Volume 3 Issue 1
March  2024
Turn off MathJax
Article Contents
Jakob Asenbauer, Dominik Horny, Mayokun Olutogun, Katrin Schulz, Dominic Bresser. Towards an enhanced understanding of the particle size effect on conversion/alloying lithium-ion anodes[J]. Materials Futures, 2024, 3(1): 015101. doi: 10.1088/2752-5724/ad1115
Citation: Jakob Asenbauer, Dominik Horny, Mayokun Olutogun, Katrin Schulz, Dominic Bresser. Towards an enhanced understanding of the particle size effect on conversion/alloying lithium-ion anodes[J]. Materials Futures, 2024, 3(1): 015101. doi: 10.1088/2752-5724/ad1115
Paper •
OPEN ACCESS

Towards an enhanced understanding of the particle size effect on conversion/alloying lithium-ion anodes

© 2024 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 3, Number 1
  • Received Date: 2023-09-29
  • Accepted Date: 2023-11-20
  • Rev Recd Date: 2023-11-12
  • Publish Date: 2024-01-03
  • Conversion/alloying materials (CAMs) represent a potential alternative to graphite as a Li-ion anode active material, especially for high-power applications. So far, however, essentially all studies on CAMs have been dealing with nano-sized particles, leaving the question of how the performance (and the de-/lithiation mechanism in general) is affected by the particle size. Herein, we comparatively investigate four different samples of Zn0.9Co0.1O with a particle size ranging from about 30 nm to a few micrometers. The results show that electrodes made of larger particles are more susceptible to fading due to particle displacement and particle cracking. The results also show that the conversion-type reaction in particular is affected by an increasing particle size, becoming less reversible due to the formation of relatively large transition metal (TM) and alloying metal nanograins upon lithiation, thus hindering an efficient electron transport within the initial particle, while the alloying contribution remains essentially unaffected. The generality of these findings is confirmed by also investigating Sn0.9Fe0.1O2 as a second CAM with a substantially greater contribution of the alloying reaction and employing Fe instead of Co as a TM dopant.
  • loading
  • Conflict of interest

    The authors declare that they have no known competing financial interests.

  • [1]
    Ding Y, Cano Z P, Yu A, Lu J, Chen Z 2019 Automotive Li-ion batteries: current status and future perspectives Electrochem. Energy Rev. 2 1-28 doi: 10.1007/s41918-018-0022-z
    [2]
    Marinaro M, Bresser D, Beyer E, Faguy P, Hosoi K, Li H, Sakovica J, Amine K, Wohlfahrt-Mehrens M, Passerini S 2020 Bringing forward the development of battery cells for automotive applications: perspective of R&D activities in China, Japan, the EU and the USA J. Power Sources 459 228073 doi: 10.1016/j.jpowsour.2020.228073
    [3]
    Scrosati B, Hassoun J, Sun Y-K 2011 Lithium-ion batteries. A look into the future Energy Environ. Sci. 4 3287-95 doi: 10.1039/c1ee01388b
    [4]
    Bresser D, Hosoi K, Howell D, Li H, Zeisel H, Amine K, Passerini S 2018 Perspectives of automotive battery R&D in China, Germany, Japan, and the USA J. Power Sources 382 176-8 doi: 10.1016/j.jpowsour.2018.02.039
    [5]
    Winter M, Besenhard J O, Spahr M E, Novk P 1998 Insertion electrode materials for rechargeable lithium batteries Adv. Mater. 10 725-63 doi: 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z
