Volume 3 Issue 4
December  2024
Turn off MathJax
Article Contents
Zhong Yang, Xianglin Xiang, Jian Yang, Zong-Yan Zhao. High-entropy oxides as energy materials: from complexity to rational design[J]. Materials Futures, 2024, 3(4): 042103. doi: 10.1088/2752-5724/ad8463
Citation: Zhong Yang, Xianglin Xiang, Jian Yang, Zong-Yan Zhao. High-entropy oxides as energy materials: from complexity to rational design[J]. Materials Futures, 2024, 3(4): 042103. doi: 10.1088/2752-5724/ad8463
Topical Review •
OPEN ACCESS

High-entropy oxides as energy materials: from complexity to rational design

© 2024 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 3, Number 4
  • Received Date: 2024-07-26
  • Accepted Date: 2024-09-29
  • Revised Date: 2024-09-20
  • Publish Date: 2024-10-21
  • High-entropy oxides (HEOs), with their multi-principal-element compositional diversity, have emerged as promising candidates in the realm of energy materials. This review encapsulates the progress in harnessing HEOs for energy conversion and storage applications, encompassing solar cells, electrocatalysis, photocatalysis, lithium-ion batteries, and solid oxide fuel cells. The critical role of theoretical calculations and simulations is underscored, highlighting their contribution to elucidating material stability, deciphering structure-activity relationships, and enabling performance optimization. These computational tools have been instrumental in multi-scale modeling, high-throughput screening, and integrating artificial intelligence for material design. Despite their promise, challenges such as fabrication complexity, cost, and theoretical computational hurdles impede the broad application of HEOs. To address these, this review delineates future research perspectives. These include the innovation of cost-effective synthesis strategies, employment of in situ characterization for micro-chemical insights, exploration of unique physical phenomena to refine performance, and enhancement of computational models for precise structure-performance predictions. This review calls for interdisciplinary synergy, fostering a collaborative approach between materials science, chemistry, physics, and related disciplines. Collectively, these efforts are poised to propel HEOs towards commercial viability in the new energy technologies, heralding innovative solutions to pressing energy and environmental challenges.
  • loading
  • [1]
    Wang Z, Li C and Domen K 2019 Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting Chem. Soc. Rev. 48 2109-25
    [2]
    Jiao X, Zheng K, Hu Z, Sun Y and Xie Y 2020 Broad-spectral-response photocatalysts for CO2 reduction ACS Cent. Sci. 6 653-60
    [3]
    Han L, Dong S and Wang E 2016 Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction Adv. Mater. 28 9266-91
    [4]
    Wang J et al 2021 Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation Nat. Catal. 4 212-22
    [5]
    Yun T G, Heo Y, Bin Bae H and Chung S-Y 2021 Elucidating intrinsic contribution of d-orbital states to oxygen evolution electrocatalysis in oxides Nat. Commun. 12 824
    [6]
    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H and Chang S Y 2004 Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes Adv. Eng. Mater. 6 299-303
    [7]
    Hsu W-L, Tsai C-W, Yeh A-C and Yeh J-W 2024 Clarifying the four core effects of high-entropy materials Nat. Rev. Chem. 8 471-85
    [8]
    Rost C M, Sachet E, Borman T, Moballegh A, Dickey E C, Hou D, Jones J L, Curtarolo S and Maria J-P 2015 Entropy-stabilized oxides Nat. Commun. 6 8485
    [9]
    Schweidler S et al 2024 High-entropy materials for energy and electronic applications Nat. Rev. Mater. 9 266-81
    [10]
    Bérardan D, Franger S, Dragoe D, Meena A K and Dragoe N 2016 Colossal dielectric constant in high entropy oxides Phys. Status Solidi 10 328-33
    [11]
    Park M H and Hwang C S 2019 Fluorite-structure antiferroelectrics Rep. Prog. Phys. 82 124502
