry.85.559 [14] Cao X, et al 2019 Monolithic solid-electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization Nat. Energy 4 796-805 doi: 10.1038/s41560-019-0464-5 [15] Xie J-D, Patra J, Rath P C, Liu W-J, Su C-Y, Lee S-W, Tseng C-J, Gandomi Y A, Chang J-K 2020 Highly concentrated carbonate electrolyte for Li-ion batteries with lithium metal and graphite anodes J. Power Sources 450 227657 doi: 10.1016/j.jpowsour.2019.227657 [16] Pham T D, Bin Faheem A, Lee -K-K 2021 Design of a LiF-rich solid electrolyte interphase layer through highly concentrated LiFSI-THF electrolyte for stable lithium metal batteries Small 17 2103375 doi: 10.1002/smll.202103375 [17] Ding J F, Xu R, Yao N, Chen X, Xiao Y, Yao Y X, Yan C, Xie J, Huang J Q 2021 Non-solvating and low-dielectricity cosolvent for anion-derived solid electrolyte interphases in lithium metal batteries Angew. Chem., Int. Ed. 60 11442-7 doi: 10.1002/anie.202101627 [18] Xu K 2004 Nonaqueous liquid electrolytes for lithium-based rechargeable batteries Chem. Rev. 104 4303-417 doi: 10.1021/cr030203g [19] Borodin O, et al 2017 Liquid structure with nano-heterogeneity promotes cationic transport in concentrated electrolytes ACS Nano 11 10462-71 doi: 10.1021/acsnano.7b05664 [20] Suo L, Hu Y-S, Li H, Armand M, Chen L 2013 A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries Nat. Commun. 4 1481 doi: 10.1038/ncomms2513 [21] Borodin O, Self J, Persson K A, Wang C, Xu K 2020 Uncharted waters: super-concentrated electrolytes Joule 4 69-100 doi: 10.1016/j.joule.2019.12.007 [22] Zeng Z Q, et al 2018 Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries Nat. Energy 3 674-81 doi: 10.1038/s41560-018-0196-y [23] Zheng J, Lochala J A, Kwok A, Deng Z D, Xiao J 2017 Research progress towards understanding the unique interfaces between concentrated electrolytes and electrodes for energy storage applications Adv. Sci. 4 1700032 doi: 10.1002/advs.201700032 [24] Yamada Y, Yamada A 2015 Review-superconcentrated electrolytes for lithium batteries J. Electrochem. Soc. 162 A2406-23 doi: 10.1149/2.0041514jes [25] Bogle X, Vazquez R, Greenbaum S, Cresce A V W, Xu K 2013 Understanding Li+-solvent interaction in nonaqueous carbonate electrolytes with 17O NMR J. Phys. Chem. Lett. 4 1664-8 doi: 10.1021/jz400661k [26] Klassen B, Aroca R, Nazri M, Nazri G A 1998 Raman spectra and transport properties of lithium perchlorate in ethylene carbonate based binary solvent systems for lithium batteries J. Phys. Chem. B 102 4795-801 doi: 10.1021/jp973099d [27] Fujii K, Wakamatsu H, Todorov Y, Yoshimoto N, Morita M 2016 Structural and electrochemical properties of Li ion solvation complexes in the salt-concentrated electrolytes using an aprotic donor solvent, N,N-dimethylformamide J. Phys. Chem. C 120 17196-204 doi: 10.1021/acs.jpcc.6b04542 [28] Suo L, Fang Z, Hu Y-S, Chen L 2016 FT-Raman spectroscopy study of solvent-in-salt electrolytes Chin. Phys. B 25 016101 doi: 10.1088/1674-1056/25/1/016101 [29] Wu C, Zhou Y, Zhu X, Zhan M, Yang H, Qian J 2021 Research progress on high concentration electrolytes for Li metal batteries Acta Phys. Chim. Sin. 37 2008044 doi: 10.3866/PKU.WHXB202008044 [30] Yamada Y, Chiang C H, Sodeyama K, Wang J, Tateyama Y, Yamada A 2015 Corrosion prevention mechanism of aluminum metal in superconcentrated electrolytes Chemelectrochem 2 1687-94 doi: 10.1002/celc.201500235 [31] Wang J, Yamada Y, Sodeyama K, Chiang C H, Tateyama Y, Yamada A 2016 Superconcentrated electrolytes for a high-voltage lithium-ion battery Nat. Commun. 