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Abstract
Islet transplantation is a promising strategy for diabetes mellitus treatment as it can recapitulate
endogenous insulin secretion and provide long-term glycemic control. Islet models constructed
in biomaterial scaffolds that reproduce biological characteristics of native islets is a feasible
option to circumvent the dilemma of donor shortage and the requirement of chronic
immunosuppression. Herein, we developed bioinspired artificial microcapsule-based islet
models with microvessels for glycemic control using microfluidic electrospray strategy.
Microfluidic electrospray can generate uniform hydrogel microcapsules with core-shell
structure for encapsulating islet cells. The cell-laden microcapsules enabled the efficient
transportation of nutrient, oxygen, and insulin; as well as the incorporation with microvessels
for prompting glucose responsiveness and molecular exchange. We demonstrated by in vivo
experiments that the blood glucose, food intake, and body weight of diabetic mouse models
were alleviated, and the glucose tolerance was promoted after the engraftment of islet
microcapsules. We further demonstrated the improved functionality of transplanted islet model
in insulin secretion, immune escape, and microcirculation using standard histological and
molecular analysis. These results indicated that the microcapsules with microvessels are
promising artificial islet models and are valuable for treating diabetes.

Supplementary material for this article is available online

Keywords: artificial islet model, microfluidics, vascularization, hydrogel, diabetes

∗
Authors to whom any correspondence should be addressed.

Original content from this workmay be used under the terms
of the Creative Commons Attribution 4.0 licence. Any fur-

ther distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

2752-5724/24/035401+11$33.00 1
© 2024 The Author(s). Published by IOP Publishing Ltd

on behalf of the Songshan Lake Materials Laboratory

https://doi.org/10.1088/2752-5724/ad47ce
https://orcid.org/0000-0001-8802-4389
mailto:luoranshang@fudan.edu.cn
mailto:lingli@seu.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1088/2752-5724/ad47ce&domain=pdf&date_stamp=2024-5-24
http://doi.org/10.1088/2752-5724/ad47ce
https://creativecommons.org/licenses/by/4.0/


Mater. Futures 3 (2024) 035401 J Li et al

1. Introduction

Diabetes mellitus (DM) is a common metabolic disease mani-
fested by islet injury [1]. Therapeutic efforts have been made
to treat diabetes such as insulin injection. Although exogen-
ous insulin supply alleviates blood glucose levels tempor-
ally, the need for frequent injections causes huge burdens and
severe adverse complications may occur [2–4]. As an altern-
ative strategy that recapitulates endogenous insulin secre-
tion, islet transplantation is promising for long-term glycemic
control [5, 6]. However, the donor shortage and the required
chronic immunosuppression in the islet transplantation pose
great challenges in the DM therapeutics [7]. In view of this,
biomaterial scaffolds encapsulating islet or islet cells have
been developed to reconstruct islet functions, such as restor-
ing glucose homeostasis [8–10]. Although rapid progress has
been achieved, biomaterial-based islet models with long-term
survival and sustained insulin secretion functions are impeded
by immune attack as well as insufficient nutrient and oxygen
supply [7]. Therefore, novel artificial islet models that repro-
duce biological characteristics of native islets is still anticip-
ated for improving their functionality in achievingmore effect-
ive and sustained glycemic control.

In this paper, inspired by the intrinsic architecture of human
islets, we designed a type of biomimetic ‘artificial islet’ with
vascularized microcapsule structures by using microfluidic
electrospray technology (figure 1). Leveraging its precise flu-
idic manipulation capabilities, microfluidics has been widely
utilized in the production of hydrogel microparticles with
customizable structures including porous [11–13], core-shell
[14–19], and multi-compartmental [20–22], etc. [23–30]. The
incorporation of islet cells in these microgels takes advant-
age of their large surface area, facilitating efficient oxygen and
nutrient exchange [31–33]. Furthermore, the adaptable struc-
tural characteristics of microgels enable the co-encapsulation
of additional agents capable of further regulating cell fate [34–
38]. Despite these merits, accurately reproducing the complete
structure of native islets remains challenging. Shortcomings
such as inadequate vascularization limit the functional capab-
ilities of existing microgel scaffolds [39, 40].

