Volume 3 Issue 4
December  2024
Turn off MathJax
Article Contents
Guigang Zhou, Jinsheng Ji, Ziling Chen, Jing Shuai, Qijie Liang, Qian Zhang. Scalable electronic and optoelectronic devices based on 2D TMDs[J]. Materials Futures, 2024, 3(4): 042701. doi: 10.1088/2752-5724/ad7c6c
Citation: Guigang Zhou, Jinsheng Ji, Ziling Chen, Jing Shuai, Qijie Liang, Qian Zhang. Scalable electronic and optoelectronic devices based on 2D TMDs[J]. Materials Futures, 2024, 3(4): 042701. doi: 10.1088/2752-5724/ad7c6c
Topical Review •
OPEN ACCESS

Scalable electronic and optoelectronic devices based on 2D TMDs

© 2024 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 3, Number 4
  • Received Date: 2024-07-09
  • Accepted Date: 2024-09-17
  • Revised Date: 2024-09-07
  • Publish Date: 2024-10-18
  • Materials are the building blocks of various functional applications. With Moore’s Law approaching Si’s physical limits, traditional semiconductor-based monolithic three-dimensional (M3D) integrated circuits always suffer from the issues, including electrical performance (carrier scattering), chip-overheating (low heat conductivity), electromagnetic interference. Recently, two-dimensional transition metal dichalcogenides (2D TMDs) inherit the atomically-thin thickness of 2D materials and exhibit outstanding natures, such as smooth flatness (excellent compatibility), electronic property (thickness below 1 nm), absence of dangling bonds (decreasing carrier scattering), making them highly promising for next-generation functional devices in comparison with traditional bulk materials. Up to now, 2D TMD-based transistors have already exhibited the feasibility of replacing conventional one in terms of performances. Furthermore, the technology of large-area 2D TMDs films has been greatly successful, which lays the foundation for the fabrication of scalable 2D TMD-based devices. Besides, the scalable devices based on 2D TMDs also show the prospects of realizing ultra-high-density M3D integrated circuits owing to the presence of outstanding compatibility. Herein, we focus some thriving research areas and provide a systematic review of recent advances in the field of scalable electronic and optoelectronic devices based on 2D TMDs, including large-area synthesis, property modulation, large-scale device applications, and multifunctional device integration. The research in 2D TMDs has clearly exhibited the tremendous promise for scalable diversified applications. In addition, scalable 2D TMD-based devices in terms of mass production, controllability, reproducibility, and low-cost have also been highlighted, showing the importance and benefits in modern industry. Finally, we summarize the remaining challenges and discuss the future directions of scalable 2D TMDs devices.
  • loading
  • [1]
    Cao W, Bu H, Vinet M, Cao M, Takagi S, Hwang S, Ghani T and Banerjee K 2023 The future transistors Nature 620 501-15
    [2]
    Wang S, Liu X and Zhou P 2022 The road for 2D semiconductors in the silicon age Adv. Mater. 34 e2106886
    [3]
    Franklin A D 2015 DEVICE TECHNOLOGY. Nanomaterials in transistors: from high-performance to thin-film applications Science 349 aab2750
    [4]
    Khan H N, Hounshell D A and Fuchs E R H 2018 Science and research policy at the end of Moore’s law Nat. Electron. 1 14-21
    [5]
    Shulaker M M, Hills G, Park R S, Howe R T, Saraswat K, Wong H P and Mitra S 2017 Three-dimensional integration of nanotechnologies for computing and data storage on a single chip Nature 547 74-78
    [6]
    Waldrop M M 2016 The chips are down for Moore’s law Nature 530 144-7
    [7]
    Ju S, Liang B, Zhou J, Pan D, Shi Y and Li S 2022 Coulomb screening and scattering in atomically thin transistors across dimensional crossover Nano Lett. 22 6671-7
    [8]
    Zhang Z et al 2022 Endoepitaxial growth of monolayer mosaic heterostructures Nat. Nanotechnol. 17 493-9
    [9]
    Ross J S et al 2013 Electrical control of neutral and charged excitons in a monolayer semiconductor Nat. Commun. 4 1474
    [10]
    Mak K F, He K, Lee C, Lee G H, Hone J, Heinz T F and Shan J 2013 Tightly bound trions in monolayer MoS2 Nat. Mater. 12 207-11
    [11]
    Han S J, Garcia A V, Oida S, Jenkins K A and Haensch W 2014 Graphene radio frequency receiver integrated circuit Nat. Commun. 5 3086
    [12]
    Mortazavi Zanjani S M, Holt M, Sadeghi M M, Rahimi S and Akinwande D 2017 3D integrated monolayer graphene- Si CMOS RF gas sensor platform npj 2D Mater. Appl. 1 36
    [13]
    Golberg D, Bando Y, Huang Y, Terao T, Mitome M, Tang C and Zhi C 2010 Boron nitride nanotubes and nanosheets ACS Nano 4 2979-93
    [14]
    Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Atomically thin MoS(2): a new direct-gap semiconductor Phys. Rev. Lett. 105 136805
    [15]
    Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y and Barsoum M W 2011 Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2 Adv. Mater. 23 4248-53
    [16]
    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Electric field effect in atomically thin carbon films Science 306 666-9
