Citation: | Jakob Asenbauer, Dominik Horny, Mayokun Olutogun, Katrin Schulz, Dominic Bresser. Towards an enhanced understanding of the particle size effect on conversion/alloying lithium-ion anodes[J]. Materials Futures, 2024, 3(1): 015101. doi: 10.1088/2752-5724/ad1115 |
Conflict of interest
The authors declare that they have no known competing financial interests.
[1] |
Ding Y, Cano Z P, Yu A, Lu J, Chen Z 2019 Automotive Li-ion batteries: current status and future perspectives Electrochem. Energy Rev. 2 1-28 doi: 10.1007/s41918-018-0022-z
|
[2] |
Marinaro M, Bresser D, Beyer E, Faguy P, Hosoi K, Li H, Sakovica J, Amine K, Wohlfahrt-Mehrens M, Passerini S 2020 Bringing forward the development of battery cells for automotive applications: perspective of R&D activities in China, Japan, the EU and the USA J. Power Sources 459 228073 doi: 10.1016/j.jpowsour.2020.228073
|
[3] |
Scrosati B, Hassoun J, Sun Y-K 2011 Lithium-ion batteries. A look into the future Energy Environ. Sci. 4 3287-95 doi: 10.1039/c1ee01388b
|
[4] |
Bresser D, Hosoi K, Howell D, Li H, Zeisel H, Amine K, Passerini S 2018 Perspectives of automotive battery R&D in China, Germany, Japan, and the USA J. Power Sources 382 176-8 doi: 10.1016/j.jpowsour.2018.02.039
|
[5] |
Winter M, Besenhard J O, Spahr M E, Novk P 1998 Insertion electrode materials for rechargeable lithium batteries Adv. Mater. 10 725-63 doi: 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z
|
[6] |
Manthiram A 2020 A reflection on lithium-ion battery cathode chemistry Nat. Commun. 11 1-9 doi: 10.1038/s41467-020-15355-0
|
[7] |
Armand M, Axmann P, Bresser D, Copley M, Edstrm K, Ekberg C, Guyomard D, Lestriez B, Novk P, Petranikova M 2020 Lithium-ion batteries-current state of the art and anticipated developments J. Power Sources 479 228708 doi: 10.1016/j.jpowsour.2020.228708
|
[8] |
Asenbauer J, Eisenmann T, Kuenzel M, Kazzazi A, Chen Z, Bresser D 2020 The success story of graphite as a lithium-ion anode materialfundamentals, remaining challenges, and recent developments including silicon (oxide) composites Sustain. Energy Fuels 4 5387-416 doi: 10.1039/D0SE00175A
|
[9] |
Bresser D, Passerini S, Scrosati B 2016 Leveraging valuable synergies by combining alloying and conversion for lithium-ion anodes Energy Environ. Sci. 9 3348-67 doi: 10.1039/C6EE02346K
|
[10] |
Cabana J, Monconduit L, Larcher D, Palacn M R 2010 Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions Adv. Mater. 22 E170-92 doi: 10.1002/adma.201000717
|
[11] |
Obrovac M N, Chevrier V L 2014 Alloy negative electrodes for Li-ion batteries Chem. Rev. 114 11444-502 doi: 10.1021/cr500207g
|
[12] |
Fang S, Bresser D, Passerini S 2020 Transition metal oxide anodes for electrochemical energy storage in lithiumand sodiumion batteries Adv. Energy Mater. 10 1902485 doi: 10.1002/aenm.201902485
|
[13] |
Lu Y, Yu L, Lou X W 2018 Nanostructured conversion-type anode materials for advanced lithium-ion batteries Chem 4 972-96 doi: 10.1016/j.chempr.2018.01.003
|
[14] |
Asenbauer J, Kuenzel M, Eisenmann T, Birrozzi A, Chang J-K, Passerini S, Bresser D 2020 Determination of the volume changes occurring for conversion/alloying-type Li-ion anodes upon lithiation/delithiation J. Phys. Chem. Lett. 11 8238-45 doi: 10.1021/acs.jpclett.0c02198
|
[15] |
Asenbauer J, Varzi A, Passerini S, Bresser D 2020 Revisiting the energy efficiency and (potential) full-cell performance of lithium-ion batteries employing conversion/alloying-type negative electrodes J. Power Sources 473 228583 doi: 10.1016/j.jpowsour.2020.228583
|
[16] |