Herein, we constructed a unique artificial micro-
physiological islet model by coculturing islet and endothelial
cells for establishing a vascularized islet model. Core-shell
microcapsules were generated via microfluidic electrospray,
which were loaded with pancreatic β cells and microves-
sels derived from human umbilical vein cells (HUVECs).
Taking advantages of the hydrogel shield, β cells can be phys-
ically isolated from host immune cells and thus escaping
from immune attack. Moreover, the presence of microvessels
improved the exchange of biological substances. Together, the
microcapsules could facilitate nutrient, oxygen, and insulin
delivery. Based on this, the microcapsules were transplanted
to diabetic mice to achieve sustained control of elevated blood
glucose levels. It was found that the transplanted grafts effect-
ively mitigated conditions including hyperglycemia, weight
loss, and polyphagia. These results indicated the value of this

artificial islet model in durable glycemic control, and poten-
tial applications are expected in diabetes treatment, tissue
engineering, and regenerative medicine.

2. Experimental sections

2.1. Materials

Sodium alginate (ALG), carboxymethyl cellulose sodium
(CMC), and calcium chloride (CaCl2) were obtained from
Aladdin. Cell counting kit-8 (CCK8) and the Calcein AM
(CAM)/PI staining kit was purchased from Beyotime, China.
Anti-Insulin antibody, bovine fibrinogen and thrombin were
obtained from Sigma. FITC-Dextran at 4 kDa, 70 kDa,
and 150 kDa were obtained from Xi’an ruixi Biological
Technology Co., Ltd Krebs Ringer Buffer (KRB) was pur-
chased from Solarbio. Insulin-producing β cells line (MIN6)
purchased from American type culture collection were cul-
tured in DMEM containing 10% FBS (Merck), supplemented
with 1% penicillin-streptomycin solution (Gibco), and 50 µM
β-mercaptoethanol (Gibco) at 37 ◦C in an incubator with 5%
CO2. Medium was replaced every other day. HUVECs were
cultured in EGM-2 (Lonza), which is supplemented with the
optimized growth factors and 2% FBS.

2.2. Microfluidic device construction

The microfluidic electrospray device was mainly composed
of two glass capillaries assembled on a glass slide. The two
capillaries were tapered to reach diameters of 100 µm and
500 µm respectively, serving as the inner and outer tubes.
Subsequently, the outer tube, nesting the inner tube coaxially,
was affixed onto the glass slide with transparent epoxy resin.
Finally, the connections were sealed with needles for pumping
liquids into each tube.

2.3. Fabrication of vascularized artificial islet microcapsules

The artificial islet microcapsules were generated by the micro-
fluidic electrospray system. The inner phase consisted of a
mixture of 1 wt% CMC and MIN6 at the concentration of
5 × 104 cells ml−1. The outer phase comprised 1 wt% ALG.
The respective liquids were accurately pumped into the cor-
responding tubes by micropumps (LSP-01-2A, Longer-Pump,
China) via polyethylene tubes. At the outlet of the microfluidic
device, monodispersed droplets were fabricated under an elec-
tric field (provided by Dongwen high voltage power supply
(Tianjin) Co., Ltd). Subsequently, the microdroplets were col-
lected in 2 wt% CaCl2 for crosslinking of ALG. The flow rates
of the outer and inner phases could be controlled by the syr-
inge pumps, while the voltage and distance between themicro-
fluidic device outlet and the ground could also be adjusted for
optimal droplet formation. For in vitro and in vivo experiments
encapsulating cells, parameters of the microfluidic system
were set as: 1 wt% CMC, 1 wt% ALG, Fouter = 80 µl min−1,
Finner = 20 µl min−1, U = 5 kV, d = 2 cm.
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Figure 1. Schematics of biomimetic artificial islet model with vascularized microcapsule structures for durable glycemic control. (a)
Fabrication of microcapsules by using microfluidic electrospray strategy. (b) Transplantation of vascularized microcapsules on the dorsal
brown adipose tissue of diabetic mouse. The transplanted microcapsules secrete insulin for relieving hyperglycemia. (c) The microcapsules
allow for the perfusion of nutrient and oxygen, and the release of insulin from pancreatic β cells, while hindering the attack of host
immune cells.