    [17]
    Qiao J, Kong X, Hu Z X, Yang F and Ji W 2014 High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus Nat. Commun. 5 4475
    [18]
    Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Single-layer MoS2 transistors Nat. Nanotechnol. 6 147-50
    [19]
    Liang Q, Chen Z, Zhang Q and Wee A T S 2022 Pentagonal 2D transition metal dichalcogenides: pdse2 and beyond Adv. Funct. Mater. 32 2203555
    [20]
    Liang Q, Zhang Q, Zhao X, Liu M and Wee A T S 2021 Defect engineering of two-dimensional transition-metal dichalcogenides: applications, challenges, and opportunities ACS Nano 15 2165-81
    [21]
    Mak K F and Shan J 2016 Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides Nat. Photon. 10 216-26
    [22]
    Shen P C et al 2021 Ultralow contact resistance between semimetal and monolayer semiconductors Nature 593 211-7
    [23]
    Empante T A et al 2017 Chemical vapor deposition growth of few-layer MoTe(2) in the 2H, 1T’, and 1T phases: tunable properties of MoTe(2) films ACS Nano 11 900-5
    [24]
    Keum D H et al 2015 Bandgap opening in few-layered monoclinic MoTe2 Nat. Phys. 11 482-6
    [25]
    Zhao B, Shen D, Zhang Z, Lu P, Hossain M, Li J, Li B and Duan X 2021 2D metallic transition-metal dichalcogenides: structures, synthesis, properties, and applications Adv. Funct. Mater. 31 2105132
    [26]
    Kim Y et al 2020 2D transition metal dichalcogenide heterostructures for p- and n-Type photovoltaic self-powered gas sensor Adv. Funct. Mater. 30 2003360
    [27]
    Liu L et al 2024 Ultrashort vertical-channel MoS2 transistor using a self-aligned contact Nat. Commun. 15 165
    [28]
    Liu Y, Huang Y and Duan X 2019 Van der Waals integration before and beyond two-dimensional materials Nature 567 323-33
    [29]
    Wang Q et al 2020 Optoelectronic properties of a van der Waals WS(2) monolayer/2D perovskite vertical heterostructure ACS Appl. Mater. Interfaces 12 45235-42
    [30]
    Xiao Y, Li W, Lin X, Ji Y, Chen Z, Jiang Y, Liu Q, Tang X and Liang Q 2023 2D MoTe2/MoS2-xOx Van der Waals heterostructure for bimodal neuromorphic optoelectronic computing Adv. Electron. Mater. 9 2300388
    [31]
    Liu C, Chen H, Wang S, Liu Q, Jiang Y G, Zhang D W, Liu M and Zhou P 2020 Two-dimensional materials for next-generation computing technologies Nat. Nanotechnol. 15 545-57
    [32]
    Liu Y, Duan X, Shin H J, Park S, Huang Y and Duan X 2021 Promises and prospects of two-dimensional transistors Nature 591 43-53
    [33]
    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 2D transition metal dichalcogenides Nat. Rev. Mater. 2 17033
    [34]
    Wu F, Tian H, Shen Y, Hou Z, Ren J, Gou G, Sun Y, Yang Y and Ren T L 2022 Vertical MoS(2) transistors with sub-1-nm gate lengths Nature 603 259-64
    [35]
    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G and Wang F 2010 Emerging photoluminescence in monolayer MoS2 Nano Lett. 10 1271-5
    [36]
    Chhowalla M, Jena D and Zhang H 2016 Two-dimensional semiconductors for transistors Nat. Rev. Mater. 1 16052
    [37]
    Chen H, Xue X, Liu C, Fang J, Wang Z, Wang J, Zhang D W, Hu W and Zhou P 2021 Logic gates based on neuristors made from two-dimensional materials Nat. Electron. 4 399-404
    [38]
    Lee C, Lee C, Lee S, Choi J, Yoo H and Im S G 2023 A reconfigurable binary/ternary logic conversion-in-memory based on drain-aligned floating-gate heterojunction transistors Nat. Commun. 14 3757
    [39]
    Wang X et al 2022 Analog and logic circuits fabricated on a wafer-scale two-dimensional semiconductor 2022 IEEE Symp. on VLSI Technology pp 1-2
    [40]
    Dutta R, Bala A, Sen A, Spinazze M R, Park H, Choi W, Yoon Y and Kim S 2023 Optical enhancement of indirect bandgap 2D transition metal dichalcogenides for multi-functional optoelectronic sensors Adv. Mater. 35 e2303272
    [41]
    Li N et al 2022 Gate-tunable large-scale flexible monolayer MoS2 devices for photodetectors and optoelectronic synapses Nano Res. 15 5418-24
    [42]
    Li X, Wu S-E, Wu D, Zhao T, Lin P, Shi Z, Tian Y, Li X, Zeng L and Yu X 2024 In situ construction of PtSe2/Ge Schottky junction array with interface passivation for broadband infrared photodetection and imaging Infomat 6 e12499
    [43]
    Liang Q et al 2019 High-performance, room temperature, ultra-broadband photodetectors based on Air-Stable PdSe2 Adv. Mater. 31 e1807609
    [44]
    Wang Q et al 2019 High-energy gain upconversion in monolayer tungsten disulfide photodetectors Nano Lett. 19 5595-603
    [45]
    Liu C, Chen H, Hou X, Zhang H, Han J, Jiang Y G, Zeng X, Zhang D W and Zhou P 2019 Small footprint transistor architecture for photoswitching logic and in situ memory Nat. Nanotechnol. 14 662-7
    [46]
    Migliato Marega G, Zhao Y, Avsar A, Wang Z, Tripathi M, Radenovic A and Kis A 2020 Logic-in-memory based on an atomically thin semiconductor Nature 587 72-77
    [47]
    Wang L et al 2019 Electronic devices and circuits based on wafer-scale polycrystalline monolayer MoS2 by chemical vapor deposition Adv. Electron. Mater. 5 1900393