7 12032 doi: 10.1038/ncomms12032 [32] Suo L, Xue W, Gobet M, Greenbaum S G, Wang C, Chen Y, Yang W, Li Y, Li J 2018 Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries Proc. Natl Acad. Sci. USA 115 1156-61 doi: 10.1073/pnas.1712895115 [33] Yamada Y, Wang J H, Ko S, Watanabe E, Yamada A 2019 Advances and issues in developing salt-concentrated battery electrolytes Nat. Energy 4 269-80 doi: 10.1038/s41560-019-0336-z [34] Ren X, et al 2019 High-concentration ether electrolytes for stable high-voltage lithium metal batteries ACS Energy Lett. 4 896 doi: 10.1021/acsenergylett.9b00381 [35] Fan X, et al 2018 Highly fluorinated interphases enable high-voltage Li-metal batteries Chem 4 174-85 doi: 10.1016/j.chempr.2017.10.017 [36] Ko J, Yoon Y S 2019 Recent progress in LiF materials for safe lithium metal anode of rechargeable batteries: is LiF the key to commercializing Li metal batteries? Ceram. Int. 45 30-49 doi: 10.1016/j.ceramint.2018.09.287 [37] Arakawa M, Tobishima S-I, Nemoto Y, Ichimura M, Yamaki J-I 1993 Lithium electrode cycleability and morphology dependence on current density J. Power Sources 43 27-35 doi: 10.1016/0378-7753(93)80099-B [38] Wang Z, Sun Z, Li J, Shi Y, Sun C, An B, Cheng H-M, Li F 2021 Insights into the deposition chemistry of Li ions in nonaqueous electrolyte for stable Li anodes Chem. Soc. Rev. 50 3178-210 doi: 10.1039/D0CS01017K [39] Yan C, Xu R, Xiao Y, Ding J-F, Xu L, Li B-Q, Huang J-Q 2020 Toward critical electrode/electrolyte interfaces in rechargeable batteries Adv. Funct. Mater. 30 1909887 doi: 10.1002/adfm.201909887 [40] Thuy Duong P, Bin Faheem A, Kim J, Oh H M, Lee K-K 2022 Practical high-voltage lithium metal batteries enabled by tuning the solvation structure in weakly solvating electrolyte Small 18 2107492 doi: 10.1002/smll.202107492 [41] Yamada Y, Yamada A 2017 Superconcentrated electrolytes to create new interfacial chemistry in non-aqueous and aqueous rechargeable batteries Chem. Lett. 46 1056-64 doi: 10.1246/cl.170284 [42] Yamada Y, Furukawa K, Sodeyama K, Kikuchi K, Yaegashi M, Tateyama Y, Yamada A 2014 Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries J. Am. Chem. Soc. 136 5039-46 doi: 10.1021/ja412807w [43] Ren X, et al 2020 Role of inner solvation sheath within salt-solvent complexes in tailoring electrode/electrolyte interphases for lithium metal batteries Proc. Natl Acad. Sci. USA 117 28603-13 doi: 10.1073/pnas.2010852117 [44] Wood S M, Fang C, Dufek E J, Nagpure S C, Sazhin S V, Liaw B, Meng Y S 2018 Predicting calendar aging in lithium metal secondary batteries: the impacts of solid electrolyte interphase composition and stability Adv. Energy Mater. 8 1801427 doi: 10.1002/aenm.201801427 [45] Xie J-D, Liu W-J, Li C, Patra J, Gandomi Y A, Dong Q-F, Chang J-K 2019 Superior Coulombic efficiency of lithium anodes for rechargeable batteries utilizing high-concentration ether electrolytes Electrochim. Acta 319 625-33 doi: 10.1016/j.electacta.2019.07.020 [46] Chen S, Zheng J, Mei D, Han K S, Engelhard M H, Zhao W, Xu W, Liu J, Zhang J-G 2018 High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes Adv. Mater. 