Citation: | Xiao-Lei Shi, Shuai Sun, Ting Wu, Jian Tu, Zhiming Zhou, Qingfeng Liu, Zhi-Gang Chen. Weavable thermoelectrics: advances, controversies, and future developments[J]. Materials Futures, 2024, 3(1): 012103. doi: 10.1088/2752-5724/ad0ca9 |
[1] |
Shi X-L, Zou J, Chen Z-G 2020 Advanced thermoelectric design: from materials and structures to devices Chem. Rev. 120 7399-515 doi: 10.1021/acs.chemrev.0c00026
|
[2] |
Zheng X F, Liu C X, Yan Y Y, Wang Q 2014 A review of thermoelectrics researchrecent developments and potentials for sustainable and renewable energy applications Renew. Sustain. Energy Rev. 32 486-503 doi: 10.1016/j.rser.2013.12.053
|
[3] |
Chen W-Y, Shi X-L, Zou J, Chen Z-G 2022 Thermoelectric coolers: progress, challenges, and opportunities Small Methods 6 2101235 doi: 10.1002/smtd.202101235
|
[4] |
Xiao Y, Zhao L-D 2020 Seeking new, highly effective thermoelectrics Science 367 1196 doi: 10.1126/science.aaz9426
|
[5] |
Yang Q, Yang S, Qiu P, Peng L, Wei T-R, Zhang Z, Shi X, Chen L 2022 Flexible thermoelectrics based on ductile semiconductors Science 377 854-8 doi: 10.1126/science.abq0682
|
[6] |
Jiang B, et al 2021 High-entropy-stabilized chalcogenides with high thermoelectric performance Science 371 830-4 doi: 10.1126/science.abe1292
|
[7] |
Zheng Y, Slade T J, Hu L, Tan X Y, Luo Y, Luo Z-Z, Xu J, Yan Q, Kanatzidis M G 2021 Defect engineering in thermoelectric materials: what have we learned? Chem. Soc. Rev. 50 9022-54 doi: 10.1039/D1CS00347J
|
[8] |
Tan G, Zhao L D, Kanatzidis M G 2016 Rationally designing high-performance bulk thermoelectric materials Chem. Rev. 116 12123-49 doi: 10.1021/acs.chemrev.6b00255
|
[9] |
Shi X-L, Chen W-Y, Tao X, Zou J, Chen Z-G 2020 Rational structure design and manipulation advance SnSe thermoelectrics Mater. Horiz. 7 3065-96 doi: 10.1039/D0MH00954G
|
[10] |
Hooshmand Zaferani S, Ghomashchi R, Vashaee D 2019 Strategies for engineering phonon transport in Heusler thermoelectric compounds Renew. Sustain. Energy Rev. 112 158-69 doi: 10.1016/j.rser.2019.05.051
|
[11] |
He J, Tritt T M 2017 Advances in thermoelectric materials research: looking back and moving forward Science 357 eaak9997 doi: 10.1126/science.aak9997
|
[12] |
Hong M, Li M, Wang Y, Shi X-L, Chen Z-G 2023 Advances in versatile GeTe thermoelectrics from materials to devices Adv. Mater. 35 2208272 doi: 10.1002/adma.202208272
|
[13] |
Chen W-Y, Shi X-L, Zou J, Chen Z-G 2022 Thermoelectric coolers for on-chip thermal management: materials, design, and optimization Mater. Sci. Eng. R 151 100700 doi: 10.1016/j.mser.2022.100700
|
[14] |
He R, Schierning G, Nielsch K 2018 Thermoelectric devices: a review of devices, architectures, and contact optimization Adv. Mater. Technol. 3 1700256 doi: 10.1002/admt.201700256
|
[15] |
Zoui M A, Bentouba S, Stocholm J G, Bourouis M 2020 A review on thermoelectric generators: progress and applications Energies 13 3606 doi: 10.3390/en13143606
|
[16] |
Patil P, Patil A 2013 Review on thermoelectric devices Int. J. Emerg. Technol. Adv. Eng. 3 681-8
|
[17] |