    [48]
    Bruch R, Baaske J, Chatelle C, Meirich M, Madlener S, Weber W, Dincer C and Urban G A 2019 CRISPR/Cas13a-Powered electrochemical microfluidic biosensor for nucleic acid amplification-free miRNA diagnostics Adv. Mater. 31 e1905311
    [49]
    Chen Z et al 2022 A CRISPR/Cas12a-empowered surface plasmon resonance platform for rapid and specific diagnosis of the Omicron variant of SARS-CoV-2 Natl Sci. Rev. 9 nwac104
    [50]
    Chen Z et al 2024 Ultrasensitive DNA origami plasmon sensor for accurate detection in circulating tumor DNAs Laser Photon. Rev. 2400035
    [51]
    Zheng F, Chen Z, Li J, Wu R, Zhang B, Nie G, Xie Z and Zhang H 2022 A highly sensitive CRISPR-empowered surface plasmon resonance sensor for diagnosis of inherited diseases with femtomolar-level real-time quantification Adv. Sci. 9 e2105231
    [52]
    Desai S B et al 2016 MoS2 transistors with 1-nanometer gate lengths Science 354 99-102
    [53]
    Hu Y, Zheng W, Fan S, Zhang J and Liu X 2023 Noble-transition-metal dichalcogenides-emerging two-dimensional materials for sensor applications Appl. Phys. Rev. 10 031306
    [54]
    Jiang J, Xu W, Guo F, Yang S, Ge W, Shen B and Tang N 2023 Polarization-Resolved Near-Infrared PdSe2 p-i-n Homojunction Photodetector Nano Lett. 23 9522-8
    [55]
    Ross J S et al 2014 Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions Nat. Nanotechnol. 9 268-72
    [56]
    Xu H et al 2018 High-performance wafer-scale MoS2 transistors toward practical application Small 14 e1803465
    [57]
    Yang R et al 2023 2D transition metal dichalcogenides for photocatalysis Angew. Chem., Int. Ed. Engl. 62 e202218016
    [58]
    Yu J, Wang H, Zhuge F, Chen Z, Hu M, Xu X, He Y, Ma Y, Miao X and Zhai T 2023 Simultaneously ultrafast and robust two-dimensional flash memory devices based on phase-engineered edge contacts Nat. Commun. 14 5662
    [59]
    Cun H, Macha M, Kim H, Liu K, Zhao Y, Lagrange T, Kis A and Radenovic A 2019 Wafer-scale MOCVD growth of monolayer MoS2 on sapphire and SiO2 Nano Res. 12 2646-52
    [60]
    Wang Q et al 2020 Wafer-scale highly oriented monolayer MoS(2) with large domain sizes Nano Lett. 20 7193-9
    [61]
    Wang Q, Shi R, Zhao Y, Huang R, Wang Z, Amini A and Cheng C 2021 Recent progress on kinetic control of chemical vapor deposition growth of high-quality wafer-scale transition metal dichalcogenides Nanoscale Adv. 3 3430-40
    [62]
    Sun L et al 2021 Chemical vapour deposition Nat. Rev. Methods Primers 1 5
    [63]
    Lin H, Zhu Q, Shu D, Lin D, Xu J, Huang X, Shi W, Xi X, Wang J and Gao L 2019 Growth of environmentally stable transition metal selenide films Nat. Mater. 18 602-7
    [64]
    Ma H et al 2018 Chemical vapor deposition growth of single crystalline CoTe2 nanosheets with tunable thickness and electronic properties Chem. Mater. 30 8891-6
    [65]
    Tang L, Li T, Luo Y, Feng S, Cai Z, Zhang H, Liu B and Cheng H M 2020 Vertical chemical vapor deposition growth of highly uniform 2D transition metal dichalcogenides ACS Nano 14 4646-53
    [66]
    Liu L et al 2022 Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire Nature 605 69-75
    [67]
    Kwon J et al 2024 200-mm-wafer-scale integration of polycrystalline molybdenum disulfide transistors Nat. Electron. 7 356-64
    [68]
    Aljarb A et al 2020 Ledge-directed epitaxy of continuously self-aligned single-crystalline nanoribbons of transition metal dichalcogenides Nat. Mater. 19 1300-6
    [69]
    Chen L, Liu B, Ge M, Ma Y, Abbas A N and Zhou C 2015 Step-edge-guided nucleation and growth of aligned WSe2 on sapphire via a layer-over-layer growth mode ACS Nano 9 8368-75
    [70]
    Dong R, Gong X, Yang J, Sun Y, Ma L and Wang J 2022 The intrinsic thermodynamic difficulty and a step-guided mechanism for the epitaxial growth of uniform multilayer MoS2 with controllable thickness Adv. Mater. 34 2201402
    [71]
    Zheng P et al 2023 Universal epitaxy of non-centrosymmetric two-dimensional single-crystal metal dichalcogenides Nat. Commun. 14 592
    [72]
    Li T et al 2023 Halide vapor phase epitaxy of monolayer molybdenum diselenide single crystals Natl Sci. Open 2 20220055
    [73]
    Wu Q et al 2023 Iodine-assisted ultrafast growth of high-quality monolayer MoS2 with sulfur-terminated edges Natl Sci. Open 2 20230009
    [74]
    Kim M, Seo J, Kim J, Moon J S, Lee J, Kim J H, Kang J and Park H 2021 High-crystalline monolayer transition metal dichalcogenides films for wafer-scale electronics ACS Nano 15 3038-46
    [75]
    Yang P et al 2020 Epitaxial growth of centimeter-scale single-crystal MoS2 monolayer on Au(111) ACS Nano 14 5036-45
    [76]
    Li T et al 2021 Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire Nat. Nanotechnol. 16 1201-7
    [77]
    Fu J H et al 2023 Oriented lateral growth of two-dimensional materials on c-plane sapphire Nat. Nanotechnol. 18 1289-94
    [78]