    [6]
    Manthiram A 2020 A reflection on lithium-ion battery cathode chemistry Nat. Commun. 11 1-9 doi: 10.1038/s41467-020-15355-0
    [7]
    Armand M, Axmann P, Bresser D, Copley M, Edstrm K, Ekberg C, Guyomard D, Lestriez B, Novk P, Petranikova M 2020 Lithium-ion batteries-current state of the art and anticipated developments J. Power Sources 479 228708 doi: 10.1016/j.jpowsour.2020.228708
    [8]
    Asenbauer J, Eisenmann T, Kuenzel M, Kazzazi A, Chen Z, Bresser D 2020 The success story of graphite as a lithium-ion anode materialfundamentals, remaining challenges, and recent developments including silicon (oxide) composites Sustain. Energy Fuels 4 5387-416 doi: 10.1039/D0SE00175A
    [9]
    Bresser D, Passerini S, Scrosati B 2016 Leveraging valuable synergies by combining alloying and conversion for lithium-ion anodes Energy Environ. Sci. 9 3348-67 doi: 10.1039/C6EE02346K
    [10]
    Cabana J, Monconduit L, Larcher D, Palacn M R 2010 Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions Adv. Mater. 22 E170-92 doi: 10.1002/adma.201000717
    [11]
    Obrovac M N, Chevrier V L 2014 Alloy negative electrodes for Li-ion batteries Chem. Rev. 114 11444-502 doi: 10.1021/cr500207g
    [12]
    Fang S, Bresser D, Passerini S 2020 Transition metal oxide anodes for electrochemical energy storage in lithiumand sodiumion batteries Adv. Energy Mater. 10 1902485 doi: 10.1002/aenm.201902485
    [13]
    Lu Y, Yu L, Lou X W 2018 Nanostructured conversion-type anode materials for advanced lithium-ion batteries Chem 4 972-96 doi: 10.1016/j.chempr.2018.01.003
    [14]
    Asenbauer J, Kuenzel M, Eisenmann T, Birrozzi A, Chang J-K, Passerini S, Bresser D 2020 Determination of the volume changes occurring for conversion/alloying-type Li-ion anodes upon lithiation/delithiation J. Phys. Chem. Lett. 11 8238-45 doi: 10.1021/acs.jpclett.0c02198
    [15]
    Asenbauer J, Varzi A, Passerini S, Bresser D 2020 Revisiting the energy efficiency and (potential) full-cell performance of lithium-ion batteries employing conversion/alloying-type negative electrodes J. Power Sources 473 228583 doi: 10.1016/j.jpowsour.2020.228583
    [16]
    Bresser D, Mueller F, Fiedler M, Krueger S, Kloepsch R, Baither D, Winter M, Paillard E, Passerini S 2013 Transition-metal-doped zinc oxide nanoparticles as a new lithium-ion anode material Chem. Mater. 25 4977-85 doi: 10.1021/cm403443t
    [17]
    Ulissi U, Elia G A, Jeong S, Mueller F, Reiter J, Tsiouvaras N, Sun Y-K, Scrosati B, Passerini S, Hassoun J 2018 Low-polarization lithium-oxygen battery using [DEME][TFSI] ionic liquid electrolyte ChemSusChem 11 229-36 doi: 10.1002/cssc.201701696
    [18]
    Mueller F, Gutsche A, Nirschl H, Geiger D, Kaiser U, Bresser D, Passerini S 2017 Iron-doped ZnO for lithium-ion anodes: impact of the dopant ratio and carbon coating content J. Electrochem. Soc. 164 A6123-30 doi: 10.1149/2.0171701jes
    [19]
    Giuli G, Trapananti A, Mueller F, Bresser D, D’Acapito F, Passerini S 2015 Insights into the effect of iron and cobalt doping on the structure of nanosized ZnO Inorg. Chem. 54 9393-400 doi: 10.1021/acs.inorgchem.5b00493
    [20]