    [12]
    Sarkar A, Djenadic R, Wang D, Hein C, Kautenburger R, Clemens O and Hahn H 2018 Rare earth and transition metal based entropy stabilised perovskite type oxides J. Eur. Ceram. Soc. 38 2318-27
    [13]
    Dabrowa J, Stygar M, Mikuła A, Knapik A, Mroczka K, Tejchman W, Danielewski M and Martin M 2018 Synthesis and microstructure of the (Co,Cr,Fe,Mn,Ni)3O4 high entropy oxide characterized by spinel structure Mater. Lett. 216 32-36
    [14]
    Sarkar A, Wang Q, Schiele A, Chellali M R, Bhattacharya S S, Wang D, Brezesinski T, Hahn H, Velasco L and Breitung B 2019 High-entropy oxides: fundamental aspects and electrochemical properties Adv. Mater. 31 1806236
    [15]
    Liu Z-Y, Liu Y, Xu Y, Zhang H, Shao Z, Wang Z and Chen H 2023 Novel high-entropy oxides for energy storage and conversion: from fundamentals to practical applications Green Energy Environ. 8 1341-57
    [16]
    Kante M V et al 2023 A high-entropy oxide as high-activity electrocatalyst for water oxidation ACS Nano 17 5329-39
    [17]
    Zhai Y, Ren X, Wang B and Liu S 2022 High-entropy catalyst—a novel platform for electrochemical water splitting Adv. Funct. Mater. 32 2207536
    [18]
    Gao H, Guo N, Gong Y, Bai L, Wang D and Zheng Q 2023 Sub-Ångstrom-scale structural variations in high-entropy oxides Nanoscale 15 19469-74
    [19]
    Fracchia M, Coduri M, Ghigna P and Anselmi-Tamburini U 2024 Phase stability of high entropy oxides: a critical review J. Eur. Ceram. Soc. 44 585-94
    [20]
    Yan X, Liaw P K and Zhang Y 2021 Order and disorder in amorphous and high-entropy materials Metall. Mater. Trans. A 52 2111-22
    [21]
    Yu Y, Liu S, Wang H, Zhang S, Wang N, Jiang W, Liu C, Ding W, Zhang Z and Dong C 2022 Synthesis and optoelectrical properties of Ti8Sn8Nb8Ta8Me16O96 (Me=Ga, Fe) rutile structure high entropy oxides Vacuum 203 111315
    [22]
    Jiang B, Bridges C A, Unocic R R, Pitike K C, Cooper V R, Zhang Y, Lin D-Y and Page K 2021 Probing the local site disorder and distortion in pyrochlore high-entropy oxides J. Am. Chem. Soc. 143 4193-204
    [23]
    Tseng K-P, Yang Q, McCormack S J and Kriven W M 2020 High-entropy, phase-constrained, lanthanide sesquioxide J. Am. Ceram. Soc. 103 569-76
    [24]
    Akrami S, Murakami Y, Watanabe M, Ishihara T, Arita M, Fuji M and Edalati K 2022 Defective high-entropy oxide photocatalyst with high activity for CO2 conversion Appl. Catal. B 303 120896
    [25]
    Shen K, Wang T, Li C, Chen M, Niu L and Gong Y 2024 Designing highly-efficient oxygen evolution reaction FeCoNiCrMnOx electrocatalyst via coexisted crystalline and amorphous phases: experiment and theory Appl. Surf. Sci. 650 159102
    [26]
    Tian X, Li H, Chang R, Yang Y, Wang Z, Dong T, Lai J, Feng S and Wang L 2024 Rapid, self-sacrificing template synthesis of two dimensional high-entropy oxides toward high-performance oxygen evolution J. Mater. Chem. A 12 3276-82
    [27]
    Ye S, Zhu J, Zhu S, Zhao Y, Li M, Huang Z, Wang H and He J 2023 Design strategies for perovskite-type high-entropy oxides with applications in optics ACS Appl. Mater. Interfaces 15 47475-86
    [28]
    Liu C et al 2024 Manganese-based A-site high-entropy perovskite oxide for solar thermochemical hydrogen production J. Mater. Chem. A 12 3910-22
    [29]
    Guo R and He T 2022 High-entropy perovskite electrolyte for protonic ceramic fuel cells operating below 600 ℃ ACS Mater. Lett. 4 1646-52
    [30]
    Shi Y, Ni N, Ding Q and Zhao X 2022 Tailoring high-temperature stability and electrical conductivity of high entropy lanthanum manganite for solid oxide fuel cell cathodes J. Mater. Chem. A 10 2256-70
    [31]
    Pu Y, Zhang Q, Li R, Chen M, Du X and Zhou S 2019 Dielectric properties and electrocaloric effect of high-entropy (Na0.2Bi0.2Ba0.2Sr0.2Ca0.2)TiO3 ceramic Appl. Phys. Lett. 115 223901
    [32]
    Yang W and Zheng G 2022 High energy storage density and efficiency in nanostructured (Bi0.2Na0.2K0.2La0.2Sr0.2)TiO3 high-entropy ceramics J. Am. Ceram. Soc. 105 1083-94