    Song S et al 2023 Fabrication of p-type 2D single-crystalline transistor arrays with Fermi-level-tuned van der Waals semimetal electrodes Nat. Commun. 14 4747
    [79]
    Xia Y et al 2023 12-inch growth of uniform MoS2 monolayer for integrated circuit manufacture Nat. Mater. 22 1324-31
    [80]
    Hoang A T et al 2023 Low-temperature growth of MoS(2) on polymer and thin glass substrates for flexible electronics Nat. Nanotechnol. 18 1439-47
    [81]
    Zhou J et al 2018 A library of atomically thin metal chalcogenides Nature 556 355-9
    [82]
    Ling X, Lee Y H, Lin Y, Fang W, Yu L, Dresselhaus M S and Kong J 2014 Role of the seeding promoter in MoS2 growth by chemical vapor deposition Nano Lett. 14 464-72
    [83]
    Aljarb A, Cao Z, Tang H L, Huang J K, Li M, Hu W, Cavallo L and Li L J 2017 Substrate lattice-guided seed formation controls the orientation of 2D transition-metal dichalcogenides ACS Nano 11 9215-22
    [84]
    Zuo Y et al 2022 Robust growth of two-dimensional metal dichalcogenides and their alloys by active chalcogen monomer supply Nat. Commun. 13 1007
    [85]
    Kang K, Xie S, Huang L, Han Y, Huang P Y, Mak K F, Kim C J, Muller D and Park J 2015 High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity Nature 520 656-60
    [86]
    Choi M, Park Y J, Sharma B K, Bae S R, Kim S Y and Ahn J H 2018 Flexible active-matrix organic light-emitting diode display enabled by MoS(2) thin-film transistor Sci. Adv. 4 eaas8721
    [87]
    Chubarov M et al 2021 Wafer-scale epitaxial growth of unidirectional WS(2) monolayers on sapphire ACS Nano 15 2532-41
    [88]
    Daus A, Vaziri S, Chen V, Köroglu Ç, Grady R W, Bailey C S, Lee H R, Schauble K, Brenner K and Pop E 2021 High-performance flexible nanoscale transistors based on transition metal dichalcogenides Nat. Electron. 4 495-501
    [89]
    Kim J et al 2021 Wafer-scale production of transition metal dichalcogenides and alloy monolayers by nanocrystal conversion for large-scale ultrathin flexible electronics Nano Lett. 21 9153-63
    [90]
    Li N et al 2020 Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors Nat. Electron. 3 711-7
    [91]
    Gurarslan A, Yu Y, Su L, Yu Y, Suarez F, Yao S, Zhu Y, Ozturk M, Zhang Y and Cao L 2014 Surface-energy-assisted perfect transfer of centimeter-scale monolayer and few-layer MoS2 films onto arbitrary substrates ACS Nano 8 11522-8
    [92]
    Phan H D, Kim Y, Lee J, Liu R, Choi Y, Cho J H and Lee C 2017 Ultraclean and direct transfer of a wafer-scale MoS2 thin film onto a plastic substrate Adv. Mater. 29 1603928
    [93]
    Borin Barin G, Song Y, de Fátima Gimenez I, Souza Filho A G, Barreto L S and Kong J 2015 Optimized graphene transfer: influence of polymethylmethacrylate (PMMA) layer concentration and baking time on graphene final performance Carbon 84 82-90
    [94]
    Qian Y, Sohn M K, Park H J, Hwang J S, Subramanian K R V and Kang D J 2020 Universal 2D material film transfer using a novel low molecular weight polyvinyl acetate Appl. Surf. Sci. 534 147650
    [95]
    Suk J W, Kitt A, Magnuson C W, Hao Y F, Ahmed S, An J, Swan A K, Goldberg B B and Ruoff R S 2011 Transfer of CVD-grown monolayer graphene onto arbitrary substrates ACS Nano 5 6916-24
    [96]
    Lin Z, Zhao Y, Zhou C, Zhong R, Wang X, Tsang Y H and Chai Y 2015 Controllable growth of large-size crystalline MoS2 and resist-free transfer assisted with a Cu thin film Sci. Rep. 5 18596
    [97]
    Tang L, Tan J, Nong H, Liu B and Cheng H-M 2020 Chemical vapor deposition growth of two-dimensional compound materials: controllability, material quality, and growth mechanism Acc. Mater. Res. 2 36-47
    [98]
    Zhang Y H et al 2013 Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary ACS Nano 7 8963-71
    [99]
    Tang L, Teng C, Luo Y, Khan U, Pan H, Cai Z, Zhao Y, Liu B and Cheng H M 2019 Confined van der Waals epitaxial growth of two-dimensional large single-crystal In2Se3 for flexible broadband photodetectors Research 2019 2763704
    [100]
    Gao Y et al 2017 Ultrafast growth of high-quality monolayer WSe2 on Au Adv. Mater. 29 1700990
    [101]
    Qian Y and Kang D J 2018 Large-area high-quality AB-stacked bilayer graphene on h-BN/Pt Foil by chemical vapor deposition ACS Appl. Mater. Interfaces 10 29069-75
    [102]
    Kunene T J, Tartibu L K, Ukoba K and Jen T-C 2022 Review of atomic layer deposition process, application and modeling tools Mater. Today: Proc. 62 S95-S109
    [103]
    Browning R, Padigi P, Solanki R, Tweet D J, Schuele P and Evans D 2015 Atomic layer deposition of MoS2 thin films Mater. Res. Express 2 035006
    [104]
    Pyeon J J, Kim S H, Jeong D S, Baek S H, Kang C Y, Kim J S and Kim S K 2016 Wafer-scale growth of MoS2 thin films by atomic layer deposition Nanoscale 8 10792-8
    [105]
    Jurca T, Moody M J, Henning A, Emery J D, Wang B, Tan J M, Lohr T L, Lauhon L J and Marks T J 2017 Low-temperature atomic layer deposition of MoS2 films Angew. Chem., Int. Ed. Engl. 56 4991-5
    [106]
    Hong S et al 2021 Highly sensitive active pixel image sensor array driven by large-area bilayer MoS(2) transistor circuitry Nat. Commun. 12 3559
