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Abstract
Protonic ceramic electrochemical cells provide an excellent basis for the advancement of
high-temperature solid oxide devices, offering potential solutions to a range of challenges in the
hydrogen energy and carbon capture fields. The facilitated ionic transport in proton-conducting
electrolytes enables these cells to operate at temperatures 100 ◦C–500 ◦C lower than those of
conventional solid oxide cells with known zirconia electrolytes. As a result, promising
performances have been reported for various types of proton ceramic electrochemical cells.
Nevertheless, these advancements have been demonstrated only at the laboratory scale, whereas
their ZrO2-based counterparts have already been commercialized. This review presents an
overview of the fundamental and applied aspects related to the fabrication of tubular protonic
ceramic electrochemical cells and their subsequent characterization as hydrogen permeation
membranes, hydrogen pumps, hydrogen sensors, fuel cells, electrolysis cells, and
electrochemical reactors. A specific focus is placed on the technological aspects of the tube
preparations derived from the original powder sources as well as the dimensional characteristics
of the tubes, which serve as an indicator of scaling. Therefore, this review serves as a starting
point for the development and scaling of protonic ceramic electrochemical cells, with the
potential for large-scale production.
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1. Introduction

Proton-conducting oxides have great potential for designing
low- and intermediate-temperature electrochemical devices
for various purposes, including efficient electricity genera-
tion protonic ceramic fuel cells, (PCFCs), pure hydrogen pro-
duction protonic ceramic electrolysis cells, (PCECs), elec-
trochemical hydrogenation/dehydrogenation conversion pro-
tonic ceramic membrane reactors, hydrogen compression, and
hydrogen electroanalysis [1–6]. The central component of
many of these examples is a proton-conducting electrolyte [7–
10], whose ionic conductivity at reduced temperatures exceeds
(by up to 1–2 orders of magnitude) those of most conventional
oxygen-ionic electrolytes. This allows for rather high perform-
ance and energy efficiency at 400 ◦C–700 ◦C while maintain-
ing a low degree of degradation in long-term operation focus.

For more than 40 years, many complex oxide systems
have been analyzed and characterized in terms of their hydra-
tion capability along with ability to display high proton con-
centration, mobility, and conductivity [1]. However, those
belonging to the barium cerate-zirconate family (BaCeO3–
BaZrO3 or Ba(Ce,Zr)O3) are widely recognized as the most
promising proton-conducting electrolytes for electrochemical
applications [7, 9, 11, 12]. This approach relies on an optim-
ized balance between different functional properties of doped
Ba(Ce,Zr)O3, which include not only electrical properties but
also densification features, thermal and chemical expansion
behaviors, mechanical properties, chemical interaction inert-
ness, etc [13, 14]. All these individual properties play crucial
roles in the development of high-performance and robust pro-
tonic ceramic electrochemical cells.

In addition to the design of novel or modernized electrolyte
systems, extensive research has been conducted over the past
two decades to identify suitable oxygen and fuel electrodes
for PCFC and PCEC applications. During this period, many
promising materials have been proposed as efficient elec-
trocatalysts for oxidation, reduction, and evolution reactions
(known as ORR, OER, HOR, and HER), with excellent oper-
ability over low- and intermediate-temperature ranges. The
most recent developments in electrode engineering, including
trends, activities, and progress, can be found in several recent
review articles [15–20], which disclose intricate relationships
between the composition, structure, and electrochemical activ-
ity towards electrode processes.

The development of electrochemical cells relies not only
on material aspects (chemistry, design, engineering) but also
on the corresponding technologies that enable a complex of
functional materials to be assembled into working units or
single cells. In this regard, the group of main functional mater-
ials (electrodes and electrolytes) is extended by construction
materials, such as glass sealants, interlayers, interconnects,
current collectors, gaskets, and frames [21–24]. These materi-
als should also be optimized to perform their specific functions
efficiently at working temperatures. In addition, the fabrica-
tion of each functional material requires a thorough solution
to technological problems to enable transfer from laboratory-
scale single cells to a group of such cells (known as stacks or
modules). A literature review revealed that both fundamental
and technological issues have been adequately addressed for
conventional zirconia-based solid oxide fuel cells (SOFCs),
solid oxide electrolysis cells (SOECs), and reversible SOFCs.
As a result, the latter are currently stacked up to several kW
[25–30] and tested for several tens of thousands of hours [31–
37]. However, PCFCs and PCECs have not yet achieved sim-
ilar results. Specifically, the operation of the latter (in the form
of lab-scale cells) is usually limited to 500–3000 h [38–42].

The aforementioned findings prompted our aim to prepare
the current review article devoted to the development and
fabrication technologies of protonic ceramic electrochemical
cells; the main emphasis was on the tubular design of such
cells, which has been identified as one of the most prom-
ising in terms of weight-dimensional characteristics. Notably,
the tubular types of SOFCs and SOECs have been recently
reviewed in several articles [43–48]. However, these reviews
address conventional oxygen-ionic cells, with a limited focus
on protonic ceramic cells. Therefore, the present review aims
to address this gap by providing a detailed R&D analysis of
tubular-type protonic ceramic electrochemical cells for vari-
ous applied purposes.

2. Classification of solid oxide electrochemical
cells

There are several general classifications of solid oxide cells,
which include the type of electrolyte used, the type of sup-
porting materials, and the geometric design.

In consideration of the conducting nature of an electro-
lyte, two principal classes may be identified: oxygen-ionic and
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proton-conducting materials. The former class includes stabil-
ized or doped oxide systems based on zirconia (ZrO2), ceria
(CeO2), bismuth oxide (Bi2O3), lanthanum gallate (LaGaO3),
and other less studied compositions [49–53]. The notable
oxygen-ionic conductivity of these materials is attributed to
acceptor doping, which results in the formation of oxygen
vacancies. These vacancies can migrate along the crystal lat-
tice, allowing oxygen ions to jump from one anionic position
to the vacant position. This movement is an energy-consuming
process; as a result, desirable oxygen-ionic conductivity val-
ues can be achieved at elevated temperatures, while they rap-
idly decrease with cooling. In contrast, proton-conducting
electrolytes are distinguished by a reduced activation energy
for proton transport. This can be attributed to the distinctive
characteristics of proton defects, including their lower mass
and size than those of oxygen ions. The activation energy of
proton transport (mobility, diffusion, conductivity) is often
lower, enabling the attainment of acceptable proton conduct-
ivity values between 400 and 700 ◦C. The most well-known
examples of proton-conducting electrolytes are cerates and
zirconates of alkaline-earth elements (ABO3, where A = Ca,
Sr, Ba; B = Ce, Zr), which are briefly discussed in the next
section. Moreover, proton transport is a characteristic prop-
erty of some other perovskites [54–57] and perovskite-related
oxides [58–60]. In addition to oxygen-ionic and proton-
conducting electrolytes, hybrid ionic (or dual ionic) systems
are also known [61–63]. It is postulated that the simultaneous
transport of oxygen ions and protons in hybrid systems offers
advantageous functions in terms of PCFC and PCEC effi-
ciency: in fuel cell mode, water molecules are formed at both
the anode and cathode spaces, facilitating proton transport of
the electrolyte; in electrolysis mode, water vapor is decom-
posed to a greater extent at both electrode spaces, enhancing
the electrolysis efficiency.

The classification of supporting materials encompasses
three principal categories: electrolyte-, electrode-, and
metal-supported configurations of electrochemical cells.
Historically, the first SOFC modules were based on sup-
ported zirconia electrolytes [64, 65], which were considered
the most technologically straightforward option at the time.
However, there has been a subsequent shift in focus towards
electrode-supporting designs for SOFCs and SOECs, with the
aim of enhancing their performance. Such an improvement
is achieved by reducing the thickness of the electrolyte and,
consequently, the associated ohmic resistance components.
Nevertheless, if the ohmic resistance does not affect the per-
formance of electrochemical cells (for example, potentiomet-
ric sensors), the electrolyte configuration can be used in terms
of simplicity and cost-effectiveness. In the case of other elec-
trochemical cell types, a Ni-cermet-supported configuration is
the most frequently employed configuration in both laborat-
ory and commercial contexts [66–68]. Metal-supported solid
oxide electrochemical cells have recently garnered increasing
attention from technologicals [69–73]. More precisely, the
replacement of ceramic (or cermet) supporting electrodes for
metal supports has the potential to address several issues asso-
ciated with insufficient mechanical strength, low redox stabil-
ity, and poor thermal shock resistance of ceramic materials.

Figure 1. Simplified schemes of SOFC and SOEC designs: (a)
planar, (b) tubular, (c) flat-tube, and (d) monolithic.

The aforementioned properties of metals are of superior qual-
ity accompanied by relatively low production costs at the
same time.

By discussing the last (geometric-related) classification,
multilayered electrochemical cells can be separated into four
well-known configurations, as shown in figure 1.

It is widely acknowledged that the planar SOFC/SOEC
design (figure 1(a)) is the simplest in terms of cell fabric-
ation and assembly into stacks. Furthermore, in comparison
with alternative designs, the planar configuration is associ-
ated with relatively low costs, high volumetric power density,
and the straightforward possibility of increasing the required
power by stacking. The following aspects can be identified
as the most significant disadvantages: (i) while sealing a
single cell is relatively easy at the laboratory scale, achiev-
ing a hermetically sealed stack presents significant technical
challenges; (ii) the spatial features of planar cells result in
an uneven distribution of heat, electrons, and mass trans-
fer fields, necessitating optimization to attain uniform distri-
butions of these fields and to prevent high energy loss and
mechanical/thermal instability.

The tubular design (figure 1(b)) represents a rational altern-
ative to planar cells owing to the simplicity of sealing, the
higher mechanical strength and the superior mechanical res-
istance associated with the symmetric circular geometry of
the tubes. However, these cells also have several limita-
tions. First, the tubular-type cells exhibit a lower volumetric
power density because of less dense packing and larger losses
related to long paths of connecting cells in a stack. Second,
it is evident that the manufacturing costs of tube fabrica-
tion are higher than those of planar cells. Nevertheless, these
issues are currently well addressed in both fundamental and
applied research.
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A flat-tube design (figure 1(c)) is proposed as a means of
combining the advantages of both planar and tubular con-
figurations previously mentioned. Although several techno-
logical issues have been resolved, the fabrication of such a
hybrid design remains quite challenging and expensive. The
primary disadvantages of monocytic cells (figure 1(d)) are
associated with the electrolyte supports, which contribute to
the total cell performance owing to a high ohmic resistance,
as well as the difficulty in sealing and organizing current col-
lectors. However, this configuration offers advantages in terms
of high volumetric power density and excellent thermomech-
anical (TM) strength. Additionally, there are other derivat-
ives of this design, including honeycomb-type and cone-tube
configurations. More details regarding these types of solid
oxide cells can be found elsewhere [74–76].

3. A brief comparative analysis of oxygen-ionic and
proton-conducting electrolytes

A Scopus analysis indicates that the topic of tubular SOFCs
and SOECs has been the subject of extensive research, with
over 1600 papers published up to date. This analysis also
indicates that the period between 2007 and 2011 repres-
ented a peak in publication activity, with more than 100
papers published annually. The number of publications sub-
sequently decreases to 50–90 papers per year. Upon remov-
ing all papers containing the ‘proton’, ‘proton ceramic’, and
‘protonic ceramic’ keywords from all fields, the number of
publications decreased to approximately 1400 items. This sug-
gests that∼200 papers address or provide specific information
about protonic ceramic electrochemical cells. As previously
stated in the Introduction, tubular SOFCs based primarily
on conventional oxygen-ionic electrolytes have been recently
reviewed in several publications [43–48]. Consequently, a crit-
ical analysis of tubular PCFCs/PCECs is of significant interest.

The distinct differences between the oxygen-ionic and
proton-conducting electrolytes must be clarified. These dif-
ferences can be attributed to the unique ability of proton-
conducting oxides to reversibly absorb and desorb water
molecules in a process that involves the participation of
oxygen vacancies

H2O+V••
O +O×

O ⇄ 2OH•
O. (1)

The resulting protons affect a number of functional proper-
ties of origin phases, including their phase structure and mech-
anical and transport properties (figure 2).

The phase transition features associated with the hydra-
tion of oxide phases might be observed in perovskites exhib-
iting one or more phase transitions from room temperature
to ∼1000 ◦C. For example, doped BaCeO3 exhibits a series
of phase transitions until the formation of a stable cubic
perovskite structure at elevated temperatures [76]. At lower
temperatures, the formation of monoclinic, orthorhombic, or
rhombohedral crystal structures may occur. Notably, more dis-
torted perovskites are formed upon hydration. For example, if
the cubic structure of an unhydrated BaCe0.8Y0.2O3−δ (BCY)

Figure 2. Some functional properties of proton-conducting oxide
electrolytes depending on water vapor partial pressure variation.

compound is formed at 500 ◦C and above, such a cubic struc-
ture is stable only at 650 ◦C and above for the hydrated BCY
phase [77]. Another study [78] indicated that the cubic struc-
ture of BCY is stable for a range of 800 ◦C–1000 ◦C in dry
oxygen. However, when oxygen was humidified with D2O, a
lower-symmetry perovskite (rhombohedral) was observed in
the same temperature range.