Bresser D, Mueller F, Fiedler M, Krueger S, Kloepsch R, Baither D, Winter M, Paillard E, Passerini S 2013 Transition-metal-doped zinc oxide nanoparticles as a new lithium-ion anode material Chem. Mater. 25 4977-85 doi: 10.1021/cm403443t
|
[17] |
Ulissi U, Elia G A, Jeong S, Mueller F, Reiter J, Tsiouvaras N, Sun Y-K, Scrosati B, Passerini S, Hassoun J 2018 Low-polarization lithium-oxygen battery using [DEME][TFSI] ionic liquid electrolyte ChemSusChem 11 229-36 doi: 10.1002/cssc.201701696
|
[18] |
Mueller F, Gutsche A, Nirschl H, Geiger D, Kaiser U, Bresser D, Passerini S 2017 Iron-doped ZnO for lithium-ion anodes: impact of the dopant ratio and carbon coating content J. Electrochem. Soc. 164 A6123-30 doi: 10.1149/2.0171701jes
|
[19] |
Giuli G, Trapananti A, Mueller F, Bresser D, D’Acapito F, Passerini S 2015 Insights into the effect of iron and cobalt doping on the structure of nanosized ZnO Inorg. Chem. 54 9393-400 doi: 10.1021/acs.inorgchem.5b00493
|
[20] |
Cabo-Fernandez L, Bresser D, Braga F, Passerini S, Hardwick L J 2019 In-situ electrochemical SHINERS investigation of SEI composition on carbon-coated Zn0.9Fe0.1O anode for lithium-ion batteries Batter. Supercaps 2 168-77 doi: 10.1002/batt.201800063
|
[21] |
Giuli G, Eisenmann T, Bresser D, Trapananti A, Asenbauer J, Mueller F, Passerini S 2017 Structural and electrochemical characterization of Zn1-xFexOEffect of aliovalent doping on the Li+ storage mechanism Materials 11 49 doi: 10.3390/ma11010049
|
[22] |
Mueller F, Bresser D, Chakravadhanula V S K, Passerini S 2015 Fe-doped SnO2 nanoparticles as new high capacity anode material for secondary lithium-ion batteries J. Power Sources 299 398-402 doi: 10.1016/j.jpowsour.2015.08.018
|
[23] |
Lbke M, Ning D, Armer C F, Howard D, Brett D J L, Liu Z, Darr J A 2017 Evaluating the potential benefits of metal ion doping in SnO2 negative electrodes for lithium ion batteries Electrochim. Acta 242 400-7 doi: 10.1016/j.electacta.2017.05.029
|
[24] |
Wang J, Wang L, Zhang S, Liang S, Liang X, Huang H, Zhou W, Guo J 2018 Facile synthesis of iron-doped SnO2/reduced graphene oxide composite as high-performance anode material for lithium-ion batteries J. Alloys Compd. 748 1013-21 doi: 10.1016/j.jallcom.2018.03.155
|
[25] |
Zhang X, Huang X, Zhang X, Xia L, Zhong B, Zhang T, Wen G 2016 Flexible carbonized cotton covered by graphene/Co-doped SnO2 as free-standing and binder-free anode material for lithium-ions batteries Electrochim. Acta 222 518-27 doi: 10.1016/j.electacta.2016.11.004
|
[26] |
Ma Y, Ma Y, Ulissi U, Ji Y, Streb C, Bresser D, Passerini S 2018 Influence of the doping ratio and the carbon coating content on the electrochemical performance of Co-doped SnO2 for lithium-ion anodes Electrochim. Acta 277 100-9 doi: 10.1016/j.electacta.2018.04.209
|
[27] |
Ma Y, Ma Y, Giuli G, Diemant T, Behm R J, Geiger D, Kaiser U, Ulissi U, Passerini S, Bresser D 2018 Conversion/alloying lithium-ion anodesenhancing the energy density by transition metal doping Sustain. Energy Fuels 2 2601-8 doi: 10.1039/C8SE00424B
|
[28] |
Birrozzi A, Asenbauer J, Ashton T E, Groves A R, Geiger D, Kaiser U, Darr J A, Bresser D 2020 Tailoring the charge/discharge potentials and electrochemical performance of SnO2 lithiumion anodes by transition metal codoping Batter. Supercaps 3 284-92 doi: 10.1002/batt.201900154
|
[29] |
Liang B, Wang J, Zhang S, Liang X, Huang H, Huang D, Zhou W, Guo J 2020 Hybrid of co-doped SnO2 and graphene sheets as anode material with enhanced lithium storage properties Appl. Surf. Sci. 533 147447 doi: 10.1016/j.apsusc.2020.147447