    [107]
    Fu D et al 2017 Molecular beam epitaxy of highly crystalline monolayer molybdenum disulfide on hexagonal boron nitride J. Am. Chem. Soc. 139 9392-400
    [108]
    Poh S M et al 2018 Molecular beam epitaxy of highly crystalline MoSe(2) on hexagonal boron nitride ACS Nano 12 7562-70
    [109]
    Yang K Y, Nguyen H T, Tsao Y M, Artemkina S B, Fedorov V E, Huang C W and Wang H C 2023 Large area MoS(2) thin film growth by direct sulfurization Sci. Rep. 13 8378
    [110]
    Kwack Y-J, Can T T T and Choi W-S 2021 Bottom-up water-based solution synthesis for a large MoS2 atomic layer for thin-film transistor applications npj 2D Mater. Appl. 5 84
    [111]
    Yang R, Mei L, Zhang Q, Fan Y, Shin H S, Voiry D and Zeng Z 2022 High-yield production of mono- or few-layer transition metal dichalcogenide nanosheets by an electrochemical lithium ion intercalation-based exfoliation method Nat. Protocols 17 358-77
    [112]
    Lin Z et al 2018 Solution-processable 2D semiconductors for high-performance large-area electronics Nature 562 254-8
    [113]
    Kwon Y A et al 2023 Wafer-scale transistor arrays fabricated using slot-die printing of molybdenum disulfide and sodium-embedded alumina Nat. Electron. 6 443-50
    [114]
    Huang Y et al 2020 Universal mechanical exfoliation of large-area 2D crystals Nat. Commun. 11 2453
    [115]
    Liu F, Wu W, Bai Y, Chae S H, Li Q, Wang J, Hone J and Zhu X Y 2020 Disassembling 2D van der Waals crystals into macroscopic monolayers and reassembling into artificial lattices Science 367 903-6
    [116]
    Fu Q et al 2022 One-step exfoliation method for plasmonic activation of large-area 2D crystals Adv. Sci. 9 2204247
    [117]
    Wang S, Xue J, Xu D, He J, Dai Y, Xia T, Huang Y, He Q, Duan X and Lin Z 2023 Electrochemical molecular intercalation and exfoliation of solution-processable two-dimensional crystals Nat. Protocols 18 2814-37
    [118]
    Grubisic-Cabo A, Michiardi M, Sanders C E, Bianchi M, Curcio D, Phuyal D, Berntsen M H, Guo Q and Dendzik M 2023 In situ exfoliation method of large-area 2D materials Adv. Sci. 10 2301243
    [119]
    Magda G Z, Peto J, Dobrik G, Hwang C, Biro L P and Tapaszto L 2015 Exfoliation of large-area transition metal chalcogenide single layers Sci. Rep. 5 14714
    [120]
    Li J et al 2021 Printable two-dimensional superconducting monolayers Nat. Mater. 20 181-7
    [121]
    Fan X, Xu P, Zhou D, Sun Y, Li Y C, Nguyen M A, Terrones M and Mallouk T E 2015 Fast and efficient preparation of exfoliated 2H MoS2 nanosheets by sonication-assisted lithium intercalation and infrared laser-induced 1T to 2H phase reversion Nano Lett. 15 5956-60
    [122]
    Desai S B et al 2016 Gold-Mediated exfoliation of ultralarge optoelectronically-perfect monolayers Adv. Mater. 28 4053-8
    [123]
    Velicky M et al 2018 Mechanism of gold-assisted exfoliation of centimeter-sized transition-metal dichalcogenide monolayers ACS Nano 12 10463-72
    [124]
    Li X et al 2021 Realizing the intrinsic anisotropic growth of 1T' ReS2 on selected Au(101) substrate toward large-scale single crystal fabrication Adv. Funct. Mater. 31 2102138
    [125]
    Zhang L, Dong J and Ding F 2021 Strategies, status, and challenges in wafer scale single crystalline two-dimensional materials synthesis Chem. Rev. 121 6321-72
    [126]
    Liang Q, Zhang Q, Gou J, Song T A, Chen H, Yang M, Lim S X, Wang Q, Zhu R and Yakovlev N 2020 Performance improvement by ozone treatment of 2D PdSe(2) ACS Nano 14 5668-77
    [127]
    Peimyoo N et al 2021 Electrical tuning of optically active interlayer excitons in bilayer MoS(2) Nat. Nanotechnol. 16 888-93
    [128]
    Pimenta Martins L G et al 2023 Pressure tuning of minibands in MoS(2)/WSe(2) heterostructures revealed by moire phonons Nat. Nanotechnol. 18 1147-53
    [129]
    Sattari F and Mirershadi S 2021 Effect of the strain on spin-valley transport properties in MoS(2) superlattice Sci. Rep. 11 17617
    [130]
    Zeng M et al 2020 Bandgap tuning of two-dimensional materials by sphere diameter engineering Nat. Mater. 19 528-33
    [131]
    Zhang L et al 2020 Twist-angle dependence of moire excitons in WS(2)/MoSe(2) heterobilayers Nat. Commun. 11 5888
    [132]
    Kim H et al 2019 Synthetic WSe(2) monolayers with high photoluminescence quantum yield Sci. Adv. 5 eaau4728
    [133]
    Liang H, Zheng Y, Loh L, Hu Z, Liang Q, Han C, Bosman M, Chen W and Bettiol A A 2022 Robust n-type doping of WSe2 enabled by controllable proton irradiation Nano Res. 16 1220-7
    [134]
    Liang Q, Gou J, Arramel, Zhang Q, Zhang W and Wee A T S 2020 Oxygen-induced controllable p-type doping in 2D semiconductor transition metal dichalcogenides Nano Res. 13 3439-44
    [135]
    Ugeda M M et al 2014 Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor Nat. Mater. 13 1091-5
    [136]
    Cai X et al 2022 Bridging the gap between atomically thin semiconductors and metal leads Nat. Commun. 13 1777
    [137]