    [33]
    Chatterjee A, Ganguly D, Sundara R and Bhattacharya S S 2024 High-entropy cubic perovskite oxide-based solid electrolyte in quasi-solid-state Li-S battery Energy Technol. 12 2300576
    [34]
    Nan H, Lv S, Xu Z, Feng Y, Zhou Y, Liu M, Wang T, Liu X, Hu X and Tian H 2023 Inducing the cocktail effect in yolk-shell high-entropy perovskite oxides using an electronic structural design for improved electrochemical applications Chem. Eng. J. 452 139501
    [35]
    Zhang P, Shi Y, Zhang Y, Feng S, Shi L, Pan J, Cao J and Li C 2024 Self-cleaning transparent pn junction in CuAlO2/WO3 via high entropy perovskite oxide La(Cu0.2Cr0.2Ni0.2Fe0.2Co0.2)O3 transition layer for enhanced photovoltaic conversion Chem. Eng. J. 487 150727
    [36]
    Nguyen T X, Liao Y-C, Lin -C-C, Su Y-H and Ting J-M 2021 Advanced high entropy perovskite oxide electrocatalyst for oxygen evolution reaction Adv. Funct. Mater. 31 2101632
    [37]
    Tian L, Zhang Z, Liu S, Li G and Gao X 2023 High-entropy perovskite oxide nanofibers as efficient bidirectional electrocatalyst of liquid-solid conversion processes in lithium-sulfur batteries Nano Energy 106 108037
    [38]
    Edalati P, Wang Q, Razavi-Khosroshahi H, Fuji M, Ishihara T and Edalati K 2020 Photocatalytic hydrogen evolution on a high-entropy oxide J. Mater. Chem. A 8 3814-21
    [39]
    Triolo C, Xu W, Petrovičovà B, Pinna N and Santangelo S 2022 Evaluation of entropy-stabilized (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O oxides produced via solvothermal method or electrospinning as anodes in lithium-ion batteries Adv. Funct. Mater. 32 2202892
    [40]
    Zhang D, Xu S, Li T, Zhang M, Qi J, Wei F, Meng Q, Ren Y, Cao P and Sui Y 2023 High-entropy oxides prepared by dealloying method for supercapacitors ACS Appl. Eng. Mater. 1 780-9
    [41]
    Talluri B, Aparna M L, Sreenivasulu N, Bhattacharya S S and Thomas T 2021 High entropy spinel metal oxide (CoCrFeMnNi)3O4 nanoparticles as a high-performance supercapacitor electrode material J. Energy Storage 42 103004
    [42]
    Iwase K and Honma I 2022 High-entropy spinel oxide nanoparticles synthesized via supercritical hydrothermal processing as oxygen evolution electrocatalysts ACS Appl. Energy Mater. 5 9292-6
    [43]
    Zhang Q et al 2023 Entropy-stabilized multicomponent porous spinel nanowires of NiFeXO4 (X = Fe,Ni,Al,Mo,Co, Cr) for efficient and durable electrocatalytic oxygen evolution reaction in alkaline medium ACS Nano 17 1485-94
    [44]
    Zhang Y, Lu T, Ye Y, Dai W, a Z Y and Pan Y 2020 Stabilizing oxygen vacancy in entropy-engineered CoFe2O4-type catalysts for co-prosperity of efficiency and stability in an oxygen evolution reaction ACS Appl. Mater. Interfaces 12 32548-55
    [45]
    Einert M et al 2023 Sol-gel-derived ordered mesoporous high entropy spinel ferrites and assessment of their photoelectrochemical and electrocatalytic water splitting performance Small 19 2205412
    [46]
    Chen T-Y et al 2020 In operando synchrotron x-ray studies of a novel spinel (Ni0.2Co0.2Mn0.2Fe0.2Ti0.2)3O4 high-entropy oxide for energy storage applications J. Mater. Chem. A 8 21756-70
    [47]
    Fracchia M, Ghigna P, Pozzi T, Anselmi Tamburini U, Colombo V, Braglia L and Torelli P 2020 Stabilization by configurational entropy of the Cu(II) active site during CO oxidation on Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O J. Phys. Chem. Lett. 11 3589-93
    [48]
    Sarkar A et al 2022 Comprehensive investigation of crystallographic, spin-electronic and magnetic structure of (Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)3O4: unraveling the suppression of configuration entropy in high entropy oxides Acta Mater. 226 117581
    [49]
    Das R, Ghosh D, Bhattacharya S, Chowdhury S, Singh M V, Ghosh A P, Gayen S A and Seikh M M 2024 High-entropy spinel oxide: a prolific system of panoramic functional properties J. Phys. Chem. C 128 14168-84