    Cabo-Fernandez L, Bresser D, Braga F, Passerini S, Hardwick L J 2019 In-situ electrochemical SHINERS investigation of SEI composition on carbon-coated Zn0.9Fe0.1O anode for lithium-ion batteries Batter. Supercaps 2 168-77 doi: 10.1002/batt.201800063
    [21]
    Giuli G, Eisenmann T, Bresser D, Trapananti A, Asenbauer J, Mueller F, Passerini S 2017 Structural and electrochemical characterization of Zn1-xFexOEffect of aliovalent doping on the Li+ storage mechanism Materials 11 49 doi: 10.3390/ma11010049
    [22]
    Mueller F, Bresser D, Chakravadhanula V S K, Passerini S 2015 Fe-doped SnO2 nanoparticles as new high capacity anode material for secondary lithium-ion batteries J. Power Sources 299 398-402 doi: 10.1016/j.jpowsour.2015.08.018
    [23]
    Lbke M, Ning D, Armer C F, Howard D, Brett D J L, Liu Z, Darr J A 2017 Evaluating the potential benefits of metal ion doping in SnO2 negative electrodes for lithium ion batteries Electrochim. Acta 242 400-7 doi: 10.1016/j.electacta.2017.05.029
    [24]
    Wang J, Wang L, Zhang S, Liang S, Liang X, Huang H, Zhou W, Guo J 2018 Facile synthesis of iron-doped SnO2/reduced graphene oxide composite as high-performance anode material for lithium-ion batteries J. Alloys Compd. 748 1013-21 doi: 10.1016/j.jallcom.2018.03.155
    [25]
    Zhang X, Huang X, Zhang X, Xia L, Zhong B, Zhang T, Wen G 2016 Flexible carbonized cotton covered by graphene/Co-doped SnO2 as free-standing and binder-free anode material for lithium-ions batteries Electrochim. Acta 222 518-27 doi: 10.1016/j.electacta.2016.11.004
    [26]
    Ma Y, Ma Y, Ulissi U, Ji Y, Streb C, Bresser D, Passerini S 2018 Influence of the doping ratio and the carbon coating content on the electrochemical performance of Co-doped SnO2 for lithium-ion anodes Electrochim. Acta 277 100-9 doi: 10.1016/j.electacta.2018.04.209
    [27]
    Ma Y, Ma Y, Giuli G, Diemant T, Behm R J, Geiger D, Kaiser U, Ulissi U, Passerini S, Bresser D 2018 Conversion/alloying lithium-ion anodesenhancing the energy density by transition metal doping Sustain. Energy Fuels 2 2601-8 doi: 10.1039/C8SE00424B
    [28]
    Birrozzi A, Asenbauer J, Ashton T E, Groves A R, Geiger D, Kaiser U, Darr J A, Bresser D 2020 Tailoring the charge/discharge potentials and electrochemical performance of SnO2 lithiumion anodes by transition metal codoping Batter. Supercaps 3 284-92 doi: 10.1002/batt.201900154
    [29]
    Liang B, Wang J, Zhang S, Liang X, Huang H, Huang D, Zhou W, Guo J 2020 Hybrid of co-doped SnO2 and graphene sheets as anode material with enhanced lithium storage properties Appl. Surf. Sci. 533 147447 doi: 10.1016/j.apsusc.2020.147447
    [30]
    Mueller F, Geiger D, Kaiser U, Passerini S, Bresser D 2016 Elucidating the impact of cobalt doping on the lithium storage mechanism in conversion/alloying-type zinc oxide anodes ChemElectroChem 3 1311-9 doi: 10.1002/celc.201600179
    [31]
    Asenbauer J, Hoefling A, Indris S, Tbke J, Passerini S, Bresser D 2020 Mechanistic insights into the lithiation and delithiation of iron-doped zinc oxide: the nucleation site model ACS Appl. Mater. Interfaces 12 8206-18 doi: 10.1021/acsami.9b19958
    [32]
    Trapananti A, Eisenmann T, Giuli G, Mueller F, Moretti A, Passerini S, Bresser D 2021 Isovalent vs. aliovalent transition metal doping of zinc oxide lithium-ion battery anodesin-depth investigation by ex situ and operando x-ray absorption spectroscopy Mater. Today Chem. 20 100478 doi: 10.1016/j.mtchem.2021.100478
