Volume 3 Issue 2
June  2024
Turn off MathJax
Article Contents
Yuanbin Cheng, Qian Li, Mengyuan Chen, Fei Chen, Zhenghui Wu, Huaibin Shen. High-brightness green InP-based QLEDs enabled by in-situ passivating core surface with zinc myristate[J]. Materials Futures, 2024, 3(2): 025201. doi: 10.1088/2752-5724/ad3a83
Citation: Yuanbin Cheng, Qian Li, Mengyuan Chen, Fei Chen, Zhenghui Wu, Huaibin Shen. High-brightness green InP-based QLEDs enabled by in-situ passivating core surface with zinc myristate[J]. Materials Futures, 2024, 3(2): 025201. doi: 10.1088/2752-5724/ad3a83
Paper •
OPEN ACCESS

High-brightness green InP-based QLEDs enabled by in-situ passivating core surface with zinc myristate

© 2024 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 3, Number 2
  • Received Date: 2024-03-25
  • Accepted Date: 2024-04-03
  • Publish Date: 2024-04-23
  • The performance of red InP and blue ZnTeSe-based quantum dots (QDs) and corresponding QD light emitting diodes (QLEDs) has already been improved significantly, whose external quantum efficiencies (EQEs) and luminances have exceeded 20% and 80 000 cd m−2, respectively. However, the inferior performance of the green InP-based device hinders the commercialization of full-color Cd-free QLED technology. The ease of oxidation of the highly reactive InP cores leads to high non-radiative recombination and poor photoluminescence quantum yield (PL QY) of the InP-based core/shell QDs, limiting the performance of the relevant QLEDs. Here, we proposed a fluoride-free synthesis strategy to in-situ passivate the InP cores, in which zinc myristate reacted with phosphine dangling bonds to form Zn–P protective layer and protect InP cores from the water and oxygen in the environment. The resultant InP/ZnSe/ZnS core/shell QDs demonstrated a high PL QY of 91%. The corresponding green-emitting electroluminescence devices exhibited a maximum EQE of 12.74%, along with a luminance of over 175 000 cd m−2 and a long T50@100 cd m−2 lifetime of over 20 000 h.