    [50]
    Zhang Y, Dai W, Zhang P, Lu T and Pan Y 2021 In-situ electrochemical tuning of (CoNiMnZnFe)3O3.2 high-entropy oxide for efficient oxygen evolution reactions J. Alloys Compd. 868 159064
    [51]
    Gu Y, Bao A, Wang X, Chen Y, Dong L, Liu X, Pan H, Li Y and Qi X 2022 Engineering the oxygen vacancies of rocksalt-type high-entropy oxides for enhanced electrocatalysis Nanoscale 14 515-24
    [52]
    Bai Y, Li J, Lu H, Liu J, Ma C, Wang B, Zhao X and Deng J 2023 Ultrafast high-temperature sintering of high-entropy oxides with refined microstructure and superior lithium-ion storage performance J. Adv. Ceram. 12 1857-71
    [53]
    Riley C, De La Riva A, Park J E, Percival S J, Benavidez A, Coker E N, Aidun R E, Paisley E A, Datye A and Chou S S 2021 A high entropy oxide designed to catalyze CO oxidation without precious metals ACS Appl. Mater. Interfaces 13 8120-8
    [54]
    Nundy S, Tatar D, Kojčinović J, Ullah H, Ghosh A, Mallick T K, Meinusch R, Smarsly B M, Tahir A A and Djerdj I 2022 Bandgap engineering in novel fluorite-type rare earth high-entropy oxides (RE-HEOs) with computational and experimental validation for photocatalytic water splitting applications Adv. Sustain. Syst. 6 2200067
    [55]
    Jing L, Li W, Gao C, Li M and Fei W 2023 Enhanced energy storage performance achieved in multilayered PVDF-PMMA nanocomposites incorporated with high-entropy oxide nanofibers ACS Appl. Energy Mater. 6 3093-101
    [56]
    Qiu N, Chen H, Yang Z, Sun S, Wang Y and Cui Y 2019 A high entropy oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O) with superior lithium storage performance J. Alloys Compd. 777 767-74
    [57]
    Wang Y-Q, Wang H-M, Jiang Y-C, Liu G-R, Li S and Gao X-P 2023 High-entropy oxide nanofibers as catalytic host promising high volumetric capacity of sulfur-based composites for lithium-sulfur batteries ACS Appl. Energy Mater. 6 8377-87
    [58]
    Wang H et al 2023 High-entropy Na-deficient layered oxides for sodium-ion batteries ACS Nano 17 12530-43
    [59]
    Wang J et al 2022 P2-type layered high-entropy oxides as sodium-ion cathode materials Mater. Futures 1 035104
    [60]
    Li Y, Bai X, Yuan D, Yu C, San X, Guo Y, Zhang L and Ye J 2023 Cu-based high-entropy two-dimensional oxide as stable and active photothermal catalyst Nat. Commun. 14 3171
    [61]
    Usharani N J, Shringi R, Sanghavi H, Subramanian S and Bhattacharya S S 2020 Role of size, alio-/multi-valency and non-stoichiometry in the synthesis of phase-pure high entropy oxide (Co,Cu,Mg,Na,Ni,Zn)O Dalton Trans. 49 7123-32
    [62]
    Tavani F, Fracchia M, Tofoni A, Braglia L, Jouve A, Morandi S, Manzoli M, Torelli P, Ghigna P and D’Angelo P 2021 Structural and mechanistic insights into low-temperature CO oxidation over a prototypical high entropy oxide by Cu L-edge operando soft x-ray absorption spectroscopy Phys. Chem. Chem. Phys. 23 26575-84
    [63]
    Chen H, Fu J, Zhang P, Peng H, Abney C W, Jie K, Liu X, Chi M and Dai S 2018 Entropy-stabilized metal oxide solid solutions as CO oxidation catalysts with high-temperature stability J. Mater. Chem. A 6 11129-33
    [64]
    Baek J, Hossain M D, Mukherjee P, Lee J, Winther K T, Leem J, Jiang Y, Chueh W C, Bajdich M and Zheng X 2023 Synergistic effects of mixing and strain in high entropy spinel oxides for oxygen evolution reaction Nat. Commun. 14 5936
    [65]
    Yao Y et al 2018 Carbothermal shock synthesis of high-entropy-alloy nanoparticles Science 359 1489-94
    [66]
    Sarkar A, Loho C, Velasco L, Thomas T, Bhattacharya S S, Hahn H and Djenadic R 2017 Multicomponent equiatomic rare earth oxides with a narrow band gap and associated praseodymium multivalency Dalton Trans. 46 12167-76
    [67]
    Sarkar A, Djenadic R, Usharani N J, Sanghvi K P, Chakravadhanula V S K, Gandhi A S, Hahn H and Bhattacharya S S 2017 Nanocrystalline multicomponent entropy stabilised transition metal oxides J. Eur. Ceram. Soc. 37 747-54