To construct a vascular network for the artificial islet,
HUVECs were co-cultured with the as-prepared islet micro-
capsules in a 5 mg ml−1 bovine fibrinogen solution. HUVECs
and normal human lung fibroblasts (NHLFs) were diges-
ted and dispersed in the medium. Then, the fibrinogen solu-
tion was prepared containing 3 × 106 cells ml−1 HUVECs,
5 × 106 cells ml−1 NHLFs, and ≈3000 microcapsules ml−1.
After mixing 5Uml−1 thrombin, themixture was placed in the
incubator for 30 min. The cell-laden composite gel constructs
were then submerged with the formulated medium (RPMI-
1640: Endothelial Growth Medium, EGM-2, 1: 1). For main-
taining cell culture, the medium was replaced every other day.
The vascular networks could be observed around the 3rd
day of incubation.

2.4. Characterization

The microcapsules were observed by an optic microscope
equipped with a CCD camera (OLYMPUS IX71, and
DP30BW). Scanning electron microscopic (SEM) (HITACHI,
S3000N) was used to investigate the microstructures of the
microcapsules. To observe the vascular structures, F-actin
and DAPI were used to label the cytoplasm and nucleus of
HUVECs and NHLFs, respectively.

Insulin-FITC (1 mg ml−1) and Rhodamine B (1 mg ml−1)
were used to evaluate the molecular permeation capacity of the
microcapsules. The fabricated microcapsules were emersed
in the Rhodamine B solution to simulate the entrance of
small molecules. To simulate the release of insulin from the
cells, the Insulin-FITC solution was used as the inner phase
of the microfluidic system, which was then encapsulated in
the microcapsules. The parameters of microfluidic system
were consistent with those employed in other in vitro and
in vivo experiments, as mentioned before. In specific time
points, images were taken with a fluorescent microscope (Carl
Zeiss, Germany). To evaluate the immunoprotecting capacity,
1 mg ml−1 FITC-Dextran at 4 kDa, 70 kDa, and 150 kDa
were encapsulated in the microcapsules, respectively. At spe-
cific time points, microcapsules were evaluated using immun-
ofluorescent microscopy (Carl Zeiss, Germany). Image ana-
lysis was conducted using Image J software to determine the
maximum fluorescence intensity of FITC-Dextran inside the
microcapsule, as well as the fluorescence intensity of the solu-
tion outside the microcapsule. Subsequently, a ratio of internal
to external fluorescence was calculated, with a ratio of 1 indic-
ating identical fluorescence intensity between the microcap-
sule and the surrounding solution. The results are presented as
the ratio of internal to external fluorescence over time.
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2.5. In vitro biocompatibility

The viability of MIN6 cells was evaluated by CAM/PI stain-
ing and CCK8 assays. CAM/PI staining was employed for the
detection of live/dead cells. CCK8 assays were conducted at
24 h, 48 h and 72 h of culture to perform quantitative assess-
ment of cell viability. The testing samples were exposed to
10 µl/well of CCK8 PBS solution for 2 h at 37 ◦C. A micro-
plate reader (SYNERGY HTX) measured the optical density
of the samples at 450 nm.

2.6. Insulin secretion detection

Tomeasure insulin secretion, MIN6 cells were starved in KRB
with 2 mM glucose for 1 h. Afterwards, the cells were treated
with fresh KRB containing 2 mM and 25 mM glucose for
1 h incubation each to measure insulin secretion at the low
and high glucose level, respectively. The supernatants were
then collected for secreted insulin detection. The glucose-
stimulated insulin secretion (GSIS) indexes were estimated
by dividing the insulin concentration secreted at 25 mM
glucose by that at 2 mM glucose. All insulin levels were
measured by using ultrasensitive mouse insulin ELISA kit
(Beyotime, China).

2.7. In vivo transplantation

Male C57BL/6 mice, aged 8–10 weeks, were purchased from
Shanghai Sipo-Bikai laboratory animal Company Limited.
All animals were handled in strict accordance with the
Guide for the Care and Use of Laboratory Animals of the
National Institutes of Health, USA. The experimental proto-
cols and animal care procedures were supervised and approved
by Animal Investigation Ethics Committee of Southeast
University (No. 20220304007).