The dimensional variation of such perovskites can be
explained by local structural distortions related to the appear-
ance or interaction of new and already existing defects [79–
82]. As shown in equation (1), a parent phase (composed
of cations with stable oxidation states) must contain oxygen
vacancies to provide protonic transfer. The oxygen vacancies
represent unoccupied positions in the anionic sublattice of per-
ovskites. When water molecules interact with these vacancies,
the oxygen from water fills the anionic site, forming a regu-
lar oxygen-ionic position in the crystal. At the same time, the
protons of the water molecules become localized on the oxy-
gen ions. In other words, the oxide crystal accumulates a water
substance with a size of ∼2.8 Å; as a result, such a crystal
expands and changes its origin structure.

In addition to the crystal structure transformations, the
proton-conducting oxides display a pronounced H2O-induced
chemical strain (expansion upon hydration and shrinkage
upon dehydration). Chemical expansion effects have been
widely discussed for classical ABO3 perovskites, depend-
ing on their composition, basic structure, acceptor dopant
contents, and measured conditions [83–90]. These effects,
along with conventional thermal expansion, result in a non-
linear temperature-dependent change in dimensional charac-
teristics (e.g. sample length and lattice parameters), repres-
enting a significant challenge in the mechanical compatibil-
ity of proton-conducting electrolytes with electrode systems.
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In detail, the electrode phases can also be hydrated, but their
hydration degree is typically less than 10% of the theoret-
ical amount of oxygen vacancies [91, 92]. Therefore, des-
pite potential water uptake, the electrode materials do not
exhibit visible chemical expansion effects under actual oper-
ating conditions. Chemical expansion issues represent the
most significant challenge in the fabrication of PCFC or
PCEC stacks with an extended working area. This is because
the chemical expansion behavior, as the intrinsic property
of proton-conducting electrolytes, cannot be eliminated or
even minimized: more conductive electrolytes exhibit more
pronounced chemical strain effects during heating/cooling,
and vice versa.

Another crucial aspect of proton-conducting materials is
their chemical stability. One of the most conductive electro-
lytes is the Ba-based family, which includes BaCeO3, BaZrO3,
and BaHfO3. Despite the formation of proton defects during
dissociative water adsorption at elevated temperatures, some
compounds have been observed to exhibit instability in the
presence of water at lower temperatures. For example, doped
BaCeO3 interacts with steam at temperatures below 400 ◦C
[93], whereas the perovskite structure is stable at higher tem-
peratures and gas humidity. The thermodynamic stability of
BaCeO3 in the presence of CO2 is inadequate under all experi-
mental conditions, precluding the electrochemical conversion
of C-based compounds [76]. To enhance chemical stability,
cerium in BaCeO3 is partially or fully replaced with other
stabilized elements to form a mixed Ba(Ce,M)O3 system or
another BaMO3 family (where M = Zr, Hf, Sn, Th, Ti, Ta, or
Nb). These compounds also exhibit proton transport coupled
with enhanced chemical stability against possible interactions
with gas-phase components [94–96].

While the chemical stability of proton-conducting per-
ovskites has been extensively studied in the context of gas
reactants, the chemical interactions between different func-
tional materials of PCFCs and PCECs represent a crucial
aspect in achieving robust interface regions that are respons-
ible for both low ohmic and low polarization resistances.
Considering the classic ZrO2 and CeO2 compounds, it is
well known that pure or stabilized zirconia materials have
very low chemical stability with respect to many oxygen
electrodes based on lanthanum or alkaline earth elements.
Specifically, low conductive zirconate phases (La2Zr2O7 and
MZrO3, where M= Ca, Sr, Ba) can be formed even at rational
sintering temperatures. To address this issue, highly stable
CeO2 is often introduced as a protective layer between the
zirconia electrolyte and the oxygen electrode [24, 97, 98]. A
comparable trend is predicted when the chemical stabilities of
the BaCeO3 and BaZrO3 compounds are compared: the chem-
ical stability of the former is greater than that of the latter.
In addition, Ce-enriched compounds are preferred over Zr-
containing analogs. In the case of La-containing electrodes,
the PCFC/PCEC interface can be enriched by La2Ce2O7 or
La2Zr2O7 phases, but the ionic conductivity of La2Ce2O7 is
much greater than that of La2Zr2O7 [99]. In the case of Sr-
containing electrodes, SrCeO3 and SrZrO3 can also be formed
at the interface; again, SrCeO3 has a higher ionic conductivity
than SrZrO3 [100].

Achieving the chemical stability of proton-conducting per-
ovskites with Ni-based fuel (hydrogen) cermet electrodes is
another important challenge. These Ni-cermets are composed
of NiO (or Ni under reducing conditions) and an electro-
lyte component, which is utilized for the same thin-film elec-
trolyte layer. In principle, two-component cermets are rel-
atively stable even when high sintering temperatures (up to
1500 ◦C) are used. However, a challenge emerges when a
‘Ni-cermet/electrolyte’ half-cell is prepared. Under high co-
sintering temperatures, Ni ions diffuse from the cermet into
the grain boundaries of an electrolyte body (nickel has very
low solubility in the cerate or zirconate phases). A low-ionic
phase of BaY2NiO5 then tends to accumulate at the grain
boundaries of Y-doped cerates/zirconates, hindering proton
transport and leading to mechanical weakening of the grain
contacts [14, 101]. This impurity can be inhibited by repla-
cing the most commonly used dopant (yttrium) with other ele-
ments. In detail, no formation of impurity phase(s) is detec-
ted for Yb-doped compounds. Although a BaYb2NiO5 deriv-
ative is known to exist [102], its chemical stability appears to
be significantly lower than that of BaY2NiO5. Consequently,
no proton-blocking BaYb2NiO5 phase is formed when the
Ni-based cermets and Yb-doped perovskite electrolytes are
co-sintered. As a result, Yb-doped/Yb-containing proton-
conducting perovskites belong to mainstream current activ-
ities in materials science aspects related to PCFC and
PCEC developments [103–107].

Most proton-conducting electrolytes are generally triple-
conducting materials capable of simultaneously exhibiting
electronic, oxygen-ionic, and protonic conductivities, whose
values depend on the temperature, oxygen partial pressure,
and water vapor partial pressure [108, 109]. Numerous stud-
ies have shown that the p-type electronic conductivity reaches
rather high values (and contributes to the total conductivity)
under oxidizing conditions, even at reduced temperatures as
low as 600 ◦C. Therefore, the electronic transport of such
electrolytes cannot be completely excluded and must be taken
into account in the real operating modes of electrochemical
cells with unseparated gas spaces (symmetric cells) and sep-
arated gas spaces (PCFCs, PCECs). In contrast, some other
electrolyte classes, including stabilized zirconia and doped
lanthanum gallates, exhibit unipolar oxygen−ionic transport
without meaningful biases in electronic transport [110].

These are the main features of proton-conducting mater-
ials in comparison with conventional oxygen-ionic elec-
trolytes. Other features related to synthesis, densification,
and enhancement of ionic conductivity are specific to each
individual system; readers are encouraged to pursue this
information independently.

4. Technological aspects of fabricating tubular
protonic ceramic cells

This section reviews possible approaches to the fabrication
of tubular protonic ceramic electrochemical cells. Since these
cells represent a series of ceramic or cermet layers with dif-
ferent compositions, microstructures and functions, two main
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Figure 3. Various approaches to prepare protonic ceramic electrochemical support tubes.

stages can be identified. The first is based on the prepara-
tion of the tubular supports (figure 3), whereas the second is
based on the further organization of the electrolyte (figure 4)
and counter electrode layers. These stages are closely related
to each other for each individual report; therefore, they are
jointly analyzed below. Notably, the following discussion is
presented in a temporal context (spanning the period from
∼2010 to the present) to illustrate the advancements made
in the fabrication of tubular protonic ceramic electrochemical
cells. Additionally, particular attention has been given to the
organic components utilized for substrate preparation.

One of the first studies devoted to the preparation and char-
acterization of a proton ceramic tube was reported by Yoon
et al in 2009 [111, 112]. The authors used tape-casting to pre-
pare a green tape. More precisely, a mixture of SrCeO3 (SC)

prepared via the solid-state synthesis method and NiO was
ball milled for 24 h, using an ethanol/toluene solvent and a
number of other components: fish oil (dispersant), polyvinyl
butyral (PVB), polyethylene glycol (PEG) (binder), and di-n-
butyl phthalate (plasticizer). The as-obtained slurry was tape
cast. After the green tapes were formed, they were rolled onto
a steel core rod and end-closed via a cap of the same mater-
ial. To form an electrolyte layer, SrCe0.9Eu0.1O3−δ (SCE) was
synthesized via a citrate−nitrate synthesis method. To pre-
serve the membrane integrity related to the different shrink-
age behaviors of NiO–SC and SCE during sintering, the green
support was partially sintered at 1100 ◦C–1200 ◦C, and then,
the inner side of the tube was coated with an SCE slurry (its
organic composition was not specified). The final co-sintering
process was performed between 1350 ◦C and 1450 ◦C, which
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Figure 4. Various approaches to prepare protonic ceramic electrochemical half-cells.

allowed a 30 µm thin layer to form. This bilayer tube was used
as a hydrogen permeation membrane. The same approach was
also employed to prepare membranes based on other electro-
lyte types composed of SrCe0.7Zr0.2Eu0.1O3−δ [113].

While tape casting is a prevalent technique for fabricating
anode substrates, it is particularly well suited to the planar con-
figuration of solid oxide electrochemical cells. The application
of this method for tubular cells is constrained by the neces-
sity of a rolling stage, which, in any case, creates a junction
between the lower and upper (covering) layers. This junction
represents a source of mechanical strain during the subsequent
high-temperature sintering of the tubes. Accordingly, mono-
layer tubes devoid of any junctions are preferable in terms of
mechanical stability. There are numerous alternative technolo-
gical approaches that facilitate the fabrication of high-quality
tube substrates. Among these techniques, phase inversion with
a combination of extrusion, spinning, slip casting, or dip coat-
ing has become a widely employed method [114, 115]. In par-
ticular, phase inversion entails themixing of the corresponding
oxide powders with an organic solvent (to create a slurry) and

the subsequent introduction of a nonsolvent phase as a slurry
destabilization agent. During the coagulation process, the sub-
strate undergoes hierarchical restructuring, forming a dense
layer (in the polymer-depleted region) connected with sponge-
like or finger-like void layers (in the polymer-rich region). This
method enables the fabrication of tubes from single materi-
als (by extrusion, spinning) or two distinct materials (by co-
extrusion, co-spinning).

Zhao et al [116] employed the phase inversion
method to fabricate a microtubular PCFC based on a
BaCe0.7Zr0.1Y0.1Yb0.1O3−δ (BCZYYb) electrolyte. This elec-
trolyte was synthesized via the citrate−nitrate synthesis
method and subsequently ball milled with NiO and graphite in
an ethanol medium. Polythersulfone (PESf) and N-methyl-2-
pyrrolidone (NMP) were then added to form a viscous slurry.
A custom-designed spinneret with an orifice dimension/in-
ner diameter of 3.0/2.0 mm was used to obtain a microtu-
bular substrate. The latter was immersed in a water bath to
obtain a porous green tube. The green body was washed to
remove any solvents, dried at 400 ◦C to burn off the organic
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components, and then pre-sintered at 1200 ◦C for 2 h. A
dip-coating method was employed to form the BCZYYb elec-
trolyte layer on the outer surface of the pre-sintered tube.
An ethanol-based slurry containing 10 wt% BCZYYb was
used for this purpose. The co-sintering of the half-cell with a
25 µm thick electrolyte was performed at 1400 ◦C for 5 h.
Finally, an LSCF–BCZYYb cathode composition (where
LSCF = La0.6Sr0.4Co0.2Fe0.8O3−δ) was formed on the elec-
trolyte surface, followed by sintering at 1100 ◦C for 2 h. The
single PCFC had an outer diameter of 1.6 mm and an effective
electrode area of 0.65 cm2.

Concurrent with these developments, a group of Zhao
et al [117] employed a similar phase inversion methodo-
logy to fabricate microtubular PCFCs with graded anodes. In
detail, the suspension for the anode supports was composed
of NiO and BCZYYb powders in a NMP solvent with the
addition of PESf and polyvinylpyrrolidone as the binder and
dispersant, respectively. The suspension was then stirred for
24 h, degassed, and extruded through a tube-in-orifice spin-
neret with orifice diameters and inner diameters of 2.5 and
1.0 mm, respectively. The hollow fibers were then placed in
a water bath for 24 h and pre-sintered at different temper-
atures from 1300 to 1400 ◦C for 5 h. The BCZYYb elec-
trolyte was deposited on the outside side of the pre-sintered
tubes by the dip-coating method and then co-sintered at 1300,
1350, and 1400 ◦C for 5 h. Finally, an SSC–BCZYYb cathode
(SSC = Sm0.5Sr0.5CoO3−δ) was screen printed and sintered
at 950 ◦C for 3 h. The cross-sectional microstructure ana-
lysis revealed that the pre-sintered tubes exhibited a graded
structure, whereby a sponge-like porous layer formed on the
outer side integrated with a finger-like porous layer on the
inner tube sides. This asymmetric structure was likely caused
by different precipitation rates during the spinning process.
This fabrication technique, with some modifications, was sub-
sequently confirmed to be effective for other electrolyte/elec-
trode combinations [118–131].