    [68]
    Jiang S, Hu T, Gild J, Zhou N, Nie J, Qin M, Harrington T, Vecchio K and Luo J 2018 A new class of high-entropy perovskite oxides Scr. Mater. 142 116-20
    [69]
    Sharma Y et al 2018 Single-crystal high entropy perovskite oxide epitaxial films Phys. Rev. Mater. 2 060404
    [70]
    Dupuy A D, Wang X and Schoenung J M 2019 Entropic phase transformation in nanocrystalline high entropy oxides Mater. Res. Lett. 7 60-67
    [71]
    Biesuz M, Spiridigliozzi L, Dell’Agli G, Bortolotti M and Sglavo V M 2018 Synthesis and sintering of (Mg, Co, Ni, Cu, Zn)O entropy-stabilized oxides obtained by wet chemical methods J. Mater. Sci. 53 8074-85
    [72]
    Sarkar A et al 2018 High entropy oxides for reversible energy storage Nat. Commun. 9 3400
    [73]
    Yu P F, Zhang L J, Cheng H, Zhang H, Ma M Z, Li Y C, Li G, Liaw P K and Liu R P 2016 The high-entropy alloys with high hardness and soft magnetic property prepared by mechanical alloying and high-pressure sintering Intermetallics 70 82-87
    [74]
    Wu H et al 2022 Rapid Joule-heating synthesis for manufacturing high-entropy oxides as efficient electrocatalysts Nano Lett. 22 6492-500
    [75]
    Mao H-R, Guo R-F, Cao Y, Jin S-B, Qiu X-M and Shen P 2021 Ultrafast densification of high-entropy oxide (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Zr2O7 by reactive flash sintering J. Eur. Ceram. Soc. 41 2855-60
    [76]
    Lin L et al 2020 Mechanochemical synthesis: route to novel rock-salt-structured high-entropy oxides and oxyfluorides J. Mater. Sci. 55 16879-89
    [77]
    Miao K, Jiang W, Chen Z, Luo Y, Xiang D, Wang C and Kang X 2024 Hollow-structured and polyhedron-shaped high entropy oxide toward highly active and robust oxygen evolution reaction in a full pH range Adv. Mater. 36 2308490
    [78]
    Mints V A, Svane K L, Rossmeisl J and Arenz M 2024 Exploring the high-entropy oxide composition space: insights through comparing experimental with theoretical models for the oxygen evolution reaction ACS Catal. 14 6936-44
    [79]
    Shu Y, Bao J, Yang S, Duan X and Zhang P 2021 Entropy-stabilized metal-CeOx solid solutions for catalytic combustion of volatile organic compounds AlChE J. 67 e17046
    [80]
    Brandt T G, Tuokkola A R, Yu M and Laine R M 2023 Liquid-feed flame spray pyrolysis enabled synthesis of Co- and Cr-free, high-entropy spinel oxides as Li-ion anodes Chem. Eng. J. 474 145495
    [81]
    Salian A and Mandal S 2022 Review on the deposition, structure and properties of high entropy oxide films: current and future perspectives Bull. Mater. Sci. 45 49
    [82]
    Kotsonis G N, Rost C M, Harris D T and Maria J-P 2018 Epitaxial entropy-stabilized oxides: growth of chemically diverse phases via kinetic bombardment MRS Commun. 8 1371-7
    [83]
    Kirnbauer A, Spadt C, Koller C M, Kolozsvári S and Mayrhofer P H 2019 High-entropy oxide thin films based on Al-Cr-Nb-Ta-Ti Vacuum 168 108850
    [84]
    Zhou L, Li F, Liu J-X, Hu Q, Bao W, Wu Y, Cao X, Xu F and Zhang G-J 2020 High-entropy thermal barrier coating of rare-earth zirconate: a case study on (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Zr2O7 prepared by atmospheric plasma spraying J. Eur. Ceram. Soc. 40 5731-9
    [85]
    Chen H et al 2020 An ultrastable heterostructured oxide catalyst based on high-entropy materials: a new strategy toward catalyst stabilization via synergistic interfacial interaction Appl. Catal. B 276 119155
    [86]
    Kumbhakar M et al 2023 High-throughput screening of high-entropy fluorite-type oxides as potential candidates for photovoltaic applications Adv. Energy Mater. 13 2204337
    [87]
    Yang C et al 2023 All-temperature zinc batteries with high-entropy aqueous electrolyte Nat. Sustain. 6 325-35
    [88]
    Hu C et al 2024 A selenium-mediated layer-by-layer synthetic strategy for multilayered multicomponent nanocrystals Nat. Synth. 3 1299-309
    [89]