Mice were peritoneally administrated with 150 mg kg−1

streptozotocin to establish the diabetic model after overnight
fasting. The successful establishment of diabetic mice was
confirmed by the blood glucose concentration exceeding
16.7 mmol l−1 in two independent tests on different days.
Then, the successfully established mice models were allocated
into four groups and received respective graft transplantsinto
their dorsal adipose tissues. MCs or v-MCs were prepared
5 d prior to transplantation. For the v-MCs and MCs groups,
the diabetic mice were transplanted with artificial islet micro-
capsules with or without microvessels, respectively. As for
the Cells group, the diabetic mice were transplanted with
naked MIN6 cells; while in the DM group, the diabetic mice
underwent sham surgery and treated with normal saline. Non-
fasting blood glucose levels were observed every 3 d post
transplantation. Additionally, food intake and body weight
were synchronously monitored with the blood glucose levels.
At 28 d post transplantation, intraperitoneal glucose toler-
ance test (IPGTT) was conducted for evaluating glucose toler-
ance. Diabetic mice underwent fasting for 16 h before inject-
ing glucose intraperitoneally. For recording the fluctuations
of blood glucose under stimuli, the blood samples of mice

were obtained for glucose evaluation at 0, 15, 30, 60, 90, and
120 min. At 42 d post transplantation, grafts were removed
from the transplant site. At 14 d post graft removal, the vis-
ceral organs of sacrificed mice such as pancreas, liver, heart,
kidney, lung, and spleen were collected and fixed for his-
tological analyses. Immunohistochemical staining and hem-
atoxylin and eosin (HE) were conducted according to proto-
cols. Tissue slices were observed under optical microscopy.

2.8. Statistical analysis

All statistical analyses were conducted with SPSS 20.0. The
data were presented as mean ± standard deviation. Statistical
significance of the difference was determined by students’ t-
test, one way ANOVA, and Kaplan–Meier analysis. P < 0.05
was considered significant.

3. Results and discussion

3.1. Development of vascularized microcapsules as artificial
islet models

In a typical experiment, microcapsules were fabricated via
microfluidic electrospray (figure 2(a)). A microfluidic device
was constructed, consisting of two coaxially-nested glass
capillaries, one as the inner tube and the other as the outer
tube [41, 42]. A ALG solution flowed through the outer phase
tube and a CMC solution with pancreatic islet β cells MIN6
flowed through the inner tube. Two-phase fluids were subjec-
ted to electrospray and formed uniform core-shell droplets at
the outlet of microfluidic device (figure 2(c)). The electrostatic
apparatus offered a high voltage, providing shear forces for
controlling droplet sizes. Droplets were then collected in a cal-
cium chloride solution, where they acquired a hydrogel shell
due to the rapid crosslinking between ALG and Ca2+. By con-
trolling the conditions of the electrostatically driven micro-
fluidic system, including the voltage, the distance between the
orifice and the collecting pool, and the inner and outer flow
rate, the diameter of themicrocapsules could be tailoredwithin
a certain range (figure S1). Additionally, the microcapsules
exhibited good monodispersity in size under all tested condi-
tions (figure S2). Thus, size-uniform hydrogel microcapsules
can be robustly generated, suggesting a potential application
in cell encapsulations.

The as-prepared microcapsules were characterized under
an optical microscope, which displayed a uniform spherical
shape with a transparent shell (figures 2(b) and (e)). In addi-
tion, the cross-section SEM images demonstrated the core-
shell architecture of the microcapsules (figures 2(d) and (f)). It
was shown that cells were encapsulated inside the microcap-
sule. The hydrogel shell provides a physical shield to protect
cells encapsulated in the core from immune attack. Mirroring
the role of natural islets in insulin secretion, we tested this
function by examining the permeation of model molecules
through the microcapsules. It was found that insulin-FITC and
small molecule Rhodamine B permeated through the micro-
capsule efficiently (figure S3). Based on this, we reasoned that
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Figure 2. Fabrication and characterization of the microcapsules based on microfluidic electrospray. (a) Schematic of the microfluidic
electrospray system. (b) Bright field microscopic images of the microcapsules at (i) low and (ii) high magnifications. Scale bar is 500 µm.
(c) The real-time image of the microfluidic electrospray process. (d) SEM images of a dissected microcapsule at (i) low and (ii) high
magnifications. Scale bar is 200 µm in (i) and 50 µm in (ii). (e) Microcapsules loading with MIN6 cells at (i) low and (ii) high
magnifications. Scale bar is 500 µm. (f) SEM images of a dissected microcapsule loading with MIN6 cells at (i) low and (ii) high
magnifications. Scale bar is 200 µm in (i) and 10 µm in (ii).