    [33]
    Asenbauer J, Binder J R, Mueller F, Kuenzel M, Geiger D, Kaiser U, Passerini S, Bresser D 2020 Scalable synthesis of microsized, nanocrystalline Zn0.9Fe0.1OC secondary particles and their use in Zn0.9Fe0.1OC/LiNi0.5Mn1.5O4 lithiumion full cells ChemSusChem 13 3504-13 doi: 10.1002/cssc.202000559
    [34]
    Wang S, Shi L, Chen G, Ba C, Wang Z, Zhu J, Zhao Y, Zhang M, Yuan S 2017 In situ synthesis of tungsten-doped SnO2 and graphene nanocomposites for high-performance anode materials of lithium-ion batteries ACS Appl. Mater. Interfaces 9 17163-71 doi: 10.1021/acsami.7b03705
    [35]
    Zoller F, Peters K, Zehetmaier P M, Zeller P, Dblinger M, Bein T, Sofer Z, FattakhovaRohlfing D 2018 Making ultrafast highcapacity anodes for lithiumion batteries via antimony doping of nanosized tin oxide/graphene composites Adv. Funct. Mater. 28 1706529 doi: 10.1002/adfm.201706529
    [36]
    Wang Y, Li H, He P, Hosono E, Zhou H 2010 Nano active materials for lithium-ion batteries Nanoscale 2 1294-305 doi: 10.1039/c0nr00068j
    [37]
    Bresser D, Paillard E, Copley M, Bishop P, Winter M, Passerini S 2012 The importance of going nano for high power battery materials J. Power Sources 219 217-22 doi: 10.1016/j.jpowsour.2012.07.035
    [38]
    Bruce P G, Scrosati B, Tarascon J 2008 Nanomaterials for rechargeable lithium batteries Angew. Chem., Int. Ed. 47 2930-46 doi: 10.1002/anie.200702505
    [39]
    Oberdrster G, Stone V, Donaldson K, Oberdorster G, Stone V, Donaldson K 2007 Toxicology of nanoparticles: a historical perspective Nanotoxicology 1 2-25 doi: 10.1080/17435390701314761
    [40]
    Stern S T, McNeil S E 2008 Nanotechnology safety concerns revisited Toxicol. Sci. 101 4-21 doi: 10.1093/toxsci/kfm169
    [41]
    Groso A, Petri-Fink A, Magrez A, Riediker M, Meyer T 2010 Management of nanomaterials safety in research environment Part. Fibre Toxicol. 7 40 doi: 10.1186/1743-8977-7-40
    [42]
    Grugeon S, Laruelle S, Dupont L, Tarascon J-M 2003 An update on the reactivity of nanoparticles Co-based compounds towards Li Solid State Sci. 5 895-904 doi: 10.1016/S1293-2558(03)00114-6
    [43]
    Ponrouch A, Taberna P L, Simon P, Palacn M R 2012 On the origin of the extra capacity at low potential in materials for Li batteries reacting through conversion reaction Electrochim. Acta 61 13-18 doi: 10.1016/j.electacta.2011.11.029
    [44]
    Sun Y, Oh S, Park H, Scrosati B 2011 Micrometersized, nanoporous, highvolumetriccapacity LiMn0.85Fe0.15PO4 cathode material for rechargeable lithiumion batteries Adv. Mater. 23 5050-4 doi: 10.1002/adma.201102497
    [45]
    Yan P, Zheng J, Liu J, Wang B, Cheng X, Zhang Y, Sun X, Wang C, Zhang J-G 2018 Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries Nat. Energy 3 600-5 doi: 10.1038/s41560-018-0191-3
    [46]
    Sun Y-K, Chen Z, Noh H-J, Lee D-J, Jung H-G, Ren Y, Wang S, Yoon C S, Myung S-T, Amine K 2012 Nanostructured high-energy cathode materials for advanced lithium batteries Nat. Mater. 11 942-7 doi: 10.1038/nmat3435
    [47]
    Li H, Li J, Ma X, Dahn J R 2018 Synthesis of single crystal LiNi0.6Mn0.2Co0.2O2 with enhanced electrochemical performance for lithium ion batteries J. Electrochem. Soc. 165 A1038 doi: 10.1149/2.0951805jes