    Bi Y, Cai Z, Zhou D, Tian Y, Zhang Q, Zhang Q, Kuang Y, Li Y, Sun X and Duan X 2018 Understanding the incorporating effect of Co2+/Co3+ in NiFe-layered double hydroxide for electrocatalytic oxygen evolution reaction J. Catal. 358 100-7
    [90]
    Zaharieva I, González-Flores D, Asfari B, Pasquini C, Mohammadi M R, Klingan K, Zizak I, Loos S, Chernev P and Dau H 2016 Water oxidation catalysis—role of redox and structural dynamics in biological photosynthesis and inorganic manganese oxides Energy Environ. Sci. 9 2433-43
    [91]
    Wang K et al 2023 Synergy of cations in high entropy oxide lithium ion battery anode Nat. Commun. 14 1487
    [92]
    Ge H, Zheng L, Yuan G, Shi W, Liu J, Zhang Y and Wang X 2024 Polyoxometallate cluster induced high-entropy oxide sub-1 nm nanosheets as photoelectrocatalysts for Zn-Air batteries J. Am. Chem. Soc. 146 10735-44
    [93]
    Wang Q, Sarkar A, Li Z, Lu Y, Velasco L, Bhattacharya S S, Brezesinski T, Hahn H and Breitung B 2019 High entropy oxides as anode material for Li-ion battery applications: a practical approach Electrochem. Commun. 100 121-5
    [94]
    Xiao B, Wu G, Wang T, Wei Z, Sui Y, Shen B, Qi J, Wei F and Zheng J 2022 High-entropy oxides as advanced anode materials for long-life lithium-ion batteries Nano Energy 95 106962
    [95]
    Zhang R et al 2022 Compositionally complex doping for zero-strain zero-cobalt layered cathodes Nature 610 67-73
    [96]
    Ghigna P et al 2020 Lithiation mechanism in high-entropy oxides as anode materials for Li-ion batteries: an operando XAS study ACS Appl. Mater. Interfaces 12 50344-54
    [97]
    Kheradmandfard M, Minouei H, Tsvetkov N, Vayghan A K, Kashani-Bozorg S F, Kim G, Hong S I and Kim D-E 2021 Ultrafast green microwave-assisted synthesis of high-entropy oxide nanoparticles for Li-ion battery applications Mater. Chem. Phys. 262 124265
    [98]
    Breitung B, Wang Q, Schiele A, Tripković Ð, Sarkar A, Velasco L, Wang D, Bhattacharya S S, Hahn H and Brezesinski T 2020 Gassing behavior of high-entropy oxide anode and oxyfluoride cathode probed using differential electrochemical mass spectrometry Batter. Supercaps 3 361-9
    [99]
    Wang J et al 2020 Spinel to rock-salt transformation in high entropy oxides with Li incorporation Electrochem 1 60-74
    [100]
    Wang J et al 2020 Lithium containing layered high entropy oxide structures Sci. Rep. 10 18430
    [101]
    Pikalova E Y, Kalinina E G, Pikalova N S and Filonova E A 2022 High-entropy materials in SOFC technology: theoretical foundations for their creation, features of synthesis, and recent achievements Materials 15 8783
    [102]
    Lal M S and Sundara R 2019 High entropy oxides—a cost-effective catalyst for the growth of high yield carbon nanotubes and their energy applications ACS Appl. Mater. Interfaces 11 30846-57
    [103]
    Wang W-M et al 2023 High-entropy engineering for broadband infrared radiation Adv. Funct. Mater. 33 2303197
    [104]
    Guo R, Yang Y, Zhao C, Huo F, Xue J, He J, Sun B, Sun Z, Liu H K and Dou S X 2024 The role of high-entropy materials in lithium-based rechargeable batteries Adv. Funct. Mater. 34 2313168
    [105]
    George E P, Raabe D and Ritchie R O 2019 High-entropy alloys Nat. Rev. Mater. 4 515-34
    [106]
    Wang Y, Mi J and Wu Z-S 2022 Recent status and challenging perspective of high entropy oxides for chemical catalysis Chem. Catal. 2 1624-56
    [107]
    Widom M 2024 First-principles study of the order-disorder transition in the AlCrTiV high entropy alloy Phys. Rev. Mater. 8 093603
    [108]
    Seong H W, Lee M S and Ryu H J 2023 First-principles study for discovery of novel synthesizable 2D high-entropy transition metal carbides (MXenes) J. Mater. Chem. A 11 5681-95
    [109]
    Lee C-Y, Jui C-Y, Yeh A-C, Chang Y-J and Lee W-J 2024 Inverse design of high entropy alloys using a deep interpretable scheme for materials attribution analysis J. Alloys Compd. 976 173144
    [110]
