Symmetry-enforced two-dimensional Dirac node-line semimetals
doi: 10.1088/2752-5724/aca816
-
Abstract: Based on symmetry analysis and lattice model calculations, we demonstrate that Dirac nodal line (DNL) can stably exist in two-dimensional (2D) nonmagnetic as well as antiferromagnetic systems. We focus on the situations where the DNLs are enforced by certain symmetries and the degeneracies on the DNLs are inevitable even if spin-orbit coupling is strong. After thorough analysis, we find that five space groups, namely 51, 54, 55, 57 and 127, can enforce the DNLs in 2D nonmagnetic semimetals, and four type-III magnetic space groups (51.293, 54.341, 55.355, 57.380) plus eight type-IV magnetic space groups (51.299, 51.300, 51.302, 54.348, 55.360, 55.361, 57.387 and 127.396) can enforce the DNLs in 2D antiferromagnetic semimetals. By breaking these symmetries, the different 2D topological phases can be obtained. Furthermore, by the first-principles electronic structure calculations, we predict that monolayer YB4C4 is a good material platform for studying the exotic properties of 2D symmetry-enforced Dirac node-line semimetals.
-
Figure 2. (a) The square lattice with p4/mbm space group symmetry. The black and blue lines indicate the nearest hopping t and second nearest hopping t2. The spin-orbital coupling term
, for one spin flavor, is shown by the red arrows. (b) The band structure of lattice model with parameter along the high-symmetry directions. Lattice model and band structures: (c)-(d) breaking and with an out-of plane antiferromagnetic order indicated by the green arrow; (e)-(f) breaking symmetry with the chemical potential according to the green/red sites and the spin-orbital coupling term indicated by the purple arrows. -
[1] Weng H, Dai X, Fang Z 2016 Topological semimetals predicted from first-principles calculations J. Phys.: Condens. Matter 28 303001 doi: 10.1088/0953-8984/28/30/303001 [2] Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X, Bernevig B A 2015 Type-II Weyl semimetals Nature 527 495 doi: 10.1038/nature15768 [3] Huang H, Zhou S, Duan W 2016 Type-II Dirac fermions in the PtSe2 class of transition metal dichalcogenides Phys. Rev. B 94 121117 doi: 10.1103/PhysRevB.94.121117 [4] Guo P-J, Yang H-C, Liu K, Lu Z-Y 2017 Type-II Dirac semimetals in the YPd2Sn class Phys. Rev. B 95 155112 doi: 10.1103/PhysRevB.95.155112 [5] Wieder B J, Kim Y, Rappe A M, Kane C L 2016 Double Dirac semimetals in three dimensions Phys. Rev. Lett. 116 186402 doi: 10.1103/PhysRevLett.116.186402 [6] Bradlyn B, Cano J, Wang Z, Vergniory M G, Felser C, Cava R J, Bernevig B A 2016 Beyond Dirac and Weyl fermions: unconventional quasiparticles in conventional crystals Science 353 aaf5037 doi: 10.1126/science.aaf5037 [7] Weng H, Fang C, Fang Z, Dai X 2016 Topological semimetals with triply degenerate nodal points in θ-phase tantalum nitride Phys. Rev. B 93 241202 doi: 10.1103/PhysRevB.93.241202 [8] Guo P-J, Yang H-C, Liu K, Lu Z-Y 2018 Triply degenerate nodal points in RRh6Ge4 (R =Y, La, Lu) Phys. Rev. B 98 045134 doi: 10.1103/PhysRevB.98.045134 [9] Fang C, Chen Y, Kee H-Y, Fu L 2015 Topological nodal line semimetals with and without spin-orbital coupling Phys. Rev. B 92 081201 doi: 10.1103/PhysRevB.92.081201 [10] Weng H, Liang Y, Xu Q, Yu R, Fang Z, Dai X, Kawazoe Y 2015 Topological node-line semimetal in three-dimensional graphene networks Phys. Rev. B 92 045108 doi: 10.1103/PhysRevB.92.045108 [11] Zhang X, Yu Z-M, Sheng X-L, Yang H Y, Yang S A 2017 Coexistence of four-band nodal rings and triply degenerate nodal points in centrosymmetric metal diborides Phys. Rev. B 95 235116 doi: 10.1103/PhysRevB.95.235116 [12] Yu R, Weng H, Fang Z, Dai X, Hu X 2015 Topological node-line semimetal and Dirac semimetal state in antiperovskite Cu3PdN Phys. Rev. Lett. 115 036807 doi: 10.1103/PhysRevLett.115.036807 [13] Li S, Liu Y, Wang S-S, Yu Z-M, Guan S, Sheng X-L, Yao Y, Yang S A 2018 Nonsymmorphic-symmetry-protected hourglass Dirac loop, nodal line and Dirac point in bulk and monolayer X3SiTe6X = Ta, Nb) Phys. Rev. B 97 045131 doi: 10.1103/PhysRevB.97.045131 [14] Gao Y, Guo P-J, Liu K, Lu Z-Y 2020 RRuB2(R=Y,Lu), topological superconductor candidates with hourglass-type Dirac ring Phys. Rev. B 102 115137 doi: 10.1103/PhysRevB.102.115137 [15] Shao D, Fang C 2020 Filling-enforced Dirac nodal loops in nonmagnetic systems and their evolutions under various perturbations Phys. Rev. B 102 165135 doi: 10.1103/PhysRevB.102.165135 [16] Yang J, Fang C, Liu Z-X 2021 Symmetry-protected nodal points and nodal lines in magnetic materials Phys. Rev. B 103 245141 doi: 10.1103/PhysRevB.103.245141 [17] Cui X, Li Y, Guo D, Guo P, Lou C, Mei G, Lin C, Tan S, Zhengxin L, Liu K, Lu Z, Petek H, Cao L, Ji W, Feng M 2020 Two-dimensional Dirac nodal-line semimetal against strong spin-orbit coupling in real materials 2012 15220(arXiv:2012.15220) [18] Guo D, Guo P, Tan S, Feng M, Cao L, Liu Z-X, Liu K, Lu Z, Ji W 2022 Two-dimensional Dirac-line semimetals resistant to strong spin-orbit coupling Sci. Bull. 67 1954 doi: 10.1016/j.scib.2022.09.008 [19] For details see the supplemental material [20] Guo P-J, Wei Y-W, Liu K, Liu Z-X, Lu Z-Y 2021 Eightfold degenerate fermions in two dimensions Phys. Rev. Lett. 127 176401 doi: 10.1103/PhysRevLett.127.176401 [21] Jin Y J, Zheng B B, Xiao X L, Chen Z J, Xu Y, Xu H 2020 Two-dimensional Dirac semimetals without inversion symmetry Phys. Rev. Lett. 125 116402 doi: 10.1103/PhysRevLett.125.116402 [22] Reckeweg O, DiSalvo F J 2014 Different structural models of YB2C2GdB2C2 on the basis of single-crystal x-ray data Z. Nat.forsch. B 69 289 doi: 10.5560/znb.2014-3333 [23] Zhou J, et al 2019 2dmatpedia, an open computational database of two-dimensional materials from top-down and bottom-up approaches Sci. Data 6 86 doi: 10.1038/s41597-019-0097-3 [24] Young S M, Kane C L 2015 Dirac semimetals in two dimensions Phys. Rev. Lett. 115 126803 doi: 10.1103/PhysRevLett.115.126803 -
mfac44absupp1.pdf