the microcapsules would allow for transferring nutrient and
oxygen, as well as release of insulin. To evaluate the immun-
oprotecting capacity, FITC-Dextran at different molecular
weight were used for determining the molecular weight cut-
off of the microcapsule. Since the small molecular effectors
of the host’s immune system vary from 150 kDa to 900 kDa,
FITC-Dextran at 4 kDa, 70 kDa, and 150 kDa were encapsu-
lated in the microcapsule for the assays. It was demonstrated

that FITC-Dextran at 4 kDa and 70 kDa permeated through the
microcapsule, while the 150 kDa failed to enter the hydrogel
(figure S4). These results suggested that the microcapsule fab-
ricated selectively passes nutrients, glucose, as well as insulin,
while protecting cells from the host’s immune system.

To establish a vascular structure, HUVECs and NHLFs
were co-cultured in a matrix composed of fibrinogen. After
3 d of cultivation, abundant microvessels and vascular
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Figure 3. Cell proliferation and insulin secreting function of the vascularized microcapsules. (a) HUVECs formed vasculatures in the
fibrinogen matrix at day 3. (i) Vasculatures were shown in closed purple loops; blue dots indicated the branch nodes; green lines
demonstrate the branches extended by cells. (ii), (iii) HUVECs and NHLFs were stained green by F-actin at top view (ii) and side view (iii).
Scale bar is 200 µm in (i), and 100 µm in (ii), (iii). (b) The microcapsules with the microvessels. Cells were stained with green by Calcein
AM. Scale bar is 500 µm. (c) The bright field image of the microcapsules with the microvessels. Scale bar is 500 µm. (d) Representative
microscopic and Calcein AM/PI staining images of the microcapsules at day 0, 1, 2 and 3. Yellow dotted circles represent the core of the
microcapsules with islet cells encapsulated. Red dotted circles represent the hydrogel shell of the microcapsules. Live cells were stained
green. Dead cells were stained red. Scale bar is 200 µm. (e) Measured insulin secretion of islet cells in planar dish cultivation or
encapsulated in microcapsules with or without microvessels by GSIS assays. Ctrl: the control group; MCs: the artificial islet microcapsule
group; v-MCs: the vascularized artificial islet microcapsule group.

network were formed. Microvessels were stained green by
F-actin labeling and observed under confocal microscopy
(figure 3(a)). To further construct vascularized microcapsules,
MIN6 cells were co-cultured with HUVECs and NHLFs. It
was found that the cells spread over the microcapsules at day 3
(figures 3(b) and (c)), indicating the intense vascularized struc-
ture of the microcapsules.

3.2. In vitro viability and insulin secretion function

To confirm the cell compatibility of the artificial islet, we
assessed cell viability and proliferation under various culture

conditions. For evaluating the survival of islet cells cultured in
the microcapsules, fluorescent images were taken during the
culture at day 0, 1, 2, and 3 (figure 3(d)). The CAM/PI staining
was used to label live/dead cells with green/red, and the res-
ults indicated cell survival within the microcapsules for 7 d.
For quantification of the cell viability, CCK8 assays were per-
formed at 24 h, 48 h, and 72 h. It was found that the cell pro-
liferation in microcapsules without microvessels (MCs) was
comparable to that of planar dish culture (the control group,
Ctrl).Moreover, themicrocapsules withmicrovessels (v-MCs)
showed comparable viability with the control group, as well
as the MCs group (figure S5). These results indicated that the
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Figure 4. Transplantation of the vascularized artificial islet microcapsules and their in vivo therapeutic performances. (a) Schematic of the
experimental groups. (b)–(d) Continuous monitoring of (b) blood glucose level, (c) body weight, and (d) food intake in different groups
(n = 5). (e) Glucose responsiveness of diabetic mice receiving IPGTT at 28th day post transplantation (n = 5). The dotted line in (b) and (e)
represents 200 mg dl−1, which is the threshold of blood glucose level for diagnosing diabetes. Statistical analyses were conducted by using
Kaplan–Meier analysis. ∗∗p < 0.01. Healthy: the healthy control group; DM: the diabetes group; MCs: the artificial islet microcapsule
group; v-MCs: the vascularized artificial islet microcapsule group.