  • loading
  • [1]
    Yadav R, Kwon Y, Rivaux C, Pierre C S, Ling W L and Reiss P 2023 Narrow near-infrared emission from InP QDs synthesized with indium (I) halides and aminophosphine J. Am. Chem. Soc. 145 5970–81
    [2]
    Dumbgen K C, Leemans J, De Roo V, Minjauw M, Detavernier C and Hens Z 2023 Surface chemistry of InP quantum dots, amine-halide co-passivation, and binding of Z-type ligands Chem. Mater. 35 1037–46
    [3]
    Zhou X, Ren J, Cao W, Meijerink A and Wang Y 2023 Narrow-band blue-emitting indium phosphide quantum dots induced by highly active Zn precursor Adv. Opt. Mater. 11 2202128
    [4]
    Lee Y, Jo D Y, Kim T, Jo J H, Park J, Yang H and Kim D 2022 Effectual interface and defect engineering for Auger recombination suppression in bright InP/ZnSeS/ZnS quantum dots ACS Appl. Mater. Interfaces 14 12479–87
    [5]
    Sung Y M et al 2021 Increasing the energy gap between band-edge and trap states slows down picosecond carrier trapping in highly luminescent InP/ZnSe/ZnS quantum dots Small 17 2102792
    [6]
    Dou Y, Wang L, Wang Y, Wu Q, Cao F, Wang S, Huang Q, Ma Y and Yang X 2023 Coordinating solvent synthesis of InP quantum dots with large sizes and suppressed defects for yellow light-emitting diodes Adv. Opt. Mater. 11 2300133
    [7]
    Shin S et al 2023 Fluoride-free synthesis strategy for luminescent InP cores and effective shelling processes via combinational precursor chemistry Chem. Eng. J. 466 143223
    [8]
    Huang P, Liu X, Jin G, Liu F, Shen H and Li H 2023 Deep-red InP core-multishell quantum dots for highly bright and efficient light-emitting diodes Adv. Opt. Mater. 11 2300612
    [9]
    Li H, Bian Y, Zhang W, Wu Z, Ahn T K, Shen H and Du Z 2022 High performance InP-based quantum dot light-emitting diodes via the suppression of field-enhanced electron delocalization Adv. Funct. Mater. 32 2204529
    [10]
    Won Y H, Cho O, Kim T, Chung D Y, Kim T, Chung H, Jang H, Lee J, Kim D and Jang E 2019 Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes Nature 575 634–8
    [11]
    Ubbink R F, Almeida G, Iziyi H, du Fossé I, Verkleij R, Ganapathy S, van Eck E R H and Houtepen A J 2022 A water-free in situ HF treatment for ultrabright InP quantum dots Chem. Mater. 34 10093–103
    [12]
    Fan X B et al 2023 InP/ZnS quantum dot photoluminescence modulation via in situ H2S interface engineering Nanoscale Horiz. 8 522–9
    [13]
    Duan X, Ma J, Zhang W, Liu P, Liu H, Hao J, Wang K, Samuelson L and Sun X W 2023 Study of the interfacial oxidation of InP quantum dots synthesized from tris(dimethylamino)phosphine ACS Appl. Mater. Interfaces 15 1619–28
    [14]
    Li H, Zhang W, Bian Y, Ahn T K, Shen H and Ji B 2022 ZnF2-assisted synthesis of highly luminescent InP/ZnSe/ZnS quantum dots for efficient and stable electroluminescence Nano Lett. 22 4067–73
    [15]
    Wang H C, Zhang H, Chen H Y, Yeh H C, Tseng M R, Chung R J, Chen S and Liu R S 2017 Cadmium-free InP/ZnSeS/ZnS heterostructure-based quantum dot light-emitting diodes with a ZnMgO electron transport layer and a brightness of over 10 000 cd m-2 Small 13 1603962
    [16]
    Zhang H et al 2019 High-efficiency green InP quantum dot-based electroluminescent device comprising thick-shell quantum dots Adv. Opt. Mater. 7 1801602
    [17]
    Moon H, Lee W, Kim J, Lee D, Cha S, Shin S and Chae H 2019 Composition-tailored ZnMgO nanoparticles for electron transport layers of highly efficient and bright InP-based quantum dot light emitting diodes Chem. Commun. 55 13299–302
    [18]
    Li Y, Hou X, Dai X, Yao Z, Lv L, Jin Y and Peng X 2019 Stoichiometry-controlled InP-based quantum dots: synthesis, photoluminescence, and electroluminescence J. Am. Chem. Soc. 141 6448–52
    [19]
    Chao W C, Chiang T H, Liu Y C, Huang Z X, Liao C C, Chu C H, Wang C H, Tseng H W, Hung W Y and Chou P T 2021 High efficiency green InP quantum dot light-emitting diodes by balancing electron and hole mobility Commun. Mater. 2 96
    [20]
    Zhang W et al 2022 High quantum yield blue InP/ZnS/ZnS quantum dots based on bromine passivation for efficient blue light-emitting diodes Adv. Opt. Mater. 10 2200685
    [21]
    Yu P, Cao S, Shan Y, Bi Y, Hu Y, Zeng R, Zou B, Wang Y and Zhao J 2022 Highly efficient green InP-based quantum dot light-emitting diodes regulated by inner alloyed shell component Light Sci. Appl. 11 162
    [22]
    Park J, Won Y H, Kim T, Jang E and Kim D 2020 Electrochemical charging effect on the optical properties of InP/ZnSe/ZnS quantum dots Small 16 2003542
    [23]
    Chen P, Liu H, Cui Y, Liu C, Li Y, Gao Y, Cheng J and He T 2023 Inner shell influence on the optical properties of InP/ZnSeS/ZnS quantum dots J. Phys. Chem. C 127 2464–70
    [24]
    Okamoto A, Bai H, Toda S, Huang M, Kajii H, Kawai K and Murakami H 2023 Controlling thickness of ZnSe intermediate shell narrows FWHM of green-emitting spectra of InP/ZnSe/ZnS multi-shell quantum dots ChemNanoMat 9 e202200534
    [25]
    Kim T G, Zherebetskyy D, Bekenstein Y, Oh M H, Wang L W, Jang E and Alivisatos A P 2018 Trap passivation in indium-based quantum dots through surface fluorination: mechanism and applications ACS Nano 12 11529–40
    [26]
    Zhang X, Hudson M H and Castellano F N 2021 Passivation of electron trap states in InP quantum dots with benzoic acid ligands J. Phys. Chem. C 125 18362–71
    [27]
    Pu Y C, Fan H C, Chang J C, Chen Y H and Tseng S W 2021 Effects of interfacial oxidative layer removal on charge carrier recombination dynamics in InP/ZnSexS1-x core/shell quantum dots J. Phys. Chem. Lett. 12 7194–200
    [28]
    Yang W, Yang Y, Kaledin A L, He S, Jin T, McBride J R and Lian T 2020 Surface passivation extends single and biexciton lifetimes of InP quantum dots Chem. Sci. 11 5779–89
    [29]
    Yoo D, Bak E, Ju H M, Shin Y M and Choi M J 2022 Zinc carboxylate surface passivation for enhanced optical properties of In(Zn)P colloidal quantum dots Micromachines 13 1775
    [30]
    Wu Q et al 2022 Quasi-shell-growth strategy achieves stable and efficient green InP quantum dot light-emitting diodes Adv. Sci. 9 2200959
    [31]
    Jo J H, Jo D Y, Choi S W, Lee S H, Kim H M, Yoon S Y, Kim Y, Han J N and Yang H 2021 Highly bright, narrow emissivity of InP quantum dots synthesized by aminophosphine: effects of double shelling scheme and Ga treatment Adv. Opt. Mater. 9 2100427
    [32]
    Taylor D A, Teku J A, Cho S, Chae W S, Jeong S J and Lee J S 2021 Importance of surface functionalization and purification for narrow FWHM and bright green-emitting InP core-multishell quantum dots via a two-step growth process Chem. Mater. 33 4399–407
    [33]
    Xu H et al 2024 Dipole-dipole-interaction-assisted self-assembly of quantum dots for highly efficient light-emitting diodes Nat. Photon. 18 186–91
    [34]
    Deng Y et al 2022 Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage Nat. Photon. 16 505–11
    [35]
    Han C Y, Lee S H, Song S W, Yoon S Y, Jo J H, Jo D Y, Kim H M, Lee B J, Kim H S and Yang H 2020 More than 9% efficient ZnSeTe quantum dot-based blue electroluminescent devices ACS Energy Lett. 5 1568–76
    [36]
    Zhang T et al 2023 Electric dipole modulation for boosting carrier recombination in green InP QLEDs under strong electron injection Nanoscale Adv. 5 385–92
    [37]
    Kim J, Hong A, Hahm D, Lee H, Bae W K, Lee T and Kwak J 2023 Realization of highly efficient InP quantum dot light-emitting diodes through in-depth investigation of exciton-harvesting layers Adv. Opt. Mater. 11 2300088
  • mfad3a83supp1.pdf
  • 加载中

Catalog

    Figures(1)

    Article Metrics

    Article Views(195) PDF downloads(28)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return