Chen et al [132] fabricated a tubular BCZYYb-based PCFC
via a combination of dip coating and co-firing processes. Dip
coating is regarded as a relatively straightforward process, par-
ticularly in comparison to spinning or extrusion techniques.
This does not necessitate the use of specialized tube produc-
tion equipment, although the dimensions of the resulting tubes
are somewhat constrained. For the research, the dip coating
slurry was prepared in the following manner. First, the NiO,
BCZYYb, and graphite components were ball milled in eth-
anol for 24 h (the weight ratio of the liquid and solid phases
was set as 1:1). Then, triethanolamine was added as a dis-
persant, dibutyl phthalate and PEG-6000 were added as plasti-
cizers, and PVB was added as a polymer binder. The resulting
mixture was ball milled for another 24 h to obtain a uniform
and stable slurry, which was finally degassed under vacuum. A
glass rod was then dipped in the slurry and removed, followed
by drying in air. The dip coating process was repeated 6 times
to obtain a 200 µm thick anode substrate with an outside dia-
meter of 6 mm. This substrate was demounted from the glass
rod after drying in air for 12 h and in an oven at 80 ◦C for
30 min. A thin layer of the BCZYYB electrolyte (∼12 µm)
was deposited onto the outside of the anode substrate via a

similar dip coating method in which an ethanol slurry (10 wt%
BCZYYb) containing small amounts of binder and dispers-
ant was used. The as-prepared bilayer cell was co-sintered at
1400 ◦C for 5 cycles. A composite LSCF–BCZYYb cathode
was subsequently applied to the electrolyte surface via brush
painting, followed by sintering at 1000 ◦C for 2 h. The result-
ing single PCFC had a length of 2 cm, an outside diameter of
5 mm, an inside diameter of 4.5 mm, and an effective cathode
area of 1.0 cm2. In subsequent works, the same approaches
were used to fabricate other PCFCs [133–141].

Robinson et al [142] utilized an extrusion method to pre-
pare a Ni-cermet PCFC tube. First, initial BaSO4, CeO2, ZrO2,
Y2O3 and NiO reagents were used at a ratio corresponding
to a nominal composition of 35 wt% BaZr0.7Ce0.2Y0.1O3−δ

(BZCY) and 65 wt% NiO. No preliminary synthesis of the
electrolyte component was used since this phase was self-
formed during sintering. These components were ball milled
for 16 h and then added to water-soluble acrylic or cellulosic
plasticizer to prepare the extrusion batch. Green tubes (with
an outer diameter of 13.8 mm and a wall thickness of 1.8 mm)
were extruded from the prepared mass via a 40 ton extrusion
press through an encapsulated die set and then dried in air for
several days. A slurry of BaSO4, CeO2, ZrO2 and Y2O3 in an
unspecified solvent was spray coated onto the outer surface of
the green extruded tubes, followed by co-sintering at 1600 ◦C
for 6 h. After this sintering, the half-cells had an outer diameter
of ∼10 mm, a wall thickness of 1.25 mm, and an electrolyte
thickness of approximately 20 µm. Finally, a LSCF cathode
was deposited via brush painting and sintered at 1000 ◦C for
30 min. This approach was used to prepare protonic ceramic
electrochemical tubes (fabricated by CoorsTek Inc., Golden,
Colorado, USA) for different purposes [143–151].

In the work of Min et al [152], a PCFC based on
a BaCe0.7Zr0.1Y0.2O3−δ (BCZY) electrolyte was fabricated
through a combination of extrusion and coating processes. The
anode substrate was prepared from BCZY, NiO, and activ-
ated carbon powders, which were ball milled and mixed with
an organic binder (the specific composition of which is not
provided) and distilled water. The prepared paste was extruded
and pre-sintered at 1100 ◦C for 3 h. Then, three layers were
coated with subsequent sintering: an anode functional layer
was dip-coated and sintered at 1200 ◦C for 3 h, the BCZY
electrolyte was coated by a vacuum slurry coating method
and sintered at 1450 ◦C for 5 h, and a LSCF–BCZY com-
posite cathode was dip-coated and sintered at 1100 ◦C for
3 h. The resulting PCFC exhibited an active electrode area
of approximately 2.1 cm2. The same approaches were used
for the fabrication of a PCFC tube with an outer diameter of
5 mm, an inner diameter of 4 mm, an overall length of 50 mm,
a cathode length of 30.5 mm, and an electrolyte thickness
of 10 µm [153, 154].

Zhu et al employed a highly scalable extrusion process
to prepare green anode supports with a tubular design [155].
Specifically, 20 wt% corn starch (pore former) and 3 wt%
methyl cellulose (water-soluble binder) were added to an ini-
tial powder mixture corresponding to BCZYYb and NiO at
a weight ratio of 65:35. The resulting mixture was then ball
milled for 15 h and subsequently mixed with water, followed
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by preextrusion. The ceramic clay was then packed into bricks,
sealed, and aged for 16 h prior to tube extrusion. Following the
aging process, the clay was introduced into the pressing cham-
ber, subjected to slight vacuum conditions, and then extruded
at a gradual rate. The extruded tubes were subsequently sub-
jected to a gradual drying process at 30 ◦C for 3 h and at 80 ◦C
for 5 h, which proved instrumental in achieving their optimal
mechanical strength. The tubes subsequently underwent a
two-hour pre-sintering process at 1200 ◦C. Thereafter, the
BCZYYb electrolyte slurry was deposited onto the outer tube
surface through brush painting, followed by a further sinter-
ing process at 1450 ◦C for 10 h. Finally, several cathode slur-
ries were prepared from the Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF),
BaCo0.4Fe0.4Zr0.1Y0.1O3−δ , and PrBa0.5Sr0.5Co1.5Fe0.5O6−δ

(PBSCF) powders; each of these slurries was painted and fired
at 900 ◦C for 5 h. This procedure enabled the fabrication of
PCFC tubes with an outer diameter of 0.82 cm, a cathode
length of 0.5 cm, an active cathode area of 1.3 cm2, and an
electrolyte thickness of 15 µm. A similar extrusion technique
was further used in another work [156].

A slip casting technique was first used by Hanifi et al
[157] to prepare a BCZYYb-based PCFC. The initial precursor
powders (BaCO3, ZrO2, CeO2, Y2O3, and Yb2O3), taken in
the stoichiometric amounts required for BCZYYb,weremixed
with NiO in deionized water and ball-milled for 24 h. Water
was added to adjust the solid phase in the obtained slurry to
30 wt%, and then 20 vol% graphite was added as a pore former
to obtain a final suspension. The latter was cast into a plaster
mold for 30 s and dried at room temperature for 1 h. Upon
drying, the green tubes shrank, which allowed their removal
from the mold. These tubes were dried at 100 ◦C, heated at
700 ◦C to remove graphite, and pre-sintered at 1000 ◦C for
3 h. An electrolyte slurry (BCZYYb, ethyl cellulose, terpin-
eol) in ethanol was formed on the outer surface of the pre-
sintered tubes via the dip-coating method (twice), followed by
co-sintering at 1450 ◦C for 3 h. Finally, a LSCF–BCZYYb
cathode was also dip-coated and sintered at 1000 ◦C for 3 h.
The electrolyte thickness of a single PCFC was about 25 µm.
The next work of this group also reports the success of the
proposed method [158–161].

The slip casting method in combination with dip coating
was also employed for the preparation of tubular half-cells
based on Zr-enriched cerate-zirconate materials, specifically
BaZr0.8Ce0.1Y0.1O3−δ (BZCY1) and BaZr0.7Ce0.2Y0.1O3−δ

(BZCY2) [162]. In detail, the initial powders of BaCO3, ZrO3,
CeO2, Y2O3, and NiO were taken in certain amounts required
for either NiO/BZCY1 or NiO/BZCY2, with a weight NiO
ratio of 65%. The ball-milled powders were dried and mixed
with polyvinyl alcohol as a binder and Darvan 821A as a
deflocculant in deionized water. The resulting slurries were
then cast in a mold. This mold was inverted, and the excess
slurry was poured out. The anode substrate tubes were sub-
sequently removed from the mold and subjected to a dip coat-
ing process, thereby forming an electrolyte layer. The as-
obtained green tubes (1.25 cm in diameter and 6 cm in length)
were finally sintered with a maximum sintering temperat-
ure of 1550 ◦C (for 5 h); the shrinkage rate was approxim-
ately 22%. This slip casting/dip coating method allowed the

fabrication of closed-end tubes with an electrolyte thickness
of 20 µm. Although no counter electrode was applied, the pro-
posed scheme can be regarded as a straightforward and cost-
and time-effective approach for the preparation of short pro-
tonic ceramic tubes.

The slip casting method is a versatile technique that can
be employed not only for the preparation of fuel electrodes
but also for the preparation of electrolytes. For example,
Kuzmin et al [163] fabricated 300 µm electrolyte tubes made
of La0.9Sr0.1ScO3−δ (LSS) by hot slip-casting under pressure.
The corresponding slurry was prepared by mixing LSS with
10–20 wt% of a thermoplastic component consisting of par-
affin wax and oleic acid at a weight ratio of 85:15. The cast
tubes were subsequently subjected to sintering at 1650 ◦C for
5 h, after which the fuel and oxygen electrodes were arranged.

Medvedev et al [165] investigated the feasibility of a tape-
calendaring method for the fabrication of a 5-layer PCEC.
In detail, three different oxide/organic films were separately
prepared, comprising an electrolyte film, a cathode functional
film (NiO:BCZD ratio of 55:45) and a cathode supporting
film (NiO:BCZD:strach ratio of 65:35:20) with varyingweight
ratios of the components. The three films were then rolled
together in a specific manner, maintaining a thickness for
the electrolyte of approximately 30 µm. The three-layered
film was subsequently twisted into a tube, slowly heated in
static air up to 900 ◦C, and then co-sintered at 1400 ◦C in
static air with a soaking time of 3 h. Subsequently, an oxygen
Pr1.95Ba0.05NiO4+δ electrode was sprayed onto the electrolyte
surface, followed by its final sintering at 1000 ◦C for 2 h. The
detailed compositions of the films were presented in a previ-
ous study conducted by the same research group [166]: each
powder was homogenized in an agate mortar in acetonemedia.
Then, a 4 wt% solution of nitrile butadiene rubber (solved in
gasoline and acetone at a 3:2 volume ratio) was added to 1.2ml
of solution per 1 g of dry powder. The resulting slurries were
poured onto Teflon substrates and air-dried to evaporate the
solvent. Although the tube produced by the proposed method
was successfully tested as a single PCEC, the same disad-
vantages inherent to the tape casting technique remain. These
include the necessity of rolling the obtained tapes, which
creates junctions.

Isostatic pressing combined with the dip-coating tech-
nique was reported by Chen et al [167, 168]. First, the
hydrogen electrode support was prepared by isostatic press-
ing at 150 MPa with the mixed materials (60 wt% NiO,
40 wt% BaCe0.5Zr0.4In0.1O3−δ (BCZI) and 30 wt% car-
bon pore formers), followed by calcination at 1100 ◦C.
Subsequently, the anode functional NiO–BCZI and BCZI
electrolyte layers, with a thickness of ∼15 µm, were dip-
coated and co-sintered at 1450 ◦C for 3 h. Finally, an oxy-
gen electrode of LSC–BCZI (where LSC= La0.6S0.4CoO3−δ)
was fabricated.

Recently, Zou et al [169, 170] described the fabrication
of highly scalable single tubular PCFCs with an overall area
of 15.7 cm2 (a working electrode area of 12.5 cm2) via a
novel 3D printing technique. The success of this approach
was contingent upon the integration of digital microextrusion-
and digital spray-coating-based additive manufacturing with
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CO2-laser drying (the details of the equipment are provided in
[169]). A mixture of BZCY and NiO was employed as a solid
phase. These powders were subsequently mixed with dispers-
ant (1.5 wt% Darven 821), deionized water (13.2 wt%), and
binder (∼0.3 wt% hydroxypropyl methylcellulose), followed
by vacuum centrifugal mixing for approximately 30 min. The
paste was then pushed by compressed air to the microextruder,
which was equipped with a needle-type nozzle with an inner
diameter of 0.5 mm. The speed, dispensing, and trajectory
were regulated. CO2-laser scanning of the layer surface was
subsequently employed to accelerate the drying process of
the printed wet layer and enhance geometric retention. The
green cap-closed tubes have inner and outer diameters of 5 and
7 mm, respectively. The electrolyte and cathode layers were
subsequently spray-coated with the corresponding sintering at
1500 ◦C for 12 h and 900 ◦C for 5 h, respectively.