fabricated artificial islet had good biocompatibility, and the
encapsulated cells maintained good survival.

As pancreatic islet β cells hold the capacity of insulin secre-
tion under stimuli, the GSIS assays were performed to evaluate
the glucose responsiveness of the artificial islet. The insulin-
secreting MIN6 cells in the Ctrl, MCs, and v-MCs groups
were sequentially subjected to low and high glucose solutions.
Although no significant differences were found in the GSIS
assays, it was noted that the amount of insulin secreted from
v-MCs increased by 6.35 folds under stimuli compared with
basal level of insulin secretion, which was higher than that of
control (5.52 folds) and MCs (5.98 folds) groups (figure 3(e)).
This might be resulted from the 3D culture microenvironment

of the microcapsules, which facilitates intracellular interac-
tions and thus prompts their function of insulin secretion.

3.3. In vivo transplantion and blood glucose control

To further evaluate the in vivo function in blood glucose
control, vascularized artificial islet microcapsules were con-
ducted in a diabetic mouse model (figures 4(a) and S6).
Mice with diabetes were transplanted with the constructed
v-MCs at dorsal brown adipose tissues, as indicated by the
in vivo imaging system (figure S7). The brown adipose tissues
have a highly vascularized and anti-inflammatory microen-
vironment, which can promote graft survival while delaying
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Figure 5. Immunohistochemical and immunofluorescence analysis results. (a) HE staining of the brown adipose tissues and transplanted
grafts. (b) Immunohistochemical staining of insulin at the transplantation site. Red arrows indicate insulin-positive areas. (c)
Immunofluorescence images of CD31 at the transplantation site. Yellow arrows indicate the microvessels. DM: the diabetes group; Cells:
the naked cells group; MCs: the artificial islet microcapsule group; v-MCs: the vascularized artificial islet microcapsule group. Scale
bars are 200 µm.

immune-mediated rejection [43]. Benefiting from the insulin
secretion, the diabetic mice transplanted with v-MCs (the
v-MCs group) demonstrated ameliorated hyperglycemia 3 d
after transplantation and maintained normal blood glucose
levels for 28 d (figure 4(b)). These cell functions could be
attributed to the partial immunoprotective effects of the brown
adipose tissues. Although the diabetic mice transplanted with
MCs (the MCs group) also showed reduced blood glucose
level, it returned to high blood glucose levels in two weeks,
probably due to insufficient circulatory networks around the
graft site (figure 5(c)). These results suggested the crucial role
of vascularization in bolstering engraftment, as well as func-
tionality of the artificial islet microcapsules. In contrast, the
control group (the DM group) treated with sham operations
demonstrated persistent high blood glucose levels. Besides,
the diabetic mice transplanted with bare islet cells (the Cells
group) achieved only a temporary decrease in blood glucose

level while reversed to previous hyperglycemia two weeks
after transplantation. This can be attributed to the lack of a
protective layer, where the transplanted cells were damaged by
host immune attack, leading to graft failures and severe hyper-
glycemia similar to sham-operated recipients. These results
suggested that transplanted islet models have the promising
potential in the diabetic treatment.