    Liu X, Islam A, Guo J and Feng P X 2020 Controlling polarity of MoTe(2) transistors for monolithic complementary logic via schottky contact engineering ACS Nano 14 1457-67
    [138]
    Mleczko M J, Yu A C, Smyth C M, Chen V, Shin Y C, Chatterjee S, Tsai Y-C, Nishi Y, Wallace R M and Pop E 2019 Contact engineering high-performance n-type MoTe(2) transistors Nano Lett. 19 6352-62
    [139]
    Li W et al 2023 Approaching the quantum limit in two-dimensional semiconductor contacts Nature 613 274-9
    [140]
    Li X et al 2023 Two-dimensional metallic alloy contacts with composition-tunable work functions Nat. Electron. 6 842-51
    [141]
    Wang Y, Kim J C, Li Y, Ma K Y, Hong S, Kim M, Shin H S, Jeong H Y and Chhowalla M 2022 P-type electrical contacts for 2D transition-metal dichalcogenides Nature 610 61-66
    [142]
    Liu Y, Guo J, Zhu E, Liao L, Lee S-J, Ding M, Shakir I, Gambin V, Huang Y and Duan X 2018 Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions Nature 557 696-700
    [143]
    Song S et al 2020 Wafer-scale production of patterned transition metal ditelluride layers for two-dimensional metal-semiconductor contacts at the Schottky-Mott limit Nat. Electron. 3 207-15
    [144]
    Li Y, Su L, Lu Y, Luo Q, Liang P, Shu H and Chen X 2023 High-throughput screening of phase-engineered atomically thin transition-metal dichalcogenides for van der Waals contacts at the Schottky-Mott limit InfoMat 5 189
    [145]
    Zhu B, Xiao K, Yang S, Watanabe K, Taniguchi T and Cui X 2023 In-plane electric-field-induced orbital hybridization of excitonic states in monolayer WSe2 Phys. Rev. Lett. 131 036901
    [146]
    Gelly R J et al 2022 Probing dark exciton navigation through a local strain landscape in a WSe(2) monolayer Nat. Commun. 13 232
    [147]
    Yuan L, Zheng B, Kunstmann J, Brumme T, Kuc A B, Ma C, Deng S, Blach D, Pan A and Huang L 2020 Twist-angle-dependent interlayer exciton diffusion in WS(2)-WSe(2) heterobilayers Nat. Mater. 19 617-23
    [148]
    Lee S et al 2023 Achieving near-perfect light absorption in atomically thin transition metal dichalcogenides through band nesting Nat. Commun. 14 3889
    [149]
    Kallatt S, Das S, Chatterjee S and Majumdar K 2019 Interlayer charge transport controlled by exciton-trion coherent coupling npj 2D Mater. Appl. 3 15
    [150]
    Xiao J, Zhao M, Wang Y and Zhang X 2017 Excitons in atomically thin 2D semiconductors and their applications Nanophotonics 6 1309-28
    [151]
    Aslan B, Datye I M, Mleczko M J, Sze Cheung K, Krylyuk S, Bruma A, Kalish I, Davydov A V, Pop E and Heinz T F 2018 Probing the Optical Properties and Strain-Tuning of Ultrathin Mo1-xWxTe2 Nano Lett. 18 2485-91
    [152]
    Tang P, Shu H, Yang M, Zhang M, Sheng C, Liang P, Cao D and Chen X 2021 Rapid wafer-scale growth of MoS2(1-x)Se2x alloy monolayers with tunable compositions and optical properties for high-performance photodetectors ACS Appl. Nano Mater. 4 12609-18
    [153]
    Siddiqui A and Hine N D M 2024 Machine-learned interatomic potentials for transition metal dichalcogenide Mo1-xWxS2-2ySe2y alloys npj Comput. Mater. 10 169
    [154]
    Song J-G et al 2015 Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer Nat. Commun. 6 7817
    [155]
    Zhang T et al 2020 Universal in situ substitutional doping of transition metal dichalcogenides by liquid-phase precursor-assisted synthesis ACS Nano 14 4326-35
    [156]
    Wang W, Shu H, Wang J, Cheng Y, Liang P and Chen X 2020 Defect passivation and photoluminescence enhancement of monolayer MoS2 crystals through sodium halide-assisted chemical vapor deposition growth ACS Appl. Mater. Interfaces 12 9563-71
    [157]
    Tian C et al 2023 Opposite doping distribution in TMD monolayer regulated by VLS and VSS growth mechanism Sci. China Mater. 66 4723-32
    [158]
    Das S et al 2021 Transistors based on two-dimensional materials for future integrated circuits Nat. Electron. 4 786-99
    [159]
    Bala A, Sen A, Shim J, Gandla S and Kim S 2023 Back-end-of-line compatible large-area molybdenum disulfide grown on flexible substrate: enabling high-performance low-power memristor applications ACS Nano 17 13784-91
    [160]
    Song S et al 2022 Atomic transistors based on seamless lateral metal-semiconductor junctions with a sub-1-nm transfer length Nat. Commun. 13 4916
    [161]
    Tong L et al 2022 Heterogeneous complementary field-effect transistors based on silicon and molybdenum disulfide Nat. Electron. 6 37-44
    [162]
    Neisser M 2018 The 2017 IRDS lithography roadmap JoMM 1 1-8
    [163]
    Rai A et al 2015 Air stable doping and intrinsic mobility enhancement in monolayer molybdenum disulfide by amorphous titanium suboxide encapsulation Nano Lett. 15 4329-36
    [164]
    English C, Smithe K K, Xu R L and Pop E 2016 Approaching ballistic transport in monolayer MoS2 transistors with self-aligned 10 nm top gates 2016 IEEE Int. Electron Devices Meeting (IEDM) pp 561-4
    [165]
    Yang C C et al 2016 Enabling monolithic 3D image sensor using large-area monolayer transition metal dichalcogenide and logic/memory hybrid 3D+IC 2016 IEEE Symp. on VLSI Technology pp 1-2