The majority of the proposed techniques require the metic-
ulous preparation of oxide−organic mixtures, which are
utilized as slurries, pastes, clays, or tape masses. These masses
need to be stable in terms of homogeneity and exhibit certain
physicochemical properties, including viscosity, absence of
bubbles, improved particle separation, etc. Consequently, vari-
ous components (binders, surfactants, dispersants, and plasti-
cizers) may be added to adjust the requisite functions. Table 1
offers insight into the preparation of oxide−organic mixtures
for a range of manufacturing approaches, whereas figure 5
presents a selection of pertinent images.

5. Application of tubular protonic ceramic cells

This section highlights a variety of protonic ceramic electro-
chemical tubes for applied purposes [5, 171–173]: possible
applications include not only energy/electricity conversion
realized in PCFCs or PCECs but also hydrogen permeation,
hydrogen sensing, and hydrogen pumping. Let us begin our
discussion with the latter applications, while the characteriza-
tion of conventional PCFCs and PCECswill be presented later.

5.1. Hydrogen permeation membranes

In most high-temperature solid oxide devices, an electrolyte
material serves as a central gas-tight layer of multilayered
cells. The electrolyte facilitates ion conduction through its
own body and simultaneously separates different gas spaces,
thereby preventing nonelectrochemical gasmixing. To achieve
a high level of efficiency in electrochemical conversion, ionic
transport must dominate over electronic transport. This is the
reason why the design of highly conductive ionic electro-
lytes is highly important. It is evident that a wide range of
compounds demonstrate both electronic and ionic conductiv-
ity. This feature enables their utilization as electrode mater-
ials in the mentioned electrochemical systems. Nevertheless,
the mixed ionic−electronic transport nature is advantageous
for the design of permeating membranes, whose driving force
is regulated by ambipolar conductivity and partial pressure
differences [174–178]. In the case of such membranes, the use

of electrodes is not necessary, as the electronic and ionic cur-
rents flow through the membrane materials and are not sep-
arated into different pathways (electrolytes and external cir-
cuits), as takes place for anode|electrolyte|cathode cells. In
other words, electrochemical reactions, which involve ionic
and electronic charge carriers, occur at gas/solid interfaces.

The reviews cited above have focused primarily on oxygen-
permeable membranes, which are composed of oxygen-ionic
and electronic conductors (MIECs). When such materials
exhibit pronounced proton transport instead of oxygen trans-
port, hydrogen-permeable membranes can be developed in the
same manner. Importantly, hydrogen-permeable membranes
can be made of either single-phase materials or composite
materials (when one component provides high electronic con-
ductivity while another component provides high proton con-
ductivity). In both cases, however, the central layer of the
membranes must be completely dense and gas-tight.

The hydrogen permeation flux (JH2 , mol min–1 cm–2 or
ml min–1 cm–2) is one of the main functional properties of the
membranes; it is governed by internal and external paramet-
ers. A simple relationship between these factors can be derived
from the Wagner equation if proton diffusion is a rate-limiting
step in overall membrane transport:

JH2 =
RT

22F 2L

p ′ ′H2ˆ

p ′H2

σel ·σH +

σel +σH +
dlnpH2. (2)

Here, R is the universal gas constant, T is the absolute tem-
perature, F is the Faraday constant, L is the membrane thick-
ness, p′H2 and p′′H2 are the hydrogen partial pressures at the
opposite membrane sides, and σel and σH+ are the electronic
and protonic conductivities of the membrane material.

As shown in equation (2), the JH2 values increase with
increasing ambipolar conductivity, decreasing membrane
thickness (internal parameters of the material used), increas-
ing temperature, and increasing hydrogen partial pressure
gradient (external parameters of the experimental conditions).
Therefore, to obtain high hydrogen fluxes, it is reasonable
to use thin-layer MIEC membranes at elevated temperatures
and high potential-determined gradients. From a technological
viewpoint, the fabrication techniques described in section 4 are
convenient for preparing single-layer or asymmetrical double-
layer membranes with highly effective working areas.

Table 2 lists the experimental results related to the char-
acterization of the hydrogen permeation membranes. The
majority of these membranes were produced through phase
inversion-assisted methodologies, which demonstrated their
considerable potential in the field of membrane technology.
These membranes have the potential to achieve hydrogen flux
values of 1 ml min–1 cm–2 at 750 ◦C and 3 ml min–1 cm–2 at
900 ◦C. However, notably, fluxes can vary significantly, up to
two orders of magnitude. This highlights the fact that the tar-
get properties of the membranes are dependent on a variety
of factors. Some details of the best performance examples are
briefly discussed below.
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Table 1. The technological details related to the preparation of green tapes of protonic ceramic electrochemical tubes.

Method Powder sources Solvents Organic additives References

Tape-casting SC and NiO Ethanol/toluene Fish oil (dispersant), polyvinyl butyral,
polyethylene glycol, di-n-butyl phthalate.

[111]

Phase inversion BaCe0.7Zr0.1Y0.1Yb0.1O3−δ

(BCZYYb), NiO, graphite
Ethanol Polythersulfone (PESf),

N-methyl-2-pyrrolidone (NMP), the weight
ratio of BCZYYb and PESf + NMP was 1:1.

[116]

Phase inversion BCZYYb, NiO, graphite NMP PESf (binder), polyvinylpyrrolidone
(dispersant); the weigh ratios of NiO,
BCZYYb, PESf, NMP and PVP were 36.0,
24.0, 6.4, 32.0, and 1.6%, respectively.

[117]

Phase inversion BCZYYb, NiO NMP Ethyl cellulose (EC), polyvinylidene fluoride
(PVDF), polyetherimide (PEI). The weight
ratio of the polymer binder, solvent and
ceramic powder was set to 1:7:10.

[122]

Phase inversion BCZYYb, NiO, graphite Ethanol Triethanolamine (TEA), polyvinyl butyral
(PVB), polyethylene glycol (PEG); the weight
ratio of Ni–BCZYYb, ethanol, TEA, PVB,
PEG and graphite was set to
5.5:4.5:10:0.6:2:1:1, respectively.

[126]

Dip coating of a glass
rod + phase inversion

BCZYYb, NiO, graphite Ethanol Triethanolamine (TEA, dispersant), dibutyl
phthalate (DBP, plasticizer), PEG-6000
(plasticizer), and PVB (polymer binder);
TEA:DBP:PEG:PVB:slurry = 0.6:1:1:2:20 g,
where the slurry is a mixture of solvent and
solid phases in 1:1 weight ratio.

[132]

Dip coating BaCe0.7Zr0.1Y0.2O3−δ

(BCZY), NiO, corn starch
Ethanol The as-prepared BCZY7 powder, NiO powder,

and corn starch in a weight ratio of 40:60:10
were mixed with 4.8 wt% PVB, 1.7 wt% TEA,
2.9 wt% dioctyl phthalate (DOP) and 2.9 wt%
PEG-600 in 50.7 wt% ethanol.

[135]

Extrusion BaSO4, CeO2, ZrO2, Y2O3

corresponding to a nominal
BaZr0.7Ce0.2Y0.1O3−δ

(BZCY) composition and
NiO

Water Acrylic and cellulosic ether plasticizer [142]

Slip-casting BCZYYb, NiO, graphite Water — [157]
Hot slip-casting La0.9Sr0.1ScO3−δ (LSS) — LSS with 10–20 wt% of a thermoplastic

component consisting of paraffin wax and
oleic acid, taken in a weight ratio of 85:15

[164]

Tape-calendaring Anode or electrolyte
powders

Acetone/gasoline The powder with a 4 wt% solution of nitrile
butadiene rubber (solved in gasoline and
acetone in a 3:2 volume ratio). A ratio of
1.2 ml of solution per 1 g of dry powder.

[165]

3D printing BZCY and NiO Water Powders with 1.5 wt% of Darven 821 as a
dispersant, 0.3 wt% of hydroxypropyl
methylcellulose as a binder.

[169]

Chen et al [121] prepared LWM-based hollow-fiber
membranes (LWM = La5.5W0.6Mo0.4O11.25−δ) via the wet-
spinning phase-inversion method, as shown in figure 6(a). The
resulting U-shaped tubes were subsequently subjected to sin-
tering at 1500 ◦C, which facilitated the effective densifica-
tion of the central region of the membranes while maintain-
ing a slightly porous structure on their inner surface. These
membranes were tested at different temperatures (from 700
to 975 ◦C), and gas was supplied to the feed and sweep
sides. The lowest hydrogen fluxes were observed for the dry
gases used for the feed (20%He/H2) and sweep (Ar) sides.

The fluxes were slightly greater when the feed side was
humidified because of the hydration of the membrane material
(equation (1)). However, when the sweep gas flow was humid-
ified instead of the feed gas flow, a notable increase in the
hydrogen flux was observed (by ∼3 times), reaching approx-
imately 1 ml min–1 cm–2 at 900 ◦C. The authors attributed
this improvement to the enhanced proton conductivity within
the LWM material, and an additional water splitting process
occurred at the sweep gas/solid interface. In the fourth case,
when both sides were humidified, the hydrogen flux slightly
decreased in comparison with the best result, potentially due
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Figure 5. Images and microphotographs of the fabricated protonic ceramic electrochemical cell tubes. The presented panels were
reproduced from different sources: Co-spinning and phase inversion. Reprinted from [131], © 2023 Elsevier B.V. All rights reserved.
Reproduced from [161]. CC BY 4.0. Reprinted from [164], © 2019 Science Press and Dalian Institute of Chemical Physics, Chinese
Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved. Reproduced from [135]. CC BY 4.0. Reprinted
from [140], © 2023 Elsevier Ltd All rights reserved. Reproduced from [113]. © 2010 ECS—The Electrochemical Society. All rights
reserved. Reprinted from [154], © 2021 Elsevier B.V. All rights reserved. Reprinted from [155], © 2021 Hydrogen Energy Publications
LLC. Published by Elsevier Ltd All rights reserved. Reprinted from [165], © 2016 Elsevier Ltd All rights reserved. Reprinted from [170],
© 2017 Elsevier B.V. All rights reserved.

to a decrease in the hydrogen partial pressure gradient. These
findings offer valuable insights into the potential optimization
of permeation processes through the manipulation of external
gas conditions.

Tan et al [182] prepared a double-layer Ni–SCZ|SCZE
membrane by rolling the green tape cast into the tube
(SCZ = SrCe0.8Zr0.2O3−δ , SCZE = SrCe0.7Zr0.2Eu0.1O3−δ).
The green cermet substrate was prepared by rolling a tape-
cast substrate and pre-sintering it at 1300 ◦C. The SCZE-
containing slurry was then coated on the outer surface of the
tube and sintered at 1520 ◦C in air, as shown in figure 6(b).
They also studied the hydrogen permeation behavior of the
developed membrane under different gas compositions at the
feed side (the sweep side was fed with pure He). The experi-
mental results revealed that the hydrogen flux decreases with
increasing humidity, from dry H2 to 30% H2O/H2. On the
one hand, more protons appear due to deeper hydration of the
SCZE material; this should improve the hydrogen flux due

to a higher proton conductivity (equation (2)). On the other
hand, the presence of water in H2 increases the oxygen par-
tial pressure, making this atmosphere less reduced. As a res-
ult, the ambipolar conductivity decreases owing to the n-type
electronic conductivity, resulting in a decrease in the hydrogen
flux. Furthermore, the hydrogen partial pressure difference,
which acts as a driving force, also decreases. Consequently,
both the protonic and electronic conductivities must be optim-
ized to achieve optimal membrane performance. This study
reveals a crucial finding: a trade-off invariably exists between
the intrinsic transport properties of the membranes and the
gradient differences. Typically, the enhancement of one para-
meter is accompanied by the degradation of another parameter.

In general, the hydrogen fluxes ofMIECmembranes are not
particularly high (table 2), as their permeation performance
is primarily determined by the driving force, which includes
partial pressure differences and the intrinsic level of ambi-
polar conductivity, as illustrated by equation (2). To achieve
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Figure 6. Selected results of tubular-type protonic ceramic hydrogen-permeable membranes: (a) Image and microphotograph of the
U-shaped LWM-based hollow-fiber membranes and their performance under different experimental conditions. Copyright 2011, Elsevier
B.V [121]. John Wiley & Sons. © 2015 American Institute of Chemical Engineers. (b) Image and microphotography of the SCZE-based
membrane along with its hydrogen permeation fluxes and ambipolar conductivity at different feed gas compositions. Reprinted from [182],
Copyright © 2012 Elsevier Ltd All rights reserved.

higher hydrogen flux values, an external current source can
be employed to facilitate proton flow from the H2-rich side
to the counter side. However, this represents a fundamental
shift in the conceptualization of electrochemical devices. To
separate the ionic and electronic flow currents along distinct
pathways, the classical electrode|electrolyte|electrode system
must be employed, wherein the ionic current flows through
the electrolyte, whereas the electronic current flows through
the external circuit coupled with a direct current source.