|
[30] |
Mueller F, Geiger D, Kaiser U, Passerini S, Bresser D 2016 Elucidating the impact of cobalt doping on the lithium storage mechanism in conversion/alloying-type zinc oxide anodes ChemElectroChem 3 1311-9 doi: 10.1002/celc.201600179
|
[31] |
Asenbauer J, Hoefling A, Indris S, Tbke J, Passerini S, Bresser D 2020 Mechanistic insights into the lithiation and delithiation of iron-doped zinc oxide: the nucleation site model ACS Appl. Mater. Interfaces 12 8206-18 doi: 10.1021/acsami.9b19958
|
[32] |
Trapananti A, Eisenmann T, Giuli G, Mueller F, Moretti A, Passerini S, Bresser D 2021 Isovalent vs. aliovalent transition metal doping of zinc oxide lithium-ion battery anodesin-depth investigation by ex situ and operando x-ray absorption spectroscopy Mater. Today Chem. 20 100478 doi: 10.1016/j.mtchem.2021.100478
|
[33] |
Asenbauer J, Binder J R, Mueller F, Kuenzel M, Geiger D, Kaiser U, Passerini S, Bresser D 2020 Scalable synthesis of microsized, nanocrystalline Zn0.9Fe0.1OC secondary particles and their use in Zn0.9Fe0.1OC/LiNi0.5Mn1.5O4 lithiumion full cells ChemSusChem 13 3504-13 doi: 10.1002/cssc.202000559
|
[34] |
Wang S, Shi L, Chen G, Ba C, Wang Z, Zhu J, Zhao Y, Zhang M, Yuan S 2017 In situ synthesis of tungsten-doped SnO2 and graphene nanocomposites for high-performance anode materials of lithium-ion batteries ACS Appl. Mater. Interfaces 9 17163-71 doi: 10.1021/acsami.7b03705
|
[35] |
Zoller F, Peters K, Zehetmaier P M, Zeller P, Dblinger M, Bein T, Sofer Z, FattakhovaRohlfing D 2018 Making ultrafast highcapacity anodes for lithiumion batteries via antimony doping of nanosized tin oxide/graphene composites Adv. Funct. Mater. 28 1706529 doi: 10.1002/adfm.201706529
|
[36] |
Wang Y, Li H, He P, Hosono E, Zhou H 2010 Nano active materials for lithium-ion batteries Nanoscale 2 1294-305 doi: 10.1039/c0nr00068j
|
[37] |
Bresser D, Paillard E, Copley M, Bishop P, Winter M, Passerini S 2012 The importance of going nano for high power battery materials J. Power Sources 219 217-22 doi: 10.1016/j.jpowsour.2012.07.035
|
[38] |
Bruce P G, Scrosati B, Tarascon J 2008 Nanomaterials for rechargeable lithium batteries Angew. Chem., Int. Ed. 47 2930-46 doi: 10.1002/anie.200702505
|
[39] |
Oberdrster G, Stone V, Donaldson K, Oberdorster G, Stone V, Donaldson K 2007 Toxicology of nanoparticles: a historical perspective Nanotoxicology 1 2-25 doi: 10.1080/17435390701314761
|
[40] |
Stern S T, McNeil S E 2008 Nanotechnology safety concerns revisited Toxicol. Sci. 101 4-21 doi: 10.1093/toxsci/kfm169
|
[41] |
Groso A, Petri-Fink A, Magrez A, Riediker M, Meyer T 2010 Management of nanomaterials safety in research environment Part. Fibre Toxicol. 7 40 doi: 10.1186/1743-8977-7-40
|
[42] |
Grugeon S, Laruelle S, Dupont L, Tarascon J-M 2003 An update on the reactivity of nanoparticles Co-based compounds towards Li Solid State Sci. 5 895-904 doi: 10.1016/S1293-2558(03)00114-6
|
[43] |
Ponrouch A, Taberna P L, Simon P, Palacn M R 2012 On the origin of the extra capacity at low potential in materials for Li batteries reacting through conversion reaction Electrochim. Acta 61 13-18 doi: 10.1016/j.electacta.2011.11.029
|
[44] |
Sun Y, Oh S, Park H, Scrosati B 2011 Micrometersized, nanoporous, highvolumetriccapacity LiMn0.85Fe0.15PO4 cathode material for rechargeable lithiumion batteries Adv. Mater. 23 5050-4 doi: 10.1002/adma.201102497
|
[45] |
Yan P, Zheng J, Liu J, Wang B, Cheng X, Zhang Y, Sun X, Wang C, Zhang J-G 2018 Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries Nat. Energy 3 600-5 doi: 10.1038/s41560-018-0191-3