Jaziri N, Boughamoura A, Mller J, Mezghani B, Tounsi F, Ismail M 2020 A comprehensive review of thermoelectric generators: technologies and common applications Energy Rep. 6 264-87 doi: 10.1016/j.egyr.2019.12.011
|
[18] |
Biswas K, Ren Z, Grin Y, Lee K H, Mori T, Chen L 2022 Thermoelectric materials science and technology toward applications Appl. Phys. Lett. 121 070401 doi: 10.1063/5.0115322
|
[19] |
Mukherjee M, Srivastava A, Singh A K 2022 Recent advances in designing thermoelectric materials J. Mater. Chem. C 10 12524-55 doi: 10.1039/D2TC02448A
|
[20] |
Zhou X, Yan Y, Lu X, Zhu H, Han X, Chen G, Ren Z 2018 Routes for high-performance thermoelectric materials Mater. Today 21 974-88 doi: 10.1016/j.mattod.2018.03.039
|
[21] |
Luo Y, Li M, Yuan H, Liu H, Fang Y 2023 Predicting lattice thermal conductivity via machine learning: a mini review npj Comput. Mater. 9 4 doi: 10.1038/s41524-023-00964-2
|
[22] |
Wang Y, Hu Y-J, Bocklund B, Shang S-L, Zhou B-C, Liu Z-K, Chen L-Q 2018 First-principles thermodynamic theory of Seebeck coefficients Phys. Rev. B 98 224101 doi: 10.1103/PhysRevB.98.224101
|
[23] |
Cao T, Shi X-L, Li M, Hu B, Chen W, Liu W-D, Lyu W, MacLeod J, Chen Z-G 2023 Advances in bismuth-telluride-based thermoelectric devices: progress and challenges eScience 3 100122 doi: 10.1016/j.esci.2023.100122
|
[24] |
Du Y, Shen S Z, Cai K, Casey P S 2012 Research progress on polymer-inorganic thermoelectric nanocomposite materials Prog. Polym. Sci. 37 820-41 doi: 10.1016/j.progpolymsci.2011.11.003
|
[25] |
Elsaid K, Sayed E T, Yousef B A A, Rabaia M K H, Abdelkareem M A, Olabi A G 2020 Recent progress on the utilization of waste heat for desalination: a review Energy Convers. Manage. 221 113105 doi: 10.1016/j.enconman.2020.113105
|
[26] |
Zhang D, Lim W Y S, Duran S S F, Loh X J, Suwardi A 2022 Additive manufacturing of thermoelectrics: emerging trends and outlook ACS Energy Lett. 7 720-35 doi: 10.1021/acsenergylett.1c02553
|
[27] |
Hu B, Shi X-L, Zou J, Chen Z-G 2022 Thermoelectrics for medical applications: progress, challenges, and perspectives Chem. Eng. J. 437 135268 doi: 10.1016/j.cej.2022.135268
|
[28] |
Zhang Q, Deng K, Wilkens L, Reith H, Nielsch K 2022 Micro-thermoelectric devices Nat. Electron. 5 333-47 doi: 10.1038/s41928-022-00776-0
|
[29] |
Pecunia V, Silva S R P, Phillips J D, Artegiani E, Romeo A, Shim H, Park J, Kim J H, Yun J S, Welch G C 2023 Roadmap on energy harvesting materials J. Phys. Mater. 6 042501 doi: 10.1088/2515-7639/acc550
|
[30] |
Liu W-D, Wang D-Z, Liu Q, Zhou W, Shao Z, Chen Z-G 2020 High-performance GeTe-based thermoelectrics: from materials to devices Adv. Energy Mater. 10 2000367 doi: 10.1002/aenm.202000367
|
[31] |
Zhang X, Bu Z, Lin S, Chen Z, Li W, Pei Y 2020 GeTe thermoelectrics Joule 4 986-1003 doi: 10.1016/j.joule.2020.03.004
|
[32] |
Chen Z-G, Shi X, Zhao L-D, Zou J 2018 High-performance SnSe thermoelectric materials: progress and future challenge Prog. Mater. Sci. 97 283-346 doi: 10.1016/j.pmatsci.2018.04.005
|
[33] |
Zhou C, et al 2021 Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal Nat. Mater. 20 1378-84 doi: 10.1038/s41563-021-01064-6