In other words, MIEC membranes should be replaced with
electrolyte membranes. These electrochemical systems are
discussed below.

5.2. Hydrogen pumps

Protonic ceramic hydrogen pumps are a type of electro-
chemical device that uses an external current to facilitate the
pumping of protons from hydrogen-containing atmospheres
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(equations (3) and (4)); these protons then permeate to the
opposite side of an electrolytic layer, where they produce
molecular hydrogen (equation (5)) or reduce oxidized sub-
stances (equations (6)–(9)). In this regard, the PCEC (which
will be discussed in detail in section 5.5) represents a partic-
ular case of hydrogen pumps, in which two specific reactions
(equations (3) and (5)) occur simultaneously at the anode and
cathode sides, respectively.

2H2O(gas) → 2H+
(electrolyte) +O2(gas) + 2e ′(electrode) (3)

H2(gas) → 2H+
(electrolyte) + 2e ′(electrode) (4)

2H+
(electrolyte) + 2e ′(electrode) → H2(gas) (5)

2H+
(electrolyte) + 2e ′(electrode) +CO2(gas) → H2O(gas) +CO(gas)

(6)

6H+
(electrolyte) + 6e ′(electrode) +CO(gas) → H2O(gas) +CH4(gas)

(7)

2H+
(electrolyte) + 2e ′(electrode) +NO(gas) → H2O(gas) +N2(gas) (8)

3H+
(electrolyte) + 3e ′(electrode) +N2(gas) → NH3(gas). (9)

Tanaka and Ohshima [187] were the first to propose the
use of a tubular cell as a hydrogen pump. The tube, with an
outer diameter of 15 mm, an inner diameter of 12 mm, and a
length of 200mm (figure 7(a)), was constructed from a proton-
conducting BaZr0.955Y0.03Co0.015O3−δ (BZYC) material, fol-
lowed by the symmetrical organization of Pt electrodes with
an active area of 47 cm2. Unfortunately, this study does not
offer any insights into the fabrication process of the tube. The
primary objective of this study was to assess the transport
behavior of the BZYC electrolyte in diverse operational scen-
arios. For example, in water electrolysis mode, BZYC demon-
strated a mixed character of transport, wherein protonic and
electronic conductivities coexisted within a temperature range
of 350 ◦C–600 ◦C. Conversely, in hydrogen pumping mode,
BZYC was found to be a triple-conducting material, enabling
the simultaneous transport of oxygen ions, protons, and elec-
trons within the same temperature range. In another study, the
same authors tested similar sensors but again without provid-
ing any details regarding the fabrication of the tubes [188].

A little later, a BZCY galvanic pump was fabricated and
tested by Robinson et al [143]. To prepare a membrane reactor
of Ni–BZCY|BZCY|LSCF with an active area of 22 cm2, slip-
casting, spray-coating, and brush painting approaches were
used for the preparation of the Ni–BZCY support, thin elec-
trolyte, and oxygen electrode layers, respectively (figure 7(b)).
The tubular-type reactor was affixed with a supporting tube,
and a test stand was constructed to perform hydrogen pump-
ing experiments. Once the NiO–BZCY had been sealed and
reduced to the corresponding cermet, the inner space of the
tube reactor was supplied with a gas composition of 50:50
H2/He humidified with 5 vol.% water vapors, whereas the
external space was supplied with 10% H2O/Ar. The experi-
mental data indicated that the hydrogen flux increased with
increasing cell voltage (in absolute values) and temperature
(from 650 ◦C to 775 ◦C). This resulted in a maximal level
of 6.0 ml min−1 cm−2 at 775 ◦C with a current density of

800 mA cm−2. In addition to the experimental hydrogen flux,
which was measured by a mass spectrometer, the theoretical
(Faradaic) hydrogen flux was also calculated. Specifically, the
Faradaic efficiency, defined as the ratio of the measured and
theoretical fluxes, exceeded 95% for temperatures between
750 ◦C and 775 ◦C and current densities between 600 and
800 mA cm–2. These conditions correspond to the optimal
range for the BZCYmembrane, which has high electrical con-
ductivity and low electronic conductivity, thereby ensuring
effective transport properties.

In a recent study, Li et al [127] developed a dual-layer
hollow-fiber Ni–BCZY|BCZY membrane through a multistep
process involving co-spinning and co-sintering techniques,
followed by the organization of a Ag counter electrode. The
tube had a working length of 5 cm2 and a working elec-
trode area of 1.9 cm2 (figure 7(c)). The membrane was sub-
jected to testing under various experimental conditions to
measure the hydrogen flux and hydrogen recovery values.
The experimental results indicated that a temperature range
of 500 ◦C–550 ◦C was optimal for galvanic hydrogen pump-
ing, as it exhibited relatively high hydrogen fluxes and a high
Faradaic efficiency. At more elevated temperatures, the meas-
ured hydrogen content decreased due to the potential emer-
gence of n-type electronic conductivity in the BCZY elec-
trolyte. However, the presence of a high hydrogen concen-
tration in the feed gas or wet feed gas could mitigate the
adverse impact of electronic conductivity in the electrolyte.
Furthermore, high-purity hydrogen can be recovered from a
diluted hydrogen stream (8%H2/He or 13%H2/He) with a
recovery rate of 81%–89%.

Patki et al [145] focused on the optimization of bimetal-
lic electrodes (Ru/Cu, Pd/Cu, and Cu/Cu) for tubular galvanic
hydrogen pumps fabricated by CoorsTek Inc. (figure 7(d)).
The hydrogen flux was measured via a stoichiometric titra-
tion experiment, with the highest flux (3.1 ml cm−2 min−1)
obtained with the Ru/Cu electrode at 400 mA cm−2. In
addition, hydrogen was pumped from a methane-containing
gas (10%H2/CH4). Although both the hydrogen flux and
Faradaic efficiency values were satisfactory, coke formation
was observed over the electrolyte surface and was not detec-
ted for the Ru/Cu electrode. Coking was attributed to the
presence of Ni ions in the electrolyte, which was prelimin-
arily obtained by the use of NiO as a sintering additive. In
detail, Ni ions reduce and act as nucleation sites for coke
formation at the electrode/electrolyte interface and may affect
electrode performance.

A comprehensive electrochemical characterization of a
hydrogen separation Ni–BZCY|BZCY|Ni–BZCY tubular-
type membrane was conducted by Yuste-Tirados et al
[151], who employed electrochemical impedance spectro-
scopy (EIS), distribution of relaxation time (DRT) ana-
lysis, voltammetry in conjunction with EIS, and gas chro-
matographic analysis. The researchers identified three dis-
tinct regions depending on the current applied to the cell.
At low current densities, hydrogen pumping from a wet
H2-containing atmosphere is characterized by a high Faradaic
efficiency, which can be attributed to the almost proton trans-
port nature of the electrolyte. As the current density increases,
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Figure 7. Selected results of tubular-type protonic ceramic electrochemical pumps: (a) A general view of the BZYC tubular pump.
Reprinted from [187], Copyright © 2009 Elsevier B.V. All rights reserved; (b) posttesting image of the hydrogen pump, testing scheme, and
voltampere and faradaic dependences at two temperatures. Reprinted from [143], Copyright © 2013 Elsevier B.V. All rights reserved. (c)
Image of the hollow-fiber electrochemical cell, its microstructural features and electrochemical performance. Reprinted from [127], © 2022
Elsevier B.V. All rights reserved. (d) Image and electrolyte surface micrograph of the membrane pump operated in 10%H2/CH4 at 700 ◦C.
Reprinted from [145], © 2018 Elsevier B.V. All rights reserved.

the diffusion limitations of the gas phase become more pro-
nounced, leading to hydrogen pumping from water instead of
molecular H2. As the water content decreases, the proton con-
ductivity of BCZY also decreases, resulting in an increase in
the nonionic (electronic) conductivity. At very high current
densities, the feed side is nearly devoid of water, resulting
in a diminished hydrogen production rate and a reduction in
Faradaic efficiency.

5.3. Hydrogen sensors

Hydrogen sensors based on proton-conducting oxides
offer a diverse range of analytical possibilities, including

high-temperature analysis of not only hydrogen- or water-
containing gas mixtures but also those containing O2, CO,
CO2, and NOx [189–191]. In the majority of cases, such
sensors are constructed in a plate-type (planar) configura-
tion owing to the simplicity and diminutiveness of this design.
However, several studies have reported the application of
tubular protonic ceramic sensors as well.

Hassen et al [192] tested the fabrication and characteriz-
ation of tubular sensors made of either SrCe0.95Yb0.05O3−δ

(SCY) or SrCe0.95Nd0.05O3−δ (SCN) electrolytes. These
materials were obtained via the standard solid-state synthesis
technique with final sintering at 1300 ◦C for 17 h to reach their
single-phase state. The materials were subsequently crushed

16



Mater. Futures 3 (2024) 042102 Topical Review

Figure 8. Selected results of the tubular-type protonic ceramic electrochemical sensors: (a) emf response of the SCY sensor depending on
the humidity level in different gases at 300 ◦C. Reprinted from [192]. Copyright © 2016 Elsevier B.V. All rights reserved; (b) image and
emf performance of the CZI sensor depending on the hydrogen partial pressure in Ar at 700 ◦C. Reprinted from [193]. Copyright © 2010
Elsevier B.V. All rights reserved. (c) Schematic view of the CZI hydrogen sensor for the analysis of FLINAK. [194]. John Wiley & Sons.
© 2017 The American Ceramic Society.

and milled into powders, which were then utilized for the
tube formation process. The thin-shaped tubes were prepared
through a hydrostatic pressing technique, followed by sin-
tering at 1500 ◦C for 10 h. Finally, various electrodes were
applied to the opposite surfaces of the tubes to complete the
sensor cells, Au-Pd|SCY(SCN)|Pt. These sensors were used
to analyze different water-containing gas mixtures at reduced
temperatures (200 ◦C–400 ◦C). The two sensors demonstrated
comparable behavior with slight discrepancies in operating
temperatures (figure 8(a)), enabling precise analysis in moist
air streams or in a combustion rig under conditions of excess
air. Additionally, the tubular configuration of the sensor was
found to exhibit superior performance compared with the
planar design.

Ohshima et al [193] proposed CaZr0.9In0.1O3−δ (CZI) as
an electrolyte basis for a potentiometric Pt|CZI|Pt sensor. The
U-tubes (closed at one end, 17 mm in length, and 0.8 mm
in wall thickness) were produced by a ceramic hot pressure-
castingmachine. For this purpose, the synthesized CZI powder
was mixed with paraffin wax, beeswax, and oleic acid under
continuous stirring. After wax removal at a slow heating rate
below 500 ◦C and pre-sintering at 1100 ◦C for 2 h, the CZI
tubes were sintered at 1550 ◦C for 20 h in air to achieve a

relative density of approximately 97% from the theoretical
density (figure 8(b)). The fabricated CZI sensor demonstrated
an excellent capacity to detect the hydrogen concentration in
H2 +Ar gas mixtures. The performance was observed to be in
close proximity to the Nernstian potential for an ideal protonic
conductor. In addition, the sensor exhibited a rapid response
time, with a duration of approximately 2 min following the
stepwise change in the hydrogen partial pressure in the ana-
lyzed gas stream. The same electrolyte material was used as a
sensor for analyzing the hydrogen concentration in FLINAK
(LiF–NaF–KF molten salts, figure 8(c) [194]), but no details
on tube fabrication were provided.

5.4. PCFCs

PCFCs are high-temperature fuel cells that efficiently con-
vert energy into electricity. In conventional PCFCs fed by
hydrogen, the hydrogen oxidation reaction occurs at the anode
side (equation (4)), protons are electrochemically permeated
through the dense electrolyte body, and the oxygen reduction
reaction (a reverse reaction in equation (3)) takes place at the
cathode side. To date, many PCFC-related reviews have been
published; see [1], which discussed research activities from
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2020–2024. While a significant proportion of these reviews
address the chemical design aspects and functional properties
of PCFC materials, the geometric design of these materials
remains an understudied area.