30 1706102 doi: 10.1002/adma.201706102 [47] Qiu F, Li X, Deng H, Wang D, Mu X, He P, Zhou H 2019 A concentrated ternary-salts electrolyte for high reversible Li metal battery with slight excess Li Adv. Energy Mater. 9 1803372 doi: 10.1002/aenm.201803372 [48] Peng Z, et al 2020 High-power lithium metal batteries enabled by high-concentration acetonitrile-based electrolytes with vinylene carbonate additive Adv. Funct. Mater. 30 2001285 doi: 10.1002/adfm.202001285 [49] Alvarado J, et al 2018 A carbonate-free, sulfone-based electrolyte for high-voltage Li-ion batteries Mater. Today 21 341-53 doi: 10.1016/j.mattod.2018.02.005 [50] Li J, Downie L E, Ma L, Qiu W D, Dahn J R 2015 Study of the failure mechanisms of LiNi0.8Mn0.1Co0.1O2 cathode material for lithium ion batteries J. Electrochem. Soc. 162 A1401-8 doi: 10.1149/2.1011507jes [51] Jia M M, Zhang C, Guo Y W, Peng L S, Zhang X Y, Qian W W, Zhang L, Zhang S J 2022 Advanced nonflammable localized high-concentration electrolyte for high energy density lithium battery Energy Environ. Mater. 5 1294-302 doi: 10.1002/eem2.12246 [52] Moon H, Cho S J, Yu D E, Lee S Y 2022 Nitrile electrolyte strategy for 4.9 V-class lithium-metal batteries operating in flame Energy Environ. Mater. 1-9 doi: 10.1002/eem2.12383 [53] Lin S, Zhao J 2019 Bifunctional lithium carboxylate for stabilizing both lithium-metal anode and high-voltage cathode in ether electrolyte ACS Appl. Mater. Interfaces 11 39715-21 doi: 10.1021/acsami.9b08703 [54] Wang X, et al 2021 Hybrid electrolyte with dual-anion-aggregated solvation sheath for stabilizing high-voltage lithium-metal batteries Adv. Mater. 33 2007945 doi: 10.1002/adma.202007945 [55] Liu W, Li J X, Li W T, Xu H Y, Zhang C, Qiu X P 2020 Inhibition of transition metals dissolution in cobalt-free cathode with ultrathin robust interphase in concentrated electrolyte Nat. Commun. 11 3629 doi: 10.1038/s41467-020-17396-x [56] Mikhaylik Y V, Akridge J R 2004 Polysulfide shuttle study in the Li/S battery system J. Electrochem. Soc. 151 A1969-76 doi: 10.1149/1.1806394 [57] Shin E S, Kim K, Oh S H, Cho W I 2013 Polysulfide dissolution control: the common ion effect Chem. Commun. 49 2004-6 doi: 10.1039/C2CC36986A [58] Kim H, Wu F X, Lee J T, Nitta N, Lin H T, Oschatz M, Cho W I, Kaskel S, Borodin O, Yushin G 2015 In situ formation of protective coatings on sulfur cathodes in lithium batteries with LiFSI-based organic electrolytes Adv. Energy Mater. 5 1401792 doi: 10.1002/aenm.201401792 [59] Kanamura K, Okagawa T, Takehara Z 1995 Electrochemical oxidation of propylene carbonate (containing various salts) on aluminium electrodes J. Power Sources 57 119-23 doi: 10.1016/0378-7753(95)02265-1 [60] Piao N, Wang L, He X 2021 Anodic stabilities of various metals as the current collector in high concentration electrolytes for lithium batteries J. Electrochem. Soc. 168 030509 doi: 10.1149/1945-7111/abe8ba [61] Chen S, et al 2018 High-efficiency lithium metal batteries with fire-retardant electrolytes Joule 2 1548-58 doi: 10.1016/j.joule.2018.05.002 [62] Matsumoto K, Inoue K, Nakahara K, Yuge R, Noguchi T, Utsugi K 2013 Suppression of aluminum corrosion