|
[34] |
Liu D, et al 2023 Lattice plainification advances highly effective SnSe crystalline thermoelectrics Science 380 841-6 doi: 10.1126/science.adg7196
|
[35] |
Shi X-L, Liu W-D, Li M, Sun Q, Xu S-D, Du D, Zou J, Chen Z-G 2022 A solvothermal synthetic environmental design for high-performance SnSe-based thermoelectric materials Adv. Energy Mater. 12 2200670 doi: 10.1002/aenm.202200670
|
[36] |
Shi X-L, Tao X, Zou J, Chen Z-G 2020 High-performance thermoelectric SnSe: aqueous synthesis, innovations, and challenges Adv. Sci. 7 1902923 doi: 10.1002/advs.201902923
|
[37] |
Liu W-D, Yang L, Chen Z-G 2020 Cu2Se thermoelectrics: property, methodology, and device Nano Today 35 100938 doi: 10.1016/j.nantod.2020.100938
|
[38] |
Long Z, Wang Y, Sun X, Li Y, Zeng Z, Zhang L, Chen H 2023 Band engineering of the second phase to reach high thermoelectric performance in Cu2Se-based composite material Adv. Mater. 35 2210345 doi: 10.1002/adma.202210345
|
[39] |
Zhou Z, et al 2023 Compositing effects for high thermoelectric performance of Cu2Se-based materials Nat. Commun. 14 2410 doi: 10.1038/s41467-023-38054-y
|
[40] |
Shittu S, Li G, Zhao X, Ma X 2020 Review of thermoelectric geometry and structure optimization for performance enhancement Appl. Energy 268 115075 doi: 10.1016/j.apenergy.2020.115075
|
[41] |
Lee G, Kim C S, Kim S, Kim Y J, Choi H, Cho B J 2019 Flexible heatsink based on a phase-change material for a wearable thermoelectric generator Energy 179 12-18 doi: 10.1016/j.energy.2019.05.018
|
[42] |
Sun T, Zhou B, Zheng Q, Wang L, Jiang W, Snyder G J 2020 Stretchable fabric generates electric power from woven thermoelectric fibers Nat. Commun. 11 572 doi: 10.1038/s41467-020-14399-6
|
[43] |
Ding T, Chan K H, Zhou Y, Wang X-Q, Cheng Y, Li T, Ho G W 2020 Scalable thermoelectric fibers for multifunctional textile-electronics Nat. Commun. 11 6006 doi: 10.1038/s41467-020-19867-7
|
[44] |
Kim M-K, Kim M-S, Lee S, Kim C, Kim Y-J 2014 Wearable thermoelectric generator for harvesting human body heat energy Smart Mater. Struct. 23 105002 doi: 10.1088/0964-1726/23/10/105002
|
[45] |
Chen G, Li Y, Bick M, Chen J 2020 Smart textiles for electricity generation Chem. Rev. 120 3668-720 doi: 10.1021/acs.chemrev.9b00821
|
[46] |
Weng W, Yang J, Zhang Y, Li Y, Yang S, Zhu L, Zhu M 2020 A route toward smart system integration: from fiber design to device construction Adv. Mater. 32 1902301 doi: 10.1002/adma.201902301
|
[47] |
Peng Y, Cui Y 2020 Advanced textiles for personal thermal management and energy Joule 4 724-42 doi: 10.1016/j.joule.2020.02.011
|
[48] |
Seshadri D R, Drummond C, Craker J, Rowbottom J R, Voos J E 2017 Wearable devices for sports: new integrated technologies allow coaches, physicians, and trainers to better understand the physical demands of athletes in real time IEEE Pulse 8 38-43 doi: 10.1109/MPUL.2016.2627240
|
[49] |
Tian R, Liu Y, Koumoto K, Chen J 2019 Body heat powers future electronic skins Joule 3 1399-403 doi: 10.1016/j.joule.2019.03.011
|
[50] |