|
[46] |
Sun Y-K, Chen Z, Noh H-J, Lee D-J, Jung H-G, Ren Y, Wang S, Yoon C S, Myung S-T, Amine K 2012 Nanostructured high-energy cathode materials for advanced lithium batteries Nat. Mater. 11 942-7 doi: 10.1038/nmat3435
|
[47] |
Li H, Li J, Ma X, Dahn J R 2018 Synthesis of single crystal LiNi0.6Mn0.2Co0.2O2 with enhanced electrochemical performance for lithium ion batteries J. Electrochem. Soc. 165 A1038 doi: 10.1149/2.0951805jes
|
[48] |
Li J, Cameron A R, Li H, Glazier S, Xiong D, Chatzidakis M, Allen J, Botton G A, Dahn J R 2017 Comparison of single crystal and polycrystalline LiNi0.5Mn0.3Co0.2O2 positive electrode materials for high voltage Li-ion cells J. Electrochem. Soc. 164 A1534 doi: 10.1149/2.0991707jes
|
[49] |
Prussin S 1961 Generation and distribution of dislocations by solute diffusion J. Appl. Phys. 32 1876-81 doi: 10.1063/1.1728256
|
[50] |
Bresser D, Paillard E, Kloepsch R, Krueger S, Fiedler M, Schmitz R, Baither D, Winter M, Passerini S 2013 Carbon coated ZnFe2O4 nanoparticles for advanced lithium-ion anodes Adv. Energy Mater. 3 513-23 doi: 10.1002/aenm.201200735
|
[51] |
Rahaman M N 2003 Ceramic Processing and SinteringCRC press
|
[52] |
Kang S-J L 2005 Sintering: Densification, Grain Growth, and MicrostructureElsevier Butterworth-Heinemann
|
[53] |
Fang Z Z, Wang H, Kumar V 2017 Coarsening, densification, and grain growth during sintering of nano-sized powdersA perspective Int. J. Refract. Met. Hard Mater. 62 110-7 doi: 10.1016/j.ijrmhm.2016.09.004
|
[54] |
An S J, Li J, Daniel C, Kalnaus S, Wood D L 2017 Design and demonstration of three-electrode pouch cells for lithium-ion batteries J. Electrochem. Soc. 164 A1755-64 doi: 10.1149/2.0031709jes
|
[55] |
Kalhoff J, Eshetu G G, Bresser D, Passerini S 2015 Safer electrolytes for lithium-ion batteries: state of the art and perspectives ChemSusChem 8 2154-75 doi: 10.1002/cssc.201500284
|
[56] |
Xu K 2004 Nonaqueous liquid electrolytes for lithium-based rechargeable batteries Chem. Rev. 104 4303-418 doi: 10.1021/cr030203g
|
[57] |
Vetter J, Novk P, Wagner M R, Veit C, Mller K C, Besenhard J O, Winter M, Wohlfahrt-Mehrens M, Vogler C, Hammouche A 2005 Ageing mechanisms in lithium-ion batteries J. Power Sources 147 269-81 doi: 10.1016/j.jpowsour.2005.01.006
|
[58] |
Ebner M, Marone F, Stampanoni M, Wood V 2013 Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries Science 342 716-20 doi: 10.1126/science.1241882
|
[59] |
Liu X H, Zhong L, Huang S, Mao S X, Zhu T, Huang J Y 2012 Size-dependent fracture of silicon nanoparticles during lithiation ACS Nano 6 1522-31 doi: 10.1021/nn204476h
|
[60] |
Wang F, et al 2011 Conversion reaction mechanisms in lithium ion batteries: study of the binary metal fluoride electrodes J. Am. Chem. Soc. 133 18828-36 doi: 10.1021/ja206268a
|
[61] |
Bresser D, Paillard E, Niehoff P, Krueger S, Mueller F, Winter M, Passerini S 2014 Challenges of going nano: enhanced electrochemical performance of cobalt oxide nanoparticles by carbothermal reduction and in situ carbon coating ChemPhysChem 15 2177-85 doi: 10.1002/cphc.201400092
|
[62] |
Larcher D, Sudant G, Leriche J B, Chabre Y, Tarascon J M 2002 The electrochemical reduction of Co3 O4 in a lithium cell J. Electrochem. Soc. 149 A234 doi: 10.1149/1.1435358
|
[63] |
Mueller F, Bresser D, Paillard E, Winter M, Passerini S 2013 Influence of the carbonaceous conductive network on the electrochemical performance of ZnFe2O4 nanoparticles J. Power Sources 236 87-94 doi: 10.1016/j.jpowsour.2013.02.051
|
mfad1115supp1.docx |