by using high concentration LiTFSI electrolyte J. Power Sources 231 234-8 doi: 10.1016/j.jpowsour.2012.12.028 [63] McOwen D W, Seo D M, Borodin O, Vatamanu J, Boyle P D, Henderson W A 2014 Concentrated electrolytes: decrypting electrolyte properties and reassessing Al corrosion mechanisms Energy Environ. Sci. 7 416-26 doi: 10.1039/C3EE42351D [64] Luo C, Li Y, Sun W, Xiao P, Liu S, Wang D, Zheng C 2022 Revisiting the corrosion mechanism of LiFSI based electrolytes in lithium metal batteries Electrochim. Acta 419 140353 doi: 10.1016/j.electacta.2022.140353 [65] Cho S-J, Yu D-E, Pollard T P, Moon H, Jang M, Borodin O, Lee S-Y 2020 Nonflammable lithium metal full cells with ultra-high energy density based on coordinated carbonate electrolytes Iscience 23 100844 doi: 10.1016/j.isci.2020.100844 [66] Zhang T, Li Y, Chen N, Wen Z, Shang Y, Zhao Y, Yan M, Guan M, Wu F, Chen R 2021 Regulating the solvation structure of nonflammable electrolyte for dendrite-free Li-metal batteries ACS Appl. Mater. Interfaces 13 681-7 doi: 10.1021/acsami.0c19075 [67] Swiderska-Mocek A, Jakobczyk P, Rudnicka E, Lewandowski A 2020 Flammability parameters of lithium-ion battery electrolytes J. Mol. Liq. 318 113986 doi: 10.1016/j.molliq.2020.113986 [68] Aurbach D, Talyosef Y, Markovsky B, Markevich E, Zinigrad E, Asraf L, Gnanaraj J S, Kim H-J 2004 Design of electrolyte solutions for Li and Li-ion batteries: a review Electrochim. Acta 50 247-54 doi: 10.1016/j.electacta.2004.01.090 [69] Ravdel B, Abraham K M, Gitzendanner R, DiCarlo J, Lucht B, Campion C 2003 Thermal stability of lithium-ion battery electrolytes J. Power Sources 119 805-10 doi: 10.1016/S0378-7753(03)00257-X [70] Mynam M, Ravikumar B, Rai B 2019 Molecular dynamics study of propylene carbonate based concentrated electrolyte solutions for lithium ion batteries J. Mol. Liq. 278 97-104 doi: 10.1016/j.molliq.2018.12.153 [71] Wang J H, Yamada Y, Sodeyama K, Watanabe E, Takada K, Tateyama Y, Yamada A 2018 Fire-extinguishing organic electrolytes for safe batteries Nat. Energy 3 22-29 doi: 10.1038/s41560-017-0033-8 [72] Bouibes A, Takenaka N, Saha S, Nagaoka M 2019 Microscopic origin of the solid electrolyte interphase formation in fire-extinguishing electrolyte: formation of pure inorganic layer in high salt concentration J. Phys. Chem. Lett. 10 5949-55 doi: 10.1021/acs.jpclett.9b02392 [73] Hou J X, et al 2020 Thermal runaway of lithium-ion batteries employing LiN(SO2F)(2)-based concentrated electrolytes Nat. Commun. 11 5100 doi: 10.1038/s41467-020-18868-w [74] Shiga T, Kato Y, Kondo H, Okuda C-A 2017 Self-extinguishing electrolytes using fluorinated alkyl phosphates for lithium batteries J. Mater. Chem. A 5 5156-62 doi: 10.1039/C6TA09915G [75] Xiao J, et al 2020 Understanding and applying Coulombic efficiency in lithium metal batteries Nat. Energy 5 561-8 doi: 10.1038/s41560-020-0648-z [76] Hobold G M, Lopez J, Guo R, Minafra N, Banerjee A, Meng Y S, Shao-Horn Y, Gallant B M 2021 Moving beyond 99.9% Coulombic efficiency for lithium anodes in liquid electrolytes Nat. Energy 6 951-60 doi: 10.1038/s41560-021-00910-w [77] Zhang J G, Xu W, Xiao J, Cao X, Liu J 2020 Lithium metal anodes with nonaqueous electrolytes Chem. Rev. 120 13312-48 doi: 10.1021/acs.chemrev.0c00275 [78] Huang C J, et al 2021 Decoupling the origins of irreversible coulombic efficiency in anode-free lithium metal batteries Nat. Commun. 