Hu R, et al 2020 Emerging materials and strategies for personal thermal management Adv. Energy Mater. 10 1903921 doi: 10.1002/aenm.201903921
|
[51] |
Patel S, Park H, Bonato P, Chan L, Rodgers M 2012 A review of wearable sensors and systems with application in rehabilitation J. Neuroeng. Rehabil. 9 21 doi: 10.1186/1743-0003-9-21
|
[52] |
Cao T, Shi X-L, Chen Z-G 2023 Advances in the design and assembly of flexible thermoelectric device Prog. Mater. Sci. 131 101003 doi: 10.1016/j.pmatsci.2022.101003
|
[53] |
Jia Y, et al 2021 Wearable thermoelectric materials and devices for self-powered electronic systems Adv. Mater. 33 2102990 doi: 10.1002/adma.202102990
|
[54] |
Zeng W, Shu L, Li Q, Chen S, Wang F, Tao X-M 2014 Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications Adv. Mater. 26 5310-36 doi: 10.1002/adma.201400633
|
[55] |
Dong K, Peng X, Wang Z L 2020 Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence Adv. Mater. 32 1902549 doi: 10.1002/adma.201902549
|
[56] |
Gao M, Wang P, Jiang L, Wang B, Yao Y, Liu S, Chu D, Cheng W, Lu Y 2021 Power generation for wearable systems Energy Environ. Sci. 14 2114-57 doi: 10.1039/D0EE03911J
|
[57] |
Liu R, Wang Z L, Fukuda K, Someya T 2022 Flexible self-charging power sources Nat. Rev. Mater. 7 870-86 doi: 10.1038/s41578-022-00441-0
|
[58] |
Nozariasbmarz A, et al 2020 Review of wearable thermoelectric energy harvesting: from body temperature to electronic systems Appl. Energy 258 114069 doi: 10.1016/j.apenergy.2019.114069
|
[59] |
Wang Y, Yang L, Shi X, Shi X, Chen L, Dargusch M, Zou J, Chen Z-G 2019 Flexible thermoelectric materials and generators: challenges and innovations Adv. Mater. 31 1807916 doi: 10.1002/adma.201807916
|
[60] |
Li C, Jiang F, Liu C, Liu P, Xu J 2019 Present and future thermoelectric materials toward wearable energy harvesting Appl. Mater. Today 15 543-57 doi: 10.1016/j.apmt.2019.04.007
|
[61] |
Ding J, Zhao W, Jin W, Di C-A, Zhu D 2021 Advanced thermoelectric materials for flexible cooling application Adv. Funct. Mater. 31 2010695 doi: 10.1002/adfm.202010695
|
[62] |
Sun T, Wang L, Jiang W 2022 Pushing thermoelectric generators toward energy harvesting from the human body: challenges and strategies Mater. Today 57 121-45 doi: 10.1016/j.mattod.2022.06.001
|
[63] |
Wang Y, Yang L, Zheng Y, Wang D, Deng Y 2023 Flexible thermoelectrics: from energy harvesting to human-machine interaction J. Appl. Phys. 133 110901 doi: 10.1063/5.0135663
|
[64] |
Yang S, Qiu P, Chen L, Shi X 2021 Recent developments in flexible thermoelectric devices Small Sci. 1 2100005 doi: 10.1002/smsc.202100005
|
[65] |
Liu X, Wang Z 2019 Printable thermoelectric materials and applications Front. Mater. 6 88 doi: 10.3389/fmats.2019.00088
|
[66] |
Li X, Cai K, Gao M, Du Y, Shen S 2021 Recent advances in flexible thermoelectric films and devices Nano Energy 89 106309 doi: 10.1016/j.nanoen.2021.106309
|
[67] |
Zhang L, Shi X-L, Yang Y-L, Chen Z-G 2021 Flexible thermoelectric materials and devices: from materials to applications Mater. Today 46 62-108 doi: 10.1016/j.mattod.2021.02.016
|