    [166]
    Agarwal T, Szabo A, Bardon M G, Soree B, Radu I, Raghavan P, Luisier M, Dehaene W and Heyns M 2017 Benchmarking of monolithic 3D integrated MX2 FETs with Si FinFETs 2017 IEEE Int. Electron Devices Meeting (IEDM) PP 571-4
    [167]
    Pang C S, Wu P, Appenzeller J and Chen Z 2020 Sub-1nm EOT WS2-FET with IDS>600 μA/μm at VDS=1V and SS<70mV/dec at LG=40 nm 2020 IEEE Int. Electron Devices Meeting (IEDM) pp 341-3
    [168]
    Hu V P-H, Su C-W, Lee Y-W, Ho T-Y, Cheng -C-C, Chen T-C, Hung T Y-T, Li J-F, Chen Y-G and Li L-J 2020 Energy-efficient monolithic 3-D SRAM Cell With BEOL MoS2 FETs for SoC scaling IEEE Trans. Electron. Dev. 67 4216-21
    [169]
    Smets Q et al 2019 Ultra-scaled MOCVD MoS2 MOSFETs with 42nm contact pitch and 250μA/μm drain current 2019 IEEE Int. Electron Devices Meeting (IEDM) pp 2321-4
    [170]
    Li W et al 2019 Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices Nat. Electron. 2 563-71
    [171]
    Zhu Y et al 2018 Monolayer molybdenum disulfide transistors with single-atom-thick gates Nano Lett. 18 3807-13
    [172]
    Krishnamohan T, Kim D, Raghunathan S and Saraswat K 2008 Double-gate strained-ge heterostructure tunneling FET (TFET) With record high drive currents and <60mV/dec subthreshold slope 2008 IEEE Int. Electron Devices Meeting pp 1-3
    [173]
    Zhao H, Chen Y, Wang Y, Zhou F, Xue F and Lee J 2011 InGaAs tunneling field-effect-transistors with atomic-layer-deposited gate oxides IEEE Trans. Electron. Dev. 58 2990-5
    [174]
    Mookerjea S et al 2009 Experimental demonstration of 100nm channel length In0.53Ga0.47As-based vertical inter-band tunnel field effect transistors (TFETs) for ultra low-power logic and SRAM applications 2009 IEEE Int. Electron Devices Meeting (IEDM) pp 1-3
    [175]
    Convertino C, Zota C, Sant S, Eltes F, Sousa M, Caimi D, Schenk A and Czornomaz L 2018 InGaAs-on-insulator FinFETs with reduced off-current and record performance 2018 IEEE Int. Electron Devices Meeting (IEDM) pp 3921-4
    [176]
    Choi W Y, Park B-G, Lee J D and Liu T-J K 2007 Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec IEEE Electron Device Lett. 28 743-5
    [177]
    Bhuwalka K K, Sedlmaier S, Ludsteck A K, Tolksdorf C, Schulze J and Eisele I 2004 Vertical tunnel field-effect transistor IEEE Trans. Electron. Dev. 51 279-82
    [178]
    Yang X et al 2023 Highly reproducible van der Waals integration of two-dimensional electronics on the wafer scale Nat. Nanotechnol. 18 471-8
    [179]
    Liu G et al 2022 Graphene-assisted metal transfer printing for wafer-scale integration of metal electrodes and two-dimensional materials Nat. Electron. 5 275-80
    [180]
    Nguyen V L et al 2022 Wafer-scale integration of transition metal dichalcogenide field-effect transistors using adhesion lithography Nat. Electron. 6 146-53
    [181]
    Tang J et al 2023 Low power flexible monolayer MoS2 integrated circuits Nat. Commun. 14 3633
    [182]
    Fan D et al 2023 Two-dimensional semiconductor integrated circuits operating at gigahertz frequencies Nat. Electron. 6 879-87
    [183]
    Lu Z et al 2023 Wafer-scale high-kappa dielectrics for two-dimensional circuits via van der Waals integration Nat. Commun. 14 2340
    [184]
    Wang H, Yu L, Lee Y-H, Shi Y, Hsu A, Chin M L, Li L-J, Dubey M, Kong J and Palacios T 2012 Integrated circuits based on bilayer MoS2 transistors Nano Lett. 12 4674-80
    [185]
    Wachter S, Polyushkin D K, Bethge O and Mueller T 2017 A microprocessor based on a two-dimensional semiconductor Nat. Commun. 8 14948
    [186]
    Belete M, Kataria S, Turfanda A, Vaziri S, Wahlbrink T, Engström O and Lemme M C 2020 Nonvolatile resistive switching in nanocrystalline molybdenum disulfide with ion-based plasticity Adv. Electron. Mater. 6 1900892
    [187]
    Lu D et al 2024 Monolithic three-dimensional tier-by-tier integration via van der Waals lamination Nature 630 340-5
    [188]
    Jiang J, Parto K, Cao W and Banerjee K 2019 Ultimate monolithic-3D integration with 2D materials: rationale, prospects, and challenges IEEE Trans. Electron Devices Soc. 7 878-87
    [189]
    Shen T, Li F, Zhang Z, Xu L and Qi J 2020 High-performance broadband photodetector based on monolayer MoS(2) hybridized with environment-friendly CuInSe(2) quantum dots ACS Appl. Mater. Interfaces 12 54927-35
    [190]
    Yang W-H, Jiang X-Y, Xiao Y-T, Fu C, Wan J-K, Yin X, Tong X-W, Wu D, Chen L-M and Luo L-B 2021 Detection of wavelength in the range from ultraviolet to near infrared light using two parallel PtSe2/thin Si Schottky junctions Mater. Horiz. 8 1976-84
    [191]
    Cheng Z, Guo R, Wang J, Wang Y, Xing Z, Ma L, Wei W, Yu Y, Tsang H K and Liu T 2022 Integrated optoelectronics with two-dimensional materials Natl Sci. Open 1 20220022
    [192]
    Ma S L et al 2022 A 619-pixel machine vision enhancement chip based on two-dimensional semiconductors Sci. Adv. 8 eabn9328
    [193]