12 1452 doi: 10.1038/s41467-021-21683-6 [79] Qian J F, Adams B D, Zheng J M, Xu W, Henderson W A, Wang J, Bowden M E, Xu S C, Hu J Z, Zhang J G 2016 Anode-free rechargeable lithium metal batteries Adv. Funct. Mater. 26 7094-102 doi: 10.1002/adfm.201602353 [80] Alvarado J, et al 2019 Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes Energy Environ. Sci. 12 780-94 doi: 10.1039/C8EE02601G [81] Liu P, Ma Q, Fang Z, Ma J, Hu Y S, Zhou Z B, Li H, Huang X J, Chen L Q 2016 Concentrated dual-salt electrolytes for improving the cycling stability of lithium metal anodes Chin. Phys. B 25 078203 doi: 10.1088/1674-1056/25/7/078203 [82] Ma Q, et al 2016 Improved cycling stability of lithium-metal anode with concentrated electrolytes based on lithium (fluorosulfonyl)(trifluoromethanesulfonyl)imide Chemelectrochem 3 531-6 doi: 10.1002/celc.201500520 [83] Qiu F L, Ren S Y, Zhang X P, He P, Zhou H S 2021 A high efficiency electrolyte enables robust inorganic-organic solid electrolyte interfaces for fast Li metal anode Sci. Bull. 66 897-903 doi: 10.1016/j.scib.2021.01.007 [84] Jin H, Liu H Y, Cheng H, Zhang P, Wang M 2020 The synergistic effect of lithium bis(fluorosulfonyl)imide and lithium nitrate for high-performance lithium metal anode J. Electroanal. Chem. 874 114484 doi: 10.1016/j.jelechem.2020.114484 [85] Zhang X Q, Chen X, Hou L P, Li B Q, Cheng X B, Huang J Q, Zhang Q 2019 Regulating anions in the solvation sheath of lithium ions for stable lithium metal batteries ACS Energy Lett. 4 411-6 doi: 10.1021/acsenergylett.8b02376 [86] Kang D W, Moon J, Choi H-Y, Shin H-C, Kim B G 2021 Stable cycling and uniform lithium deposition in anode-free lithium-metal batteries enabled by a high-concentration dual-salt electrolyte with high LiNO3 content J. Power Sources 490 229504 doi: 10.1016/j.jpowsour.2021.229504 [87] Fang Z, Ma P A, Liu P, Ma J, Hu Y S, Zhou Z B, Li H, Huang X J, Chen L Q 2017 Novel concentrated Li (FSO2)(n-C4F9SO2)N-based ether electrolyte for superior stability of metallic lithium anode ACS Appl. Mater. Interfaces 9 4282-9 doi: 10.1021/acsami.6b03857 [88] Qian J, Henderson W A, Xu W, Bhattacharya P, Engelhard M, Borodin O, Zhang J-G 2015 High rate and stable cycling of lithium metal anode Nat. Commun. 6 6362 doi: 10.1038/ncomms7362 [89] Ning J, Duan K, Wang K, Liu J, Wang S, Zhang J 2022 Boosting practical high voltage lithium metal batteries by butyronitrile in ether electrolytes via coordination, hydrolysis of C equivalent to N and relatively mild concentration strategy J. Energy Chem. 67 290-9 doi: 10.1016/j.jechem.2021.10.004 [90] Park K, Jo Y, Koo B, Lee H, Lee H 2022 Wide temperature cycling of Li-metal batteries with hydrofluoroether dilution of high-concentration electrolyte Chem. Eng. J. 427 131889 doi: 10.1016/j.cej.2021.131889 [91] Cao R G, Chen J Z, Han K S, Xu W, Mei D H, Bhattacharya P, Engelhard M H, Mueller K T, Liu J, Zhang J G 2016 Effect of the anion activity on the stability of Li metal anodes in lithium-sulfur batteries Adv. Funct. Mater. 