[68] |
Bahk J-H, Fang H, Yazawa K, Shakouri A 2015 Flexible thermoelectric materials and device optimization for wearable energy harvesting J. Mater. Chem. C 3 10362-74 doi: 10.1039/C5TC01644D
|
[69] |
Chen Y, Zhao Y, Liang Z 2015 Solution processed organic thermoelectrics: towards flexible thermoelectric modules Energy Environ. Sci. 8 401-22 doi: 10.1039/C4EE03297G
|
[70] |
Wu H, Huang Y, Xu F, Duan Y, Yin Z 2016 Energy harvesters for wearable and stretchable electronics: from flexibility to stretchability Adv. Mater. 28 9881-919 doi: 10.1002/adma.201602251
|
[71] |
Xu S, Shi X-L, Dargusch M, Di C, Zou J, Chen Z-G 2021 Conducting polymer-based flexible thermoelectric materials and devices: from mechanisms to applications Prog. Mater. Sci. 121 100840 doi: 10.1016/j.pmatsci.2021.100840
|
[72] |
Russ B, Glaudell A, Urban J J, Chabinyc M L, Segalman R A 2016 Organic thermoelectric materials for energy harvesting and temperature control Nat. Rev. Mater. 1 16050 doi: 10.1038/natrevmats.2016.50
|
[73] |
Bharti M, Singh A, Samanta S, Aswal D K 2018 Conductive polymers for thermoelectric power generation Prog. Mater. Sci. 93 270-310 doi: 10.1016/j.pmatsci.2017.09.004
|
[74] |
Wang H, Yu C 2019 Organic thermoelectrics: materials preparation, performance optimization, and device integration Joule 3 53-80
|
[75] |
Xu X, Zhou J, Chen J 2020 Thermal transport in conductive polymer-based materials Adv. Funct. Mater. 30 1904704 doi: 10.1002/adfm.201904704
|
[76] |
Xu Y, Jia Y, Liu P, Jiang Q, Hu D, Ma Y 2021 Poly(3,4-ethylenedioxythiophene) (PEDOT) as promising thermoelectric materials and devices Chem. Eng. J. 404 126552 doi: 10.1016/j.cej.2020.126552
|
[77] |
Prunet G, Pawula F, Fleury G, Cloutet E, Robinson A J, Hadziioannou G, Pakdel A 2021 A review on conductive polymers and their hybrids for flexible and wearable thermoelectric applications Mater. Today Phys. 18 100402 doi: 10.1016/j.mtphys.2021.100402
|
[78] |
Deng L, Chen G 2021 Recent progress in tuning polymer oriented microstructures for enhanced thermoelectric performance Nano Energy 80 105448 doi: 10.1016/j.nanoen.2020.105448
|
[79] |
Han S, Chen S, Jiao F 2021 Insulating polymers for flexible thermoelectric composites: a multi-perspective review Compos. Commun. 28 100914 doi: 10.1016/j.coco.2021.100914
|
[80] |
Li M, Bai Z, Chen X, Liu C-C, Xu J-K, Lan X-Q, Jiang F-X 2022 Thermoelectric transport in conductive poly(3,4-ethylenedioxythiophene) Chin. Phys. B 31 027201 doi: 10.1088/1674-1056/ac4230
|
[81] |
Masoumi S, O’Shaughnessy S, Pakdel A 2022 Organic-based flexible thermoelectric generators: from materials to devices Nano Energy 92 106774 doi: 10.1016/j.nanoen.2021.106774
|
[82] |
Liu Z, Chen G 2020 Advancing flexible thermoelectric devices with polymer composites Adv. Mater. Technol. 5 2000049 doi: 10.1002/admt.202000049
|
[83] |
Liu W-D, Yu Y, Dargusch M, Liu Q, Chen Z-G 2021 Carbon allotrope hybrids advance thermoelectric development and applications Renew. Sustain. Energy Rev. 141 110800 doi: 10.1016/j.rser.2021.110800
|
[84] |