Patients with severe diabetes are accompanied by polypha-
gia and body weight loss. To examine the metabolic states,
we also monitored the food intake and body weight of the
mice. In Healthy group, the healthy mice showed a steady
increase in food intake as well as body weight, when blood
glucose levels were maintained within a normal range. It was
found that the DM group with continuous high blood gluc-
ose levels demonstrated elevated food intake indexes and pro-
gressive body weight reduction, suggesting abnormal energy
metabolism. Compared with the DM group, the v-MCs and
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MCs groups showed limited food intake and reversed body
weight equivalent to those of the normal state. Besides, mice in
the Cells group took in more food while losing weight, which
was consistent with their inability to control blood glucose
level. It is noteworthy that the alternation of metabolic states
in the v-MCs and MCs groups was correlated with the alle-
viation of high blood glucose level, which was in accordance
with clinical situations (figures 4(c) and (d)). To investigate the
glucose tolerance, we employed the IPGTT in various groups
at 28th day post transplantation (figure 4(e)). After the glucose
bolus administration, the blood glucose levels of the v-MCs
group ascended with a relatively smooth trend compared with
the rapid rise in the control group. These results revealed the
metabolic improvement by transplanting v-MCs and its sys-
temic therapeutic effects on diabetic mice.

Furthermore, histological and molecular analysis were car-
ried out for comfirming the therapeutic function of the islet
microcapsule. The HE staining results showed that the v-MCs
were transplanted in adipose tissues with vasculatures around.
For the Cells group, the HE staining illustrated scarce islet
cells with inflammatory infiltrations due to massive islet cell
death. Immunochemical staining assays were carried out for
detecting insulin (Ins) secreted from pancreatic β cells at the
graft site. It was shown that insulin-positive areas of the v-
MCs were larger than those in the Cells and MCs groups. In
addition, few inflammatory infiltrations were found under his-
tological examinations. By contrast, the microcapsule struc-
ture of MCs was confirmed at the graft site yet with less
microvessels, which are indicated by immunofluorescence of
CD31 (figure 5). Upon the retrival of the graft, contents of the
v-MCs were examed via immunofluorescent staining, which
showed insulin positive cells encapsulated in the hydrogel
shell (figure S8). Furthermore, the safety of transplantation
was validated through HE staining for major organs (figure
S9). Collectively, the transplantation of v-MCs demonstrated
graft survival and security, which laid foundation for practical
clinical applications.

4. Conclusion

In conclusion, we have developed microcapsules with
microvessels as artificial islet models for glycemic control
based on microfluidic electrospray strategy. The design of the
microcapsules was inspired by the intrinsic architecture of
pancreatic islets possessing a vascularized network. The core-
shell MCs allowed entrance of nutrient and oxygen, as well as
protection of encapsulated islet cells from host immune cells.
Additionally, the v-MCs held the capacity of glucose respons-
iveness and molecular exchange. Through transplantation of
v-MCs, the blood glucose, food intake, and body weight of
diabetic mouse models were ameliorated, and the glucose
tolerance was promoted given the therapeutic effects of v-
MCs. Moreover, in vivo engraftment safety of v-MCs was
confirmed by histological analyses. These results indicated
that the bioinspired artificial islet model with microvessels

is valuable for treating diabetes, and future applications in
regenerative medicine and tissue engineering can be expected.

5. Future perspectives

In this work, we have successfully developed a bioinspired
artificial islet model with vascularized microcapsule struc-
tures using a microfluidic electrospray approach, presenting
a promising avenue for DM treatment. This model demon-
strates potential for achieving long-term glycemic control and
enhancing the functionality of transplanted islets. In contrast
to conventional methods, our strategy enables the generation
of uniform hydrogel microcapsules with a core-shell structure,
ensuring efficient encapsulation of islet cells while mimicking
the native microenvironment of pancreatic islets. By incorpor-
ating microvessels within the microcapsules, we address the
challenge of inadequate vascularization, crucial for sustained
islet survival and function post-transplantation. The demon-
strated enhancements in glucose tolerance, insulin secretion,
immune protection, and microcirculation highlight the thera-
peutic value of the artificial islet model. However, further
research is warrented to address challenges such as scalability,
long-term stability, and immune compatibility, to realize its
full clinical potential. In summary, the development of micro-
capsules with microvessels represents a notable advancement
in islet cell transplantation, offering hope for individuals with
diabetes. As we continue to refine our understanding and
optimize the design of the biomimetic artificial islet model, it
hold promise for transforming diabetes treatment and advan-
cing personalized medicine approaches in the future.
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