An intensive investigation of tubular PCFCs was initiated
in 2011, when a number of single cells were fabricated and
characterized by different research groups [116–118, 132].
Although the power densities obtained at that time were rel-
atively low (not exceeding 300 mW cm–2 at 600 ◦C for elec-
trolytes of 20–25 µm in thickness), the experiments yielded
some valuable insights into the manufacturing of the tubes.
For example, Zhao et al [117] prepared NiO–BCZYYb anode
supports by spinning and phase inversion methods, resulting
in their sintering at different temperatures (1300, 1350, and
1400 ◦C). This variation was conducted to ascertain which
temperature was the best in terms of the strength and poros-
ity of the supports. The porosity of the NiO–BCZYYb hol-
low fiber tubes decreased from 45% to 33% with increasing
sintering temperature. In contrast, the porosity of the reduced
Ni–BCZYYb tubes was considerably greater, reaching 60%
at 1300 ◦C and 51% at 1400 ◦C. Concurrently, the bend-
ing strength increased for both oxidized tubes (from 80 MPa
at 1300 ◦C to 175 MPa at 1400 ◦C) and reduced tubes
(from 50 MPa to 110 MPa). This suggests that a comprom-
ise between different microstructural and mechanical attrib-
utes is an inherent aspect of the material. Subsequently, several
PCFCswere prepared using the same sintering temperatures to
produce bilayer structures comprising a cermet and an electro-
lyte. Microstructural observations revealed that the electrolyte
layer for PCFC co-sintered at 1300 ◦C was porous, thereby
precluding electrochemical analysis of the cell. A comparison
of the remaining two cells revealed that the highest power
densities were achieved for the PCFC co-sintered at 1350 ◦C.
The performance of the PCFC co-sintered at 1400 ◦C was sig-
nificantly lower because of the higher ohmic resistance asso-
ciated with relatively dense Ni-cermet conditions. The signi-
ficance of cermet porosity was also noted by Min et al [152]
when an alternative PCFC tube preparationmethod (extrusion)
was employed.

Tong et al [168] investigated the impact of varying techno-
logical parameters on the functional and electrochemical char-
acteristics of PCFCs fabricated by co-spinningco-spinning and
co-sintering techniques. Specifically, the spinning flow rate
and cermet powder content in the spinning suspension were
adjusted to produce microstructurally qualitative multilayered
cells. The optimal 20µm-thick BCZY-based PCFC exhibited a
power density of 550 mW cm–2 at 700 ◦C (figure 9(a)), which
was 1.8 times greater than that of a cell with an unoptimized
gas structure of hollow fiber supports. These findings indic-
ate that the performance of PCFC is regulated not only by the
ionic conductivity of the electrolyte layer and the electrochem-
ical activity of the oxygen electrode but also by themicrostruc-
tural features of the cermet supports, which should be highly
porous and mechanically robust.

A further advance in the fabrication of PCFC tubes can
be revealed upon a comparison of the same compositional
system, Ni–BCZYYb|BCZYYb|LSCF–BCZYYb, which was
widely studied between 2011 and 2021 [116, 122, 132, 135,

152, 157, 160]. The anode support tube membranes were pre-
pared via a variety of techniques, including spinning with
phase inversion [116], tape-casting with phase inversion [122],
dip-coating [132, 135], extrusion [152], and slip-casting [157,
160]. The electrolyte layer was subsequently applied via the
dip-coating technique and sintered (on a pre-sintered sub-
strate) or co-sintered (with a green substrate) to yield the
requisite half-cells. A composite comprising LSCF–BCZYYb
as a counter electrode was subsequently deposited onto the
electrolyte surface. This was achieved through the utiliza-
tion of different techniques, including screen printing, brush
painting, and dip coating. The maximal power densities of
the fabricated PCFCs ranged from 100 to 530 mW cm–2 at
600 ◦C. These findings demonstrate that the optimal per-
formance of a PCFC is contingent upon a multitude of
technological variables. The highest electrode working area
(2.3 cm2) was achieved by Cao et al [135], enabling the
generation of a total power output of 1.06 W for the Ni–
BCZYYb|BCZYYb|LSCF–BCZYYb cell.

The LSCF–BCZYYb cathode is a classic composite con-
sisting of a mixed ionic-electronic phase (LSCF) mixed
with an electrolyte component (BCZYYb). However, other
cathode compositions can also be used successfully. Zhu
et al [155] performed a comparative analysis of three
well-studied cathode compositions: Ba0.5Sr0.5Co0.8Fe0.2O3−δ

(BSCF [195]), PrBa0.5Sr0.5Co1.5Fe0.5O6–δ (PBSCF [196]), and
BaCo0.4Fe0.4Zr0.1Y0.1O3−δ (BCFZY [197]). The correspond-
ing tubular PCFCs with a 15 µm thick BCZYYb electrolyte
and an active working area of 1.29 cm2 were able to pro-
duce 517, 534, and 326 mW cm–2 at 600 ◦C, respectively
(figure 9(b)). Interestingly, the lower ohmic resistance was
associated with BSCF-based PCFC, whereas the lowest polar-
ization resistance was found for the BCFZY-based cell; the
PBSCF electrode presented the lowest electrochemical activ-
ity, resulting in the lowest PCFC performance.

Another advancement of this work [155] is based on the fact
that not only single tubes but also a 2-cell tubular stack with an
active working area of 8.2 cm2 vs. 1.29 cm2 were tested. This
stack yielded a power of 2.3 W at 600 ◦C when dry hydrogen
was used as a fuel (figure 9(c)). However, when comparing two
types of PCFCs, the power densities of single cells with a smal-
ler active working area were greater than those of cells with a
larger active working area. In detail, the power density of the
2-cell tubular stack was about 280 mW cm–2, which was actu-
ally lower than 517 mW cm–2 mentioned above. These same
differences can also be found in other works. For example, Li
et al [154] conducted a comparative analysis of two distinct
PCFC designs, one with an area of 0.5 cm2 and the other with
an area of 15 cm2 (figure 9(e)). The maximal power density
of the button cell was 390 mW cm–2 at 600 ◦C, whereas the
power density of the tubular cell with an extended working
area was as low as 100 mW cm–2 at the same temperature.
As illustrated by another example presented by Vourros et al
[170], a brief PCFC tube with a surface area of 3 cm2 yiel-
ded a power density of 375 mW cm–2 at 650 ◦C, which was
two times greater than that of a tube with a surface area of
12.5 cm2 (approximately 196 mW cm–2). The aforementioned
examples illustrate that cells with a highly active working
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Figure 9. Selected results of tubular-type protonic ceramic fuel cells: (a) Microstructure and performance of the PCFC. Reproduced from
[168]. CC BY 4.0. (b) PCFC performance with different electrode materials. Reprinted from [155], © 2021 Hydrogen Energy Publications
LLC. Published by Elsevier Ltd All rights reserved. (c) IV and power characteristics of the 2-cell short tubular stack. Reprinted from [155],
© 2021 Hydrogen Energy Publications LLC. Published by Elsevier Ltd All rights reserved. (d) Performance of PCFCs with small and high
active working areas. Reprinted from [154], © 2021 Elsevier B.V. All rights reserved. (e) SEM image of bilayer SDC/BCZY electrolyte
PCFC. Reprinted from [118], Copyright © 2011 Elsevier B.V. All rights reserved. (f) SEM image of bilayer BCZY/BZY electrolyte
PCFC.[87]. John Wiley & Sons. © 2017 The American Ceramic Society.

area necessitate a meticulous organization of current collect-
ors across the entirety of the inner and outer tube surfaces. In
turn, this presents a significant technical challenge.

Importantly, not only single electrolyte layers but also
bilayer electrolytes can be formed for tubular PCFCs. For
example, in the work of Zhao et al [118], a 3 µm-thick
BCZY electrolyte was employed as an electron-blocking
layer between the cermet and the 10 µm-thick SDC lay-
ers (SDC = Ce0.8Sm0.2O2−δ), as shown in figure 9(e). This
strategy permitted an increase in the open circuit voltage
(OCV) from 0.72 V (for a BCZY-free cell) to 0.97 V at 700 ◦C.
However, the power density of the bi-electrolyte PCFC was
insufficient (below 250 mW cm–2 at 700 ◦C) because the ionic
conductivity of BCZY was lower than that of SDC. This res-
ulted in an increase in the ohmic-type resistance of the cells
from 0.25 to 0.79 Ω cm2 at the same comparison temperature.
In another study, He et al [120] proposed the implementation
of two electrolyte layers, namely, BCZY and BaZr0.8Y0.2O3−δ

(BZY), for a tubular PCFC, figure 9(f). The cell was fabricated

via a spinning process followed by phase inversion techniques,
while the electrolyte layers were formed through coating. The
rationale behind the choice of BZY was its superior chem-
ical stability in comparison to that of BCZY, a finding that
was corroborated through experimental analysis. The output
performance of the developed PCFC was also relatively low
(∼180 mW cm–2 at 700 ◦C), largely attributed to the presence
of notable ohmic and polarization resistance values (0.70 and
0.71 Ω cm2, respectively).

Table 3 lists the main electrochemical data obtained for a
wide range of tubular PCFCs fabricated and tested in the lit-
erature. The fabrication techniques allow for a considerable
degree of variability in terms of material composition, electro-
lyte thickness (ranging from 6 to 40 µm), and active working
area (extending from 0.2 to 15 cm2). Despite these advance-
ments, the power densities of tubular PCFCs frequently remain
lower than those of their planar-design counterparts; the lat-
ter have the potential to achieve power densities of up to
1–1.5 W cm–2 at 600 ◦C, but for small cells. As shown above,
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increasing the electrode working area results in a decrease
in the SOFC power density; this regularity is associated with
losses due to the extended current paths.

To evaluate the effects of different parameters on the
performance of the target PCFC (power density and over-
all power), a series of graphs were plotted on the basis of
table 3 and are presented in figure 10. A discussion of the
power density of PCFCs reveals that its value increases in
proportion to the thickness of the electrolyte, as illustrated
in figure 10(a). This phenomenon can be explained by the
well-known equation (10), which indicates that the ohmic-
type resistance of PCFCs decreases as the electrolyte thick-
ness decreases (assuming that the electrolyte conductivity of
the same material remains constant). Consequently, thin-film
technologies are of paramount importance for the develop-
ment of high-performance PCFCs. However, the analysis of
power density values depending on the thin film conductiv-
ity (figure 10(b)) indicates that the conductivity of the same
(BCZYYb, BCZY) or little derived electrolytes is not constant
and varies within a range of 1 order of magnitude. This vari-
ation in the transport properties of electrolytes under seem-
ingly similar conditions was thoroughly discussed in our pre-
vious review devoted to Y- and Yb–codoped Ba(Ce,Zr)O3 [7].
Briefly, the thin-film conductivity of electrolytes depends not
only on their inherent properties (crystal structure, defect dis-
ordering, microstructure) but also on the electrode/electrolyte
interface quality; the latter may cause a high ohmic-type resist-
ance due to insufficient chemical or mechanical compatibility
between functional materials.

However, the analysis of power density values in relation to
thin film conductivity (figure 10(b)) indicates that the conduct-
ivity of electrolytes with the same (BCZYYb, BCZY) or sim-
ilar chemical composition is not constant and varies by approx-
imately one order of magnitude. This variation in the trans-
port properties of electrolytes under seemingly similar condi-
tions was thoroughly discussed in our previous review aimed
at Y- and Yb- co-doped Ba(Ce,Zr)O3 [7]. In summary, the
thin-film conductivity of electrolytes is influenced not only by
their intrinsic properties (crystal structure, defect disordering,
microstructure) but also by the quality of the electrode/elec-
trolyte interface. This interface can result in the appearance
of a high ohmic-type resistance due to inadequate chemical or
mechanical compatibility between functional materials. As a
result, the apparent ohmic resistance becomes the sum of the
real ohmic resistance of the electrolyte layer and the ohmic res-
istance of the electrode/electrolyte interface(s). This explains
the high data scatter observed in figure 10(b)

σ =
h

Rohm
. (10)

A comparison of the electrochemical activities of the
electrolyte and electrode materials at 600 ◦C (figure 10(c))
revealed that there was no clear relationship between them
and the power density. This means that either the ohmic resist-
ance or the polarization resistance can affect the performance
of tubular PCFCs. Moreover, an increase in power density is
observed as the total PCFC resistance (Rtotal = Rohm + Rp)

decreases (figure 10(d)), confirming the predicted relationship
expressed by the following equation (when a maximal power
density is observed at half of the OCV value):

Pmax =
OCV2

4Rtotal
. (11)

When the PCFC power density is normalized by the effect-
ive working area of the tubes (Ptotal = Pmax·s), the corres-
ponding functional relationships can be obtained, as shown
in figures 10(e)–(h). However, almost all of them show no
clear regularity as a function of electrolyte thickness, elec-
trolyte conductivity, and ohmic contribution; only a trend of
Ptotal ∼ (Rtotal)–1 is still observed. These experimental results
can again be explained by the complex character of scaling
when the power (or power density) is reduced for a larger
working area of electrochemical cells. As a result, attaining
1 W cm–2 for PCFCs with active working areas of 0.2, 2, and
20 cm2 represents a significant challenge at disparate levels.

5.5. PCECs

PCECs are electrochemical systems that facilitate the con-
version of electrical energy applied to the cell into chem-
ical energy through the splitting (electrolysis) of certain com-
pounds into substances with high internal energy. In the con-
ventional steam electrolysis process, the reactions described
by equations (3) and (5) occur on the opposite side of PCECs.
The field of water electrolysis in PCFCs has been extens-
ively studied, with trends and advances presented in numer-
ous review articles [199–204]. However, the majority of avail-
able reports pertain to planar-type PCECs, while the fabrica-
tion and characterization of tubular PCECs have been limited
by several studies. These works are briefly discussed in the
present subsection.