Blackburn J L, Ferguson A J, Cho C, Grunlan J C 2018 Carbon-nanotube-based thermoelectric materials and devices Adv. Mater. 30 1704386 doi: 10.1002/adma.201704386
|
[85] |
Zong P-A, Liang J, Zhang P, Wan C, Wang Y, Koumoto K 2020 Graphene-based thermoelectrics ACS Appl. Energy Mater. 3 2224-39 doi: 10.1021/acsaem.9b02187
|
[86] |
Massetti M, Jiao F, Ferguson A J, Zhao D, Wijeratne K, Wrger A, Blackburn J L, Crispin X, Fabiano S 2021 Unconventional thermoelectric materials for energy harvesting and sensing applications Chem. Rev. 121 12465-547 doi: 10.1021/acs.chemrev.1c00218
|
[87] |
Zhang Y, Zhang Q, Chen G 2020 Carbon and carbon composites for thermoelectric applications Carbon Energy 2 408-36 doi: 10.1002/cey2.68
|
[88] |
Hu B, Shi X-L, Cao T, Li M, Chen W, Liu W-D, Lyu W, Tesfamichael T, Chen Z-G 2023 Advances in flexible thermoelectric materials and devices fabricated by magnetron sputtering Small Sci. 2300061 doi: 10.1002/smsc.202300061
|
[89] |
Yan W, et al 2020 Thermally drawn advanced functional fibers: new frontier of flexible electronics Mater. Today 35 168-94 doi: 10.1016/j.mattod.2019.11.006
|
[90] |
Kanahashi K, Pu J, Takenobu T 2020 2D materials for large-area flexible thermoelectric devices Adv. Energy Mater. 10 1902842 doi: 10.1002/aenm.201902842
|
[91] |
Ding D, Sun F, Xia F, Tang Z 2021 Design of flexible inorganic thermoelectric devices for decrease of heat loss Nano Res. 14 2090-104 doi: 10.1007/s12274-020-3195-9
|
[92] |
Liu E, Negm A, Howlader M M R 2021 Thermoelectric generation via tellurene for wearable applications: recent advances, research challenges, and future perspectives Mater. Today Energy 20 100625 doi: 10.1016/j.mtener.2020.100625
|
[93] |
Wang Y, Lin P, Lou Q, Zhang Z, Huang S, Lu Y, He J 2021 Design guidelines for chalcogenide-based flexible thermoelectric materials Mater. Adv. 2 2584-93 doi: 10.1039/D0MA01018A
|
[94] |
Chen H, Wei T-R, Zhao K, Qiu P, Chen L, He J, Shi X 2021 Room-temperature plastic inorganic semiconductors for flexible and deformable electronics InfoMat 3 22-35 doi: 10.1002/inf2.12149
|
[95] |
Chen K, Wang L, Luo Z, Xu X, Li Y, Liu S, Zhao Q 2023 Flexible thermoelectrics based on plastic inorganic semiconductors Adv. Mater. Technol. 8 2300189 doi: 10.1002/admt.202300189
|
[96] |
Loke G, Yan W, Khudiyev T, Noel G, Fink Y 2020 Recent progress and perspectives of thermally drawn multimaterial fiber electronics Adv. Mater. 32 1904911 doi: 10.1002/adma.201904911
|
[97] |
Peterson K A, Thomas E M, Chabinyc M L 2020 Thermoelectric properties of semiconducting polymers Ann. Rev. Mater. Res. 50 551-74 doi: 10.1146/annurev-matsci-082219-024716
|
[98] |
Lee S, Kim S, Pathak A, Tripathi A, Qiao T, Lee Y, Lee H, Woo H Y 2020 Recent progress in organic thermoelectric materials and devices Macromol. Res. 28 531-52 doi: 10.1007/s13233-020-8116-y
|
[99] |
Sun K, Zhang S, Li P, Xia Y, Zhang X, Du D, Isikgor F H, Ouyang J 2015 Review on application of PEDOTs and PEDOT:PSS in energy conversion and storage devices J. Mater. Sci. 26 4438-62 doi: 10.1007/s10854-015-2895-5
|
[100] |
Zhao W, Ding J, Zou Y, Di C-