Huanbin Zheng, Jun Zeng, Xuanhong Wan, Xin Song, Chenxi Peng, Jiarui Wang, Luyi Sun, Hui Wang, Min Zhu, Jun Liu. ICE optimization strategies of hard carbon anode for sodium-ion batteries: from the perspective of material synthesis[J]. Materials Futures, 2024, 3(3): 032102. doi: 10.1088/2752-5724/ad5d7f
Citation:
Huanbin Zheng, Jun Zeng, Xuanhong Wan, Xin Song, Chenxi Peng, Jiarui Wang, Luyi Sun, Hui Wang, Min Zhu, Jun Liu. ICE optimization strategies of hard carbon anode for sodium-ion batteries: from the perspective of material synthesis[J]. Materials Futures, 2024, 3(3): 032102. doi: 10.1088/2752-5724/ad5d7f
Huanbin Zheng, Jun Zeng, Xuanhong Wan, Xin Song, Chenxi Peng, Jiarui Wang, Luyi Sun, Hui Wang, Min Zhu, Jun Liu. ICE optimization strategies of hard carbon anode for sodium-ion batteries: from the perspective of material synthesis[J]. Materials Futures, 2024, 3(3): 032102. doi: 10.1088/2752-5724/ad5d7f
Citation:
Huanbin Zheng, Jun Zeng, Xuanhong Wan, Xin Song, Chenxi Peng, Jiarui Wang, Luyi Sun, Hui Wang, Min Zhu, Jun Liu. ICE optimization strategies of hard carbon anode for sodium-ion batteries: from the perspective of material synthesis[J]. Materials Futures, 2024, 3(3): 032102. doi: 10.1088/2752-5724/ad5d7f
School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou 510641, People’s Republic of China
Funds:
This study was supported by the National Key Research and Development Program of China (Grant No. 2023YFB3809303), the National Natural Science Foundation of China (Grant Nos. U21A20332 and 51771076) and R&D Program in Key Areas of Guangdong Province (Grant No. 2020B0101030005).
With the continuous exploration of researchers in the field of sodium-ion batteries, the performance of these batteries has been greatly improved, and they have a wide range of application prospects in large-scale energy storage, traffic power and other fields. Hard carbon is the most important anode material for sodium-ion batteries. Although it has the advantages of low cost, stable structure and performance, it still has the problems of low initial Coulombic efficiency (ICE) and poor rate performance in application. In order to solve the problem of low ICE of hard carbon anode in sodium-ion batteries, in recent years the literature about hard carbon anode in sodium-ion batteries has been comprehensively reviewed. Based on the microstructure of hard carbon material, the causes of low ICE of hard carbon are analyzed. At the same time, from the point of view of material structure design and regulation, the current optimization strategies of hard carbon anode ICE are summarized, including the following aspects: optimization and improvement of the carbonization process, precursor screening and design, surface coating strategy, micro-pore structure control, catalytic carbonization strategy. We hope that this review will provide reference for further optimization of hard carbon properties and its large-scale application in sodium-ion batteries.