    Zeng Y, Man M, Ng C K, Wuu D, Lee J J, Wei F, Wang P, Bai K, Cheh Tan D C and Zhang Y-W 2022 Machine learning-based inverse design for single-phase high entropy alloys APL Mater. 10 101104
    [111]
    Wang Q, Velasco L, Breitung B and Presser V 2021 High-entropy energy materials in the age of big data: a critical guide to next-generation synthesis and applications Adv. Energy Mater. 11 2102355
    [112]
    Plenge M K, Pedersen J K, Mints V A, Arenz M and Rossmeisl J 2023 Following paths of maximum catalytic activity in the composition space of high-entropy alloys Adv. Energy Mater. 13 2202962
    [113]
    Rao Z et al 2022 Machine learning-enabled high-entropy alloy discovery Science 378 78-85
    [114]
    Wang Q, Liu X, He D and Wang D 2023 Fundamental comprehension, synthetic procedures and catalytic applications of high entropy oxide nanomaterials Mater. Today 70 218-36
    [115]
    Krawczyk P A et al 2020 High-entropy perovskites as multifunctional metal oxide semiconductors: synthesis and characterization of (Gd0.2Nd0.2La0.2Sm0.2Y0.2)CoO3 ACS Appl. Electron. Mater. 2 3211-20
    [116]
    Nguyen T X, Su Y-H, Hattrick-Simpers J, Joress H, Nagata T, Chang K-S, Sarker S, Mehta A and Ting J-M 2020 Exploring the first high-entropy thin film libraries: composition spread-controlled crystalline structure ACS Comb. Sci. 22 858-66
    [117]
    Pitike K C, Macias A, Eisenbach M, Bridges C A and Cooper V R 2022 Computationally accelerated discovery of high entropy pyrochlore oxides Chem. Mater. 34 1459-72
    [118]
    Liang J, Liu J, Wang H, Li Z, Cao G, Zeng Z, Liu S, Guo Y, Zeng M and Fu L 2024 Synthesis of ultrathin high-entropy oxides with phase controllability J. Am. Chem. Soc. 146 7118-23
    [119]
    Guo H-X, Wang W-M, C-Y H, Liu B-H, D-m Y, Liu G and Gao X-H 2022 Entropy-assisted high-entropy oxide with a spinel structure toward high-temperature infrared radiation materials ACS Appl. Mater. Interfaces 14 1950-60
    [120]
    Liu B, He C, Li Y, Li Z, Wang W, Lu Z, Wang Z, Zhao S, Liu G and Gao X 2024 Quasi-metallic high-entropy spinel oxides for full-spectrum solar energy harvesting Matter 7 140-57
    [121]
    Hu J et al 2024 In situ reconstruction of high-entropy heterostructure catalysts for stable oxygen evolution electrocatalysis under industrial conditions Adv. Mater. 36 2310918
    [122]
    Moniri S et al 2023 Three-dimensional atomic structure and local chemical order of medium- and high-entropy nanoalloys Nature 624 564-9
    [123]
    Miao J, Ercius P and Billinge S J L 2016 Atomic electron tomography: 3D structures without crystals Science 353 aaf2157
    [124]
    Pelz P M, Groschner C, Bruefach A, Satariano A, Ophus C and Scott M C 2022 Simultaneous successive twinning captured by atomic electron tomography ACS Nano 16 588-96
    [125]
    De Fontaine D 1971 The number of independent pair-correlation functions in multicomponent systems J. Appl. Crystallogr. 4 15-19
    [126]
    Q-j L, Sheng H and Ma E 2019 Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways Nat. Commun. 10 3563
    [127]
    Ma Y, Ma Y, Wang Q, Schweidler S, Botros M, Fu T, Hahn H, Brezesinski T and Breitung B 2021 High-entropy energy materials: challenges and new opportunities Energy Environ. Sci. 14 2883-905
    [128]
    Zhang L, Jia J and Yan J 2024 Challenges and strategies for synthesizing high performance micro and nanoscale high entropy oxide materials Small 20 2309586
    [129]
    Wu P, Deng C, Liu F, Zhu H, Chen L, Liu R, Zhu W and Xu C 2023 Magnetically recyclable high-entropy metal oxide catalyst for aerobic catalytic oxidative desulfurization Chin. J. Catal. 54 238-49
    [130]
    Duan C, Li X, Wang D, Wang Z, Sun H, Zheng R and Liu Y 2022 Nanosized high entropy spinel oxide (FeCoNiCrMn)3O4 as a highly active and ultra-stable electrocatalyst for the oxygen evolution reaction Sustain. Energy Fuels 6 1479-88
    [131]