In 2019, Vøllestad et al [146] reported the successful fab-
rication and characterization of a PCEC tube with an active
working area of 10 cm2. The tube was prepared by extrud-
ing a NiO–BZCY support, followed by spray coating a BZCE
electrolyte and brush painting either a BGLC or a BGLC–
BZCY anode (BGLC = BaGd0.8La0.2Co2O6−δ). The use of
a composite anode instead of a single-phase anode markedly
increased the Faradaic efficiency of PCFCs, whereas their
volt-ampere dependences remained almost the same. Themost
effective cell was capable of producing up to 15 ml min–1 of
hydrogen at 600 ◦C, exhibiting stable performance for over
700 h (figure 11(a)). Additionally, the fabricated tubes demon-
strated mechanical flexibility, the capacity to withstand elev-
ated pressures, enhanced process integration, and scalability
for large-scale applications.

In the work of Medvedev et al [165], a tubular
PCEC was fabricated via the tape-calendar method via a
Pr1.95Ba0.05NiO4+δ steam electrode. This fabrication tech-
nique allowed an active working area of 4.6 cm2 to be
achieved. The main focus of this work was to identify the
rate-limiting steps of the steam electrolysis process at dif-
ferent overpotentials via electrochemical impedance analysis
and relaxation time distribution, figure 11(b). The excellent
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Figure 11. Selected results of tubular-type protonic ceramic electrolysis cells: (a) volt−ampere dependences of 10 cm2 PCFCs at different
temperatures and their long-term operation at 600 ◦C with a current density of 62.5 mA cm–2. Reproduced from [146], with permission
from Springer Nature. (b) polarization, ohmic, and total resistances of the PCEC depending on the operating conditions. Reprinted from
[165], © 2016 Elsevier Ltd All rights reserved; (c) volt-ampere and long-term characteristics of the large-area PCFC tubes. Reproduced
from [156]. © 2022 The Electrochemical Society (“ECS”). Published on behalf of ECS by IOP Publishing Limited. All rights reserved; (d)
I–V curves of the PCFCs as a function of time in reversible FC-EC operational mode for the BCZI + LSC and BCZI@LSC electrodes
along with the proposed scheme of their long-term degradation. Reproduced from [168]. CC BY 4.0.

integrity and performance of the PCEC were determined by a
rational choice of the functional materials used. As a result,
hydrogen flux values of 12, 19, and 25 ml min–1 were achieved
at 500, 600, and 700 ◦C, respectively. A comparable oxy-
gen (steam) electrode was proposed by Li et al [154], which
employed pure and F-containing Pr2NiO4+δ complex oxides.
The fluorination of complex oxides is a well-known chemical
modification approach resulting in a notable increase in their
oxygen transport properties [205]. Consequently, the PCEC
based on F-containing Pr2NiO4+δ exhibited higher current
densities than did the original Pr2NiO4+δ electrode, namely,
2.0 vs. 1.2 A cm–2 at 650 ◦C. These current densities were
markedly higher than those reported in two previous studies.
However, notably, the studied PCECs exhibited a very low
active working area of only 0.5 cm2.

In a recent study, Kee et al [156] fabricated and tested
PCEC-extruded tubes with one of the largest active areas,
reaching a surface area exceeding 30 cm2. The tubes included a
BCZY electrolyte layer with a thickness of 25µmand the clas-
sical LSCF–BCZY anode, which was discussed in section 5.4.
The electrochemical characterization of the large-area tubes
demonstrated their capacity to produce ∼85 ml min–1 hydro-
gen at 600 ◦C and 1.33 V, with an active working area of
40.7 cm2 (figure 11(c)). This value is equivalent to a hydrogen
flux of 2.1 ml min–1 cm–2. In addition to the aforementioned
characterization, a number of issues related to thermal man-
agement, economics, energy efficiency, and stack-scale per-
spectives were also considered.

In a recent study, Mu et al [168] shed light on the
long-term durability of 7.5 cm2 PCECs with two distinct
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oxygen electrodes: a mechanical mixture of BCZI/LSC and
a BCZI backbone infiltrated with LSC, BCZI@LSC (where
BCZI = BaCe0.5Zr0.4In0.1O3−δ , LSC = La0.6Sr0.4CoO3−δ).
The electrolysis current densities of these cells at 650 ◦C were
165 and 250 mA cm–2, respectively. This finding indicates that
the infiltrated electrode exhibited significantly greater elec-
trochemical activity than that of the conventionally prepared
electrodes. The long-term and cycle stability of the fabric-
ated PCECs (figure 11(d)) yielded interesting results, as a not-
able decline in performance was observed in the cell com-
prising the mechanically mixed composite electrode. A source
of this degradation was proposed to be the thermal incom-
patibility of the functional components, resulting in electrode
delamination, particularly during thermal cycles. Conversely,
the electrolyte/electrode interface was robust and stable in
the case of the infiltrated electrode, ensuring strong contact
between the adjusted functional layers. From a microstruc-
tural perspective, the infiltrated electrode also exhibited slight
degradation, but it still provided sufficient active zones for
electrochemical reactions.

5.6. Protonic ceramic electrochemical reactors
(PCERs)/converters

PCERs (converters) are solid oxide cells that provide vari-
ous hydrogenation/dehydrogenation reactions when current is
applied to such cells (figure 12(a)). The operating principle
of these devices is analogous to that of hydrogen pumps or
PCECs since the applied current initiates the pumping out
of hydrogen from a hydrogen-containing gas (or gas mix-
ture), initiating the dehydrogenation process (see equations (3)
and (4)). On the opposite side of such reactors, the hydro-
genation process takes place, allowing either hydrogen pro-
duction (PCECs, see section 5.5) or partial/complete reduc-
tion of oxidized substances (some examples are given by
equations (6)–(9)). The great variability of electrochemical
conversions allows PCERs to be used for a variety of pur-
poses, including the high-temperature conversion of C- and
N-containing compounds [4, 5, 173, 199]. As a result, a
number of studies devoted to PCERs are currently out-
numbering those aimed at simple hydrogen production in
PCECs. This also applies to tubular-type protonic ceramic
electrochemical cells.

Kyriakou et al [144] proposed a Ni–BZCY|BZCY|Cu tubu-
lar membrane reactor for realizing a methane steam reforming
process at 450 ◦C–650 ◦C. This tube, with a length of 20 cm,
a diameter of 1 cm, an electrolyte thickness of 30 µm, and an
active electrode area of 20 cm2, was prepared by CoorsTek
Inc. via a combination of slip casting, dip coating, and brush
painting techniques. A reactant gas (wet CH4/N2) was sup-
plied to the anode side, and the concentration of products in
the anode chamber exhaust stream was analyzed via the chro-
matographic method. Under such operational conditions, the
following electrochemical reaction occurred at the anode side:

CH4 +H2O→ CO2 + 8H+ + 8e ′. (12)

At the same time, hydrogen formation (equation (5))
occurred at the opposite electrode. The electrochemical char-
acterization of the fabricated reactor was conducted under a
variety of conditions, including various temperatures (from
450 to 650 ◦C), total flow rates (from 15 to 120 ml min–1),
steam-to-carbon ratios (from 0.5 to 4), and cell potentials
(from OCV to 2.4 V). In accordance with the best conditions,
a CH4 conversion of 80% and CO2 selectivity of 95% were
achieved, along with excellent chemical stability, durability,
and coke tolerance in a 24 h short-term test.

The same combination of fabrication techniques
was utilized by Xiao et al [161]. An electrochem-
ical reactor was designed from the following func-
tional materials: Ni–BZCYZ|BZCYZ|LSCF–BZCYZ
(BZCYZ = BaZr0.4Ce0.4Y0.15Zn0.05O3−δ). However, no tube
dimensions were indicated, with the exception of the electro-
lyte thickness (25 µm). The tube was initially evaluated as
a PCFC in conventional air/H2 mode; its corresponding per-
formance can be found in table 3. Then, the electrolysis mode
was subjected to analysis when 3% H2O/air was supplied at
the oxygen electrode side, while x% CO2/H2 gas mixtures
(with 0 ⩽ x, vol.% ⩽ 50) were supplied at the fuel electrode
side. Their findings indicated that an elevated CO2 concentra-
tion at the cathode resulted in a notable reduction in current
density, from 505 to 335 mA cm–2 at 650 ◦C and 1.4 V. The
authors posited that this outcome was attributable to a reduced
number of active sites resulting from Ni-to-NiO oxidation
in CO2-rich atmospheres. However, this explanation is argu-
ably ambiguous, given that all the x%CO2/H2 gas mixtures
are classified as highly reducing atmospheres in terms of the
equilibrium oxygen partial pressure. Conversely, the observed
findings align with a well-established phenomenon related to
the slower kinetics of CO2 reduction than of hydrogen form-
ation. To support their statement, the conversion parameters
should be analyzed, including CO2 conversion, production
rate or selectivity of CO and CH4. A similar simple analysis
was performed in the work of [208] for analogous cell and
experimental conditions.

A significant breakthrough was achieved by Clark et al
[206], who fabricated a PCER stack with an active elec-
trode area of 36 × 15 cm2 for the production of hydrogen
from ammonia, methane, and biogas. To achieve this object-
ive, single BZCY-based tubes, which were prepared via the
extrusion technique, were collected in a stack comprising 36
cells. This was done with great care in terms of the organ-
ization of the sealing and current collectors. As illustrated in
figure 12(b), the individual cells and the assembled stack were
evaluated under a range of operational conditions, with a par-
ticular emphasis on the ability to perform electrochemical con-
version under elevated pressures, reaching 30 bars. The 36-
cell PCER stack demonstrated the capacity to achieve near-
complete CH4 conversion and high H2 recovery from both
CH4 and biogas. Additionally, it facilitated a complete equi-
librium shift and a CO2-rich effluent stream, which facilitated
facile carbon capture. In addition, the single PCER cells exhib-
ited nearly complete NH3 conversion, resulting in an effluent
stream that was virtually free of residual NH3. The subsequent
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work of the same author [149] was directed towards the direct
electrocatalytic reduction of CO2 in the PCER of a compar-
able design (see equation (6) and (7)). The methanation yield
was significantly affected by the total pressure and the H2/CO2

ratio (figure 12(c)). The pressurization of the cell resulted in a
notable increase in the CH4 yield, reaching values of 80% at 20
bars at a stoichiometric H2/CO2 ratio of 4, which is in accord-
ance with the thermodynamic equilibrium yield. To further
increase the methanation yield, the in situ extraction of water
was mimicked by feeding CO instead of CO2; this resulted in
CH4 yield values that approached almost 100%. In addition to
the catalytic parameters, the electrochemical characterization
of cell operation was also conducted via a combination of EIS
andDRT analyses. This approach facilitates the detailed exam-
ination of electrode processes as a function of temperature,
pressure, and current density parameters. Additional details on
CO2 hydrogenation in PCERs can be found in the recent works
of Ruiz et al [150], Li et al [209], and Miao et al [210].

Recently, Li et al [207] proposed a PCER for ammo-
nia production at atmospheric pressure (see equation (9)).
Although ammonia synthesis has been recently reported for
button-type protonic ceramic electrochemical cells [211–
214], this work addresses microtubularly designed PCERs
of the Ni–BCZY|BCZY|Ag and Fe@Ni–BCZY|BCZY|Ag
configurations. These tubes had an active electrode area of
2.2 cm2 and an electrolyte thickness of 130 µm. At 580 ◦C
and an applied voltage of 2 V, the maximum NH3 form-
ation rate was increased from 3.0·10−9 mol cm−2 s–1 to
4.1·10−9 mol cm−2 s−1 by coating the inner surface of the
basic PCER with an additional Fe catalyst. However, most of
the protons transferred from the anode to the cathode were
found to participate in the hydrogen evolution reaction rather
than ammonia synthesis, resulting in low NH3 faradaic effi-
ciency (figure 12(d)). The authors reported that the activity of
the cathode catalyst remained a limiting factor for NH3 syn-
thesis. Consequently, the development of highly active elec-
trocatalysts is essential to further enhance the PCER perform-
ance in the NH3 synthesis process.

5.7. Other types of protonic ceramic electrochemical cells

In addition to the discussion of electrochemical cells, proton-
conducting electrolytes can be utilized in a number of other
types, which have recently garnered increasing attention. One
such type is a family of reversible protonic ceramic electro-
chemical cells that permit the simultaneous conversion and
storage of energy [215–219]. The reversible derivatives can
be regarded as a straightforward combination of fuel cell and
electrolysis cell modes. However, in many cases, both the
anode and cathode gases are humidified in a strategic manner
to ensure optimal performance and efficiency in both modes.
Conversely, conventional PCFCs are typically operated in a
wet H2/air gradient, which is unsuitable for electrolysis applic-
ations. Another family of protonic ceramic electrochemical
cells comprises those designated symmetrical (or quasisym-
metrical) cells, which are composed of an anode and a cath-
ode layer with an almost identical composition [220–223].
This approach enables a reduction in the number of functional

materials and technological steps required for the fabrication
of multilayer cells. However, to date, the most promising res-
ults have been achieved for gallate-based symmetrical cells,
which are based on the electrolyte-supported configuration.
The research and development of symmetrically designed pro-
tonic ceramic cells is in its infancy.