26 3059-66 doi: 10.1002/adfm.201505074 [92] Jiao S H, et al 2018 Stable cycling of high-voltage lithium metal batteries in ether electrolytes Nat. Energy 3 739-46 doi: 10.1038/s41560-018-0199-8 [93] Philip M A, Haasch R T, Kim J, Yang J Z, Yang R, Kochetkov I R, Nazar L F, Gewirth A A 2021 Enabling high capacity and Coulombic efficiency for Li-NCM811 cells using a highly concentrated electrolyte Batter. Supercaps 4 294-303 doi: 10.1002/batt.202000192 [94] Wang W, Zhang J, Yang Q, Wang S, Wang W, Li B 2020 Stable cycling of high-voltage lithium-metal batteries enabled by high-concentration FEC-based electrolyte ACS Appl. Mater. Interfaces 12 22901-9 doi: 10.1021/acsami.0c03952 [95] Xue W, et al 2020 FSI-inspired solvent and full fluorosulfonyl electrolyte for 4 V class lithium-metal batteries Energy Environ. Sci. 13 212-20 doi: 10.1039/C9EE02538C [96] Louli A J, et al 2020 Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis Nat. Energy 5 693-702 doi: 10.1038/s41560-020-0668-8 [97] Zhang K, An Y, Wei C, Qian Y, Zhang Y, Feng J 2021 High-safety and dendrite-free lithium metal batteries enabled by building a stable interface in a nonflammable medium-concentration phosphate electrolyte ACS Appl. Mater. Interfaces 13 50869-77 doi: 10.1021/acsami.1c12589 [98] Ren X, et al 2018 Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries Chem 4 1877-92 doi: 10.1016/j.chempr.2018.05.002 [99] Wan C, Xu S, Hu M Y, Cao R, Qian J, Qin Z, Liu J, Mueller K T, Zhang J-G, Hu J Z 2017 Multinuclear NMR study of the solid electrolyte interface formed in lithium metal batteries ACS Appl. Mater. Interfaces 9 14741-8 doi: 10.1021/acsami.6b15383 [100] Han J G, Kim K, Lee Y, Choi N S 2019 Scavenging materials to stabilize LiPF6-containing carbonate-based electrolytes for Li-ion batteries Adv. Mater. 31 1804822 doi: 10.1002/adma.201804822 [101] Jie Y, Liu X, Lei Z, Wang S, Chen Y, Huang F, Cao R, Zhang G, Jiao S 2020 Enabling high-voltage lithium metal batteries by manipulating solvation structure in ester electrolyte Angew. Chem., Int. Ed. 59 3505-10 doi: 10.1002/anie.201914250 [102] Zhang X-Q, Chen X, Cheng X-B, Li B-Q, Shen X, Yan C, Huang J-Q, Zhang Q 2018 Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes Angew. Chem., Int. Ed. 57 5301-5 doi: 10.1002/anie.201801513 [103] Wang H, et al 2022 Regulating interfacial structure enables high-voltage dilute ether electrolytes Cell Rep. Phys. Sci. 3 100919 doi: 10.1016/j.xcrp.2022.100919 [104] Lin S, Hua H, Lai P, Zhao J 2021 A multifunctional dual-salt localized high-concentration electrolyte for fast dynamic high-voltage lithium battery in wide temperature range Adv. Energy Mater. 11 2101775 doi: 10.1002/aenm.202101775 [105] Li X, Zheng J M, Ren X D, Engelhard M H, Zhao W G, Li Q Y, Zhang J G, Xu W 2018 Dendrite-free and performance-enhanced lithium metal batteries through optimizing solvent compositions and adding combinational additives Adv. Energy Mater. 8 1703022 doi: 10.1002/aenm.201703022 [106] Xu Y B, Wu H P, He Y, Chen Q S, Zhang J G, Xu W, Wang C M 2020 Atomic to nanoscale origin of vinylene carbonate enhanced cycling stability of lithium metal anode revealed by cryo-transmission electron microscopy Nano Lett. 20 418-25 doi: 10.1021/acs.nanolett.9b04111 [107] Fan X L, et al 2018 Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries Nat. Nanotechnol. 13 715 doi: 10.1038/s41565-018-0183-2