    Zhong Y, Sabarou H, Yan X, Yang M, Gao M C, Liu X and Sisson R D 2019 Exploration of high entropy ceramics (HECs) with computational thermodynamics—a case study with LaMnO3±δ Mater. Des. 182 108060
    [132]
    Du K, Liu Y, Yang Y, Cui F, Wang J, Han M, Su J, Wang J, Han X and Hu Y 2023 High entropy oxides modulate atomic-level interactions for high-performance aqueous zinc-ion batteries Adv. Mater. 35 2301538
    [133]
    Li N, Liu H, Li S, Guo J, Li Q, Shi F, Li Y and Xiao B 2024 ScaleLat: a chemical structure matching algorithm for mapping atomic structure of multi-phase system and high entropy alloys Comput. Phys. Commun. 303 109265
    [134]
    Anandkumar M and Trofimov E 2023 Synthesis, properties, and applications of high-entropy oxide ceramics: current progress and future perspectives J. Alloys Compd. 960 170690
    [135]
    Ren J-T, Chen L, Wang H-Y and Yuan Z-Y 2023 High-entropy alloys in electrocatalysis: from fundamentals to applications Chem. Soc. Rev. 52 8319-73
    [136]
    Anand G, Wynn A P, Handley C M and Freeman C L 2018 Phase stability and distortion in high-entropy oxides Acta Mater. 146 119-25
    [137]
    Ye B, Wen T, Huang K, Wang C-Z and Chu Y 2019 First-principles study, fabrication, and characterization of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramic J. Am. Ceram. Soc. 102 4344-52
    [138]
    Wan X et al 2024 Machine learning paves the way for high entropy compounds exploration: challenges, progress, and outlook Adv. Mater. 2305192
    [139]
    Liu J, Li Y, Chen Z, Liu N, Zheng L, Shi W and Wang X 2022 Polyoxometalate cluster-incorporated high entropy oxide sub-1 nm nanowires J. Am. Chem. Soc. 144 23191-7
    [140]
    Wu H et al 2023 Structural framework-guided universal design of high-entropy compounds for efficient energy catalysis J. Am. Chem. Soc. 145 1924-35
    [141]
    Yao Y et al 2022 High-entropy nanoparticles: synthesis-structure-property relationships and data-driven discovery Science 376 eabn3103
    [142]
    Chen L, Chen Z, Yao X, Su B, Chen W, Pang X, Kim K-S, Singh C V and Zou Y 2022 High-entropy alloy catalysts: high-throughput and machine learning-driven design J. Mater. Inf. 2 19
    [143]
    Meng H, Yu R, Tang Z, Wen Z, Yu H and Chu Y 2023 Formation ability descriptors for high-entropy diborides established through high-throughput experiments and machine learning Acta Mater. 256 119132
    [144]
    Lin C-C, Chang C-W, Kaun C-C and Y-H S 2021 Stepwise evolution of photocatalytic spinel-structured (Co,Cr,Fe,Mn,Ni)3O4 high entropy oxides from first-principles calculations to machine learning Crystals 11 1035
    [145]
    Li K, Choudhary K, DeCost B, Greenwood M and Hattrick-Simpers J 2024 Efficient first principles based modeling via machine learning: from simple representations to high entropy materials J. Mater. Chem. A 12 12412-22
    [146]
    Debnath A, Raman L, Li W, Krajewski A M, Ahn M, Lin S, Shang S, Beese A M, Liu Z-K and Reinhart W F 2023 Comparing forward and inverse design paradigms: a case study on refractory high-entropy alloys J. Mater. Res. 38 4107-17
    [147]
    Tetsassi Feugmo C G, Ryczko K, Anand A, Singh C V and Tamblyn I 2021 Neural evolution structure generation: high entropy alloys J. Chem. Phys. 155 044102
    [148]
    Kar N, McCoy M, Wolfe J, Bueno S L A, Shafei I H and Skrabalak S E 2024 Retrosynthetic design of core-shell nanoparticles for thermal conversion to monodisperse high-entropy alloy nanoparticles Nat. Synth. 3 175-84
    [149]
    Li W et al 2024 Generative learning facilitated discovery of high-entropy ceramic dielectrics for capacitive energy storage Nat. Commun. 15 4940
    [150]
    Zhou Z, Shang Y, Liu X and Yang Y 2023 A generative deep learning framework for inverse design of compositionally complex bulk metallic glasses npj Comput. Mater. 9 15
  • 加载中

Catalog

    Figures(1)

    Article Metrics

    Article Views(14) PDF downloads(3)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return