6. Computational research of tubular protonic
ceramic electrochemical cells

The advancement of high-performance and highly efficient
solid oxide electrochemical cells based on proton-conducting
electrolytes is challenging to achieve without the utilization
of empirical and computational models. These models offer
a valuable means of predicting the output performance of
electrochemical devices and determining their suitable operat-
ing conditions. Among the literature, only a few studies have
addressed the modeling of tubular cells.

Thermofluid dynamics (TFD) modeling is an important
stage in the design of electrochemical devices. Using TFD
modeling, the effects of gas flow, gas diffusion, electrochem-
istry, and heat transport on various characteristics of elec-
trochemical devices can be evaluated. Catalan-Martinez et al
[224] developed a computational fluid dynamics model for a
modular tubular PCEC. The proposed model is discussed in
terms of its potential for efficient generation of pressurized dry
hydrogen under different conditions. A parametric model was
created to simulate the internal and external chamber pressures
and inlet flow temperature under two adiabatic operation scen-
arios with different vapor conversion rates. The model showed
that a low steam conversion ratio enables PCEC operation at
a relatively high current density, whereas the thermoneutral
voltage (TNV) at a fixed steam conversion ratio is highly sens-
itive to external parameters and operating modes. Increasing
the pressure of generated hydrogen results in a reduction in
the hydrogen production rate in the TNV mode. However, this
can be offset by increasing the vapor pressure or decreasing
the inlet gas flow temperature. Furthermore, the incorpora-
tion of a porous working medium as a current collector in the
vapor chamber of the PCEC can enhance heat transfer in this
chamber. The area-specific resistance of the PCEC determines
the current density, necessitating the adaptation of the PCEC
active area to achieve the required hydrogen production and
energy efficiency.

TM modeling is an integral part of electrochemical device
design. When a device is subjected to elevated temperatures,
mechanical stresses emerge, which can potentially result in
destruction of the cell. This phenomenon is attributed to the
disparity in the thermal expansion coefficients of the func-
tional materials. In addition to thermal expansion, chemical
expansion also plays a role, as observed in proton-conducting
materials within humid atmospheres. TM modeling offers a
valuable tool for identifying the conditions that guarantee
device reliability under cyclic temperature fluctuations. Li et al
[225] carried out a TM analysis for a 2D tubular PCEC. The
impact of structural and operational parameters on the mech-
anical behavior of the cell was investigated. In addition, a
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predictive model for parameters such as the mechanical stress,
Faraday efficiency, and operating stress was established on
the basis of the obtained data. The results demonstrate that
chemical expansion is predominantly influenced by the cath-
ode porosity and electrolyte thickness, whereas the overall
mechanical stress level is affected primarily by the cathode
porosity, current density, and operating temperature. Overall,
this work underscores the necessity of incorporating chemical
expansion information into the mechanical analysis of PCECs
and proposes a systematic approach for numerical studies.

Modeling is also a crucial tool for predicting the elec-
trochemical performance of electrolyte membranes. This
finding offers a potential explanation for the seemingly
contradictory behavior observed in the experimental data.
Furthermore, such modeling can be utilized to predict the
electrochemical performance of diverse electrochemical cells.
Taghikhani et al [226] developed an electrochemo-mechanical
computational model based on an extended Nernst–Planck
equation system. This model predicts transient and steady-
state charged defect concentrations (protons, oxygen vacan-
cies, and small polarons), fluxes, and voltages within a dense
proton-conducting BaZr0.8Y0.2O3−δ (10 µm) membrane that
is supported on a porous Ni–BaZr0.8Y0.2O3−δ composite elec-
trode. The model considers the one-dimensional radial beha-
vior in a long tubular cell. The model predicts membrane per-
formance in fuel cell and electrolysis cell modes.

The operation of electrochemical devices is associated with
a multitude of complex electrochemical, chemical, and trans-
port processes, including heat, mass, and charge. These pro-
cesses are highly coupled and difficult to unravel and explain
experimentally. Thermoelectrochemical (TE) modeling can be
used to obtain a comprehensive understanding of these com-
plex multiphysics phenomena. Li et al [227] developed a 2D
numerical TE model for a tubular ethane-fueled PCFC based
on a thin-film BaCe0.7Zr0.1Y0.2O3−δ electrolyte (20 µm). The
model simulates complex physical, chemical and electrochem-
ical processes occurring in ethane-fueled PCFCs. The effects
of the operating voltage, inlet fuel flow rate, and inlet tem-
perature on the electrochemical performance of the indicated
PCFC were thoroughly studied. In particular, the relationship
between the operating voltage and ethylene yield is revealed.
The inlet fuel flow rate at which a high current density is
achieved was determined. The importance of increasing the
inlet temperature was noted. Furthermore, the effects of the
inlet temperature, operating voltage and inlet fuel flow rate on
the uniformity of the temperature field within the PCFC and
the efficiency of heat removal were evaluated. The most inter-
esting result of the modeling is that H2 depletion suppressed
the local electrochemical performance.

The integration of multiple electrochemical processes (e.g.
electrolysis coupled with chemical conversion) has demon-
strated the substantial potential of this concept. Such an integ-
ration canmarkedly enhance the functionality of the combined
system, increasing its performance and efficiency. However,
this necessitates the identification of optimal operating con-
ditions, which can be predicted through computational tech-
niques. Schwabe et al [228] presented a scheme and results
of energy evaluation of a multifunctional installation in which

water vapor electrolysis and methanol synthesis take place.
The design is based on a tubular PCEC that can operate at a
temperature of 700 ◦C, a pressure of 10 MPa, and a current
(through the electrolyzer) of up to 100 A. The energy evalu-
ation (modeling) results revealed that the proposed scheme has
significant potential, but only if the heat of the exothermic syn-
thesis reaction is used to meet the heat demand of electrolysis.
Fogel et al [229] developed a transient and real-time model
of the energy-to-methanol conversion system. The model is
based on tubular high-temperature PCECs. Real-time systems
that respond to input voltage fluctuations were integrated into
the model. The methanol production model from electrolysis
includes several feedback control loops or controllers to mon-
itor all subprocesses in the case of fluctuations in power con-
sumption. Themodeling results show favorable operating con-
ditions and system efficiency depending on the selected meth-
anol production scheme and electrolyzer thermal design.

In conclusion, it should be noted that the presented works
are devoted to modeling the processes occurring in tubular
electrochemical devices on the basis of proton-conducting
electrolytes, as well as to predicting their characteristics under
various parameters. These and similar works are necessary
because they contribute to the development of highly effi-
cient and high-performance electrochemical devices, includ-
ing those related to power generation and the synthesis of
environmentally friendly fuels or substances.

7. Conclusions

As demonstrated in this review, proton-conducting oxide elec-
trolytes represent a promising foundation for the advance-
ment of electrochemical cell devices for diverse energy con-
version applications at elevated temperatures (typically above
300 ◦C). These include effective hydrogen separation from
H2-containing gas mixtures, hydrogen production through the
electrochemical water splitting process (electrolysis), hydro-
gen utilization to generate electricity, electroanalytical hydro-
gen analysis, and a range of hydrogenation and dehydrogen-
ation conversion reactions. These distinctive processes have
been thoroughly characterized at the laboratory scale, where
highly promising performance outcomes have been attained
concurrently. Therefore, this represents a fundamental pre-
requisite for the scaling-up of such processes through the util-
ization of protonic ceramic electrochemical cells in the form
of prototypes and stacks. Despite the prevalent use of planar-
type cells to increase cell power/performance, tube-designed
cells are perceived to offer enhanced convenience in terms of
the integration of unit cells into stacks and their sealing ability.

This review offers significant insights into the manufactur-
ing and electrochemical characterization of tubular protonic
ceramic electrochemical cells. The technological details out-
lined in section 4 encompass all stages of tube preparation,
commencing with the original powder sources utilized and
concludingwithmultistep sintering processes. To elucidate the
prehistory of supporting tubular cells, particular attention was
devoted to the inorganic/organic components of suspensions,
tapes, and slurries.
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Section 5 presents the findings for different types of pro-
tonic ceramic electrochemical tubes.While many of these pro-
cesses exhibit good efficiency and performance (for example,
up to 100% H2 recovery and excellent hydrogen analysis), the
performance density of the cells with an extended active sur-
face area is significantly lower than that of the cells with a
small active surface area. This discrepancy can be attributed
to the inadequate current pathways across the entire active
surface area of the extended tubes, necessitating the devel-
opment of new strategies for performance optimization. Such
an optimization can be implemented through the considera-
tion of computational results (section 6), which reveal intric-
ate relationships between external variable parameters and
output characteristics.

Ultimately, to achieve successful scaling of the protonic
ceramic electrochemical tubes in the future, identifying and
addressing the current issues and challenges is essential.
These, along with potential solutions (outlined in section 6),
can facilitate the modernization of the technological scheme,
thereby revealing suitable vectors for fabricating the corres-
ponding stacks and modules.

In conclusion, this review provides an overview of the fun-
damental principles and recent advancements in the develop-
ment and utilization of tube-designed protonic ceramic elec-
trochemical cells. This information may prove beneficial for
researchers, scientists, and technologists specializing in the
fields of solid-state electrochemistry, solid-state ionics, elec-
trochemistry, and energy conversion.

8. Future perspective

The previous sections provide insights into the successful fab-
rication and characterization of tube-shaped protonic ceramic
electrochemical cells for various applications. Despite the
many promising results achieved, a number of issues should
be addressed in more detail to enable rational scaling of the
tube technology. These issues can be categorized into chem-
ical and technological classes.

The chemical features of proton-conducting materials are
contingent upon their hydration ability and functional proper-
ties for specific compositional systems. Some of these prop-
erties were previously mentioned in section 3. In addition to
the already discussed chemical expansion behavior and chem-
ical stability, proton-conducting electrolytes also demonstrate
an inadequate densification capacity, particularly in the case
of Zr-enriched compounds. This is attributed to the refract-
ory nature of B-site cations. To achieve the desired sinter-
ability and gas-tight state of electrolyte materials at rational
sintering temperatures, a variety of sintering additives have
been employed [230–232]. These includeNiO, ZnO, CuO, and
CoOx. The introduction of these substances in small amounts
(0.1–2 wt.%) results in rapid densification of the electrolytes
at 1350 ◦C–1500 ◦C, which is technologically suitable for the
preparation of Ni-cermet-based half-cells. However, higher
sintering temperatures (1550 ◦C and higher) are required
to sinter the electrolyte layer without sintering aids; how-
ever, these temperatures are not appropriate for coarsening

and reducing the porosity of electrodes. When introduced to
proton-conducting electrolytes, the sintering additive facilit-
ates the formation of a liquid phase upon sintering, which in
turn results in rapid grain growth of ceramic materials. Owing
to capillary forces, the low-melting phase should be concen-
trated at the grain boundaries upon cooling. However, it should
be noted that some portions of the sintering additives may also
dissolve into the original electrolyte structure. Since sintering
additives (for example, NiO or CuO) or their more complex
derivatives (for example, BaY2NiO5 or BaCuO2) lack ionic
conductivity, their localization at grain boundaries impedes
proton transfer. This phenomenon has been widely confirmed
for numerous combinations of proton-conducting electrolytes
and sintering additives. Unfortunately, the effect of sinter-
ing additives cannot be completely excluded, as remarkable
nickel ion diffusion from a Ni-based ceramet into an electro-
lyte was observed during co-sintering of a half-cell [233–235].
Nevertheless, this unwanted diffusion pathway can be effect-
ively mitigated by reducing the sintering temperature or chem-
ically modifying the electrolyte. The latter approach involves
the partial or complete replacement of yttrium in Y-doped
Ba(Ce,Zr)O3 with other lanthanides (Yb3+, Dy3+, Gd3+) to
avoid the formation of the proton-blocking BaY2NiO5 phase.

In addition to chemical issues, some technological issues
can also be mentioned. After the tubular green anode or half-
cell substrates are manufactured, they should be subjected to
a careful sintering regime to achieve several goals: the dens-
ification of the electrolyte, attaining the requisite mechan-
ical strength, and preserving the selected tube configuration.
However, the sintering of prolonged tubes can result in the
formation of defects due to TM and shrinkage differences
between functional materials or edge defects/strains of indi-
vidual layers. Potential solutions to this issue include the sin-
tering of the tubes in either a vertically suspended state or a
horizontal state via a powder bed. Unfortunately, these sin-
tering details are not widely discussed or even present in
the literature.

As previously stated, the larger active electrode surface
(working surface area) is consistently associated with reduced
power densities compared with those observed in small PCFC
or PCEC cells. The underlying cause of these high internal
losses is thought to be inadequate current collection at both the
inner and outer tube surfaces. Consequently, novel approaches
are needed to ensure optimal electrical contact for single pro-
longed tube cells.
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