    [48]
    Li J, Cameron A R, Li H, Glazier S, Xiong D, Chatzidakis M, Allen J, Botton G A, Dahn J R 2017 Comparison of single crystal and polycrystalline LiNi0.5Mn0.3Co0.2O2 positive electrode materials for high voltage Li-ion cells J. Electrochem. Soc. 164 A1534 doi: 10.1149/2.0991707jes
    [49]
    Prussin S 1961 Generation and distribution of dislocations by solute diffusion J. Appl. Phys. 32 1876-81 doi: 10.1063/1.1728256
    [50]
    Bresser D, Paillard E, Kloepsch R, Krueger S, Fiedler M, Schmitz R, Baither D, Winter M, Passerini S 2013 Carbon coated ZnFe2O4 nanoparticles for advanced lithium-ion anodes Adv. Energy Mater. 3 513-23 doi: 10.1002/aenm.201200735
    [51]
    Rahaman M N 2003 Ceramic Processing and SinteringCRC press
    [52]
    Kang S-J L 2005 Sintering: Densification, Grain Growth, and MicrostructureElsevier Butterworth-Heinemann
    [53]
    Fang Z Z, Wang H, Kumar V 2017 Coarsening, densification, and grain growth during sintering of nano-sized powdersA perspective Int. J. Refract. Met. Hard Mater. 62 110-7 doi: 10.1016/j.ijrmhm.2016.09.004
    [54]
    An S J, Li J, Daniel C, Kalnaus S, Wood D L 2017 Design and demonstration of three-electrode pouch cells for lithium-ion batteries J. Electrochem. Soc. 164 A1755-64 doi: 10.1149/2.0031709jes
    [55]
    Kalhoff J, Eshetu G G, Bresser D, Passerini S 2015 Safer electrolytes for lithium-ion batteries: state of the art and perspectives ChemSusChem 8 2154-75 doi: 10.1002/cssc.201500284
    [56]
    Xu K 2004 Nonaqueous liquid electrolytes for lithium-based rechargeable batteries Chem. Rev. 104 4303-418 doi: 10.1021/cr030203g
    [57]
    Vetter J, Novk P, Wagner M R, Veit C, Mller K C, Besenhard J O, Winter M, Wohlfahrt-Mehrens M, Vogler C, Hammouche A 2005 Ageing mechanisms in lithium-ion batteries J. Power Sources 147 269-81 doi: 10.1016/j.jpowsour.2005.01.006
    [58]
    Ebner M, Marone F, Stampanoni M, Wood V 2013 Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries Science 342 716-20 doi: 10.1126/science.1241882
    [59]
    Liu X H, Zhong L, Huang S, Mao S X, Zhu T, Huang J Y 2012 Size-dependent fracture of silicon nanoparticles during lithiation ACS Nano 6 1522-31 doi: 10.1021/nn204476h
    [60]
    Wang F, et al 2011 Conversion reaction mechanisms in lithium ion batteries: study of the binary metal fluoride electrodes J. Am. Chem. Soc. 133 18828-36 doi: 10.1021/ja206268a
    [61]
    Bresser D, Paillard E, Niehoff P, Krueger S, Mueller F, Winter M, Passerini S 2014 Challenges of going nano: enhanced electrochemical performance of cobalt oxide nanoparticles by carbothermal reduction and in situ carbon coating ChemPhysChem 15 2177-85 doi: 10.1002/cphc.201400092
    [62]
    Larcher D, Sudant G, Leriche J B, Chabre Y, Tarascon J M 2002 The electrochemical reduction of Co3 O4 in a lithium cell J. Electrochem. Soc. 149 A234 doi: 10.1149/1.1435358
    [63]
    Mueller F, Bresser D, Paillard E, Winter M, Passerini S 2013 Influence of the carbonaceous conductive network on the electrochemical performance of ZnFe2O4 nanoparticles J. Power Sources 236 87-94 doi: 10.1016/j.jpowsour.2013.02.051
  • mfad1115supp1.docx
  • 加载中

Catalog

    Figures(10)

    Article Metrics

    Article Views(457) PDF downloads(79)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return