    Hinton H, Jang H, Wu W, Lee M-H, Seol M, Shin H-J, Park S and Ham D 2022 A 200 x 256 image sensor heterogeneously integrating a 2D nanomaterial-based photo-FET array and CMOS time-to-digital converters 2022 IEEE Int. Solid- State Circuits Conf. (ISSCC) vol 65 pp 1-3
    [194]
    Zeng S, Liu C, Huang X, Tang Z, Liu L and Zhou P 2022 An application-specific image processing array based on WSe(2) transistors with electrically switchable logic functions Nat. Commun. 13 56
    [195]
    Dodda A et al 2022 Active pixel sensor matrix based on monolayer MoS(2) phototransistor array Nat. Mater. 21 1379-87
    [196]
    Park H, Liu N, Kim B H, Kwon S H, Baek S, Kim S, Lee H K, Yoon Y J, Kim S and Kim S 2020 Exceptionally uniform and scalable multilayer MoS2 phototransistor array based on large-scale MoS2 grown by RF sputtering, electron beam irradiation, and sulfurization ACS Appl. Mater. Interfaces 12 20645-52
    [197]
    Jang H, Liu C, Hinton H, Lee M H, Kim H, Seol M, Shin H J, Park S and Ham D 2020 An atomically thin optoelectronic machine vision processor Adv. Mater. 32 e2002431
    [198]
    Li X et al 2020 Power-efficient neural network with artificial dendrites Nat. Nanotechnol. 15 776-82
    [199]
    Horowitz M 2014 1.1 Computing’s energy problem (and what we can do about it) 2014 IEEE Int. Solid-State Circuits Conf. Digest of Technical Papers (ISSCC) pp 10-14
    [200]
    Migliato Marega G, Ji H G, Wang Z, Pasquale G, Tripathi M, Radenovic A and Kis A 2023 A large-scale integrated vector-matrix multiplication processor based on monolayer molybdenum disulfide memories Nat. Electron. 6 991-8
    [201]
    Tang B et al 2022 Wafer-scale solution-processed 2D material analog resistive memory array for memory-based computing Nat. Commun. 13 3037
    [202]
    Won U Y, An Vu Q, Park S B, Park M H, Dam Do V, Park H J, Yang H, Lee Y H and Yu W J 2023 Multi-neuron connection using multi-terminal floating-gate memristor for unsupervised learning Nat. Commun. 14 3070
    [203]
    Xie M, Jia Y, Nie C, Liu Z, Tang A, Fan S, Liang X, Jiang L, He Z and Yang R 2023 Monolithic 3D integration of 2D transistors and vertical RRAMs in 1T-4R structure for high-density memory Nat. Commun. 14 5952
    [204]
    Jiang N et al 2023 Bioinspired In-sensor reservoir computing for self-adaptive visual recognition with two-dimensional dual-mode phototransistors Adv. Opt. Mater. 11 2300271
    [205]
    Mennel L, Symonowicz J, Wachter S, Polyushkin D K, Molina-Mendoza A J and Mueller T 2020 Ultrafast machine vision with 2D material neural network image sensors Nature 579 62-66
    [206]
    Syed G S, Zhou Y, Warner J and Bhaskaran H 2023 Atomically thin optomemristive feedback neurons Nat. Nanotechnol. 18 1036-43
    [207]
    Wu P et al 2021 Next-generation machine vision systems incorporating two-dimensional materials: progress and perspectives InfoMat 4 e12275
    [208]
    Zhou Y et al 2023 Computational event-driven vision sensors for in-sensor spiking neural networks Nat. Electron. 6 870-8
    [209]
    Chen J, Zhou Z, Kim B J, Zhou Y, Wang Z, Wan T, Yan J, Kang J, Ahn J-H and Chai Y 2023 Optoelectronic graded neurons for bioinspired in-sensor motion perception Nat. Nanotechnol. 18 882-8
    [210]
    Pan X, Shi J, Wang P, Wang S, Pan C, Yu W, Cheng B, Liang S J and Miao F 2023 Parallel perception of visual motion using light-tunable memory matrix Sci. Adv. 9 eadi4083
    [211]
    Gonzalez Marin J F, Unuchek D, Watanabe K, Taniguchi T and Kis A 2019 MoS2 photodetectors integrated with photonic circuits npj 2D Mater. Appl. 3 14
    [212]
    Wang C H, Mcclellan C, Shi Y, Zheng X, Chen V, Lanza M, Pop E and Wong H S P 2018 3D monolithic stacked 1T1R cells using monolayer MoS2 FET and hBN RRAM fabricated at low (150 ℃) temperature 2018 IEEE Int. Electron Devices Meeting (IEDM pp 22.5.1-22.5.4
    [213]
    Meng W et al 2021 Three-dimensional monolithic micro-LED display driven by atomically thin transistor matrix Nat. Nanotechnol. 16 1231-6
    [214]
    Hwangbo S, Hu L, Hoang A T, Choi J Y and Ahn J H 2022 Wafer-scale monolithic integration of full-colour micro-LED display using MoS2 transistor Nat. Nanotechnol. 17 500-6
    [215]
    Sivan M et al 2019 All WSe(2) 1T1R resistive RAM cell for future monolithic 3D embedded memory integration Nat. Commun. 10 5201
    [216]
    Dodda A, Trainor N, Redwing J M and Das S 2022 All-in-one, bio-inspired, and low-power crypto engines for near-sensor security based on two-dimensional memtransistors Nat. Commun. 13 3587
    [217]
    Ma S et al 2022 An artificial neural network chip based on two-dimensional semiconductor Sci. Bull. 67 270-7
    [218]
    Kang J-H et al 2023 Monolithic 3D integration of 2D materials-based electronics towards ultimate edge computing solutions Nat. Mater. 22 1470-7
    [219]
    Jayachandran D et al 2024 Three-dimensional integration of two-dimensional field-effect transistors Nature 625 276-81
  • 加载中

Catalog

    Figures(1)

    Article Metrics

    Article Views(17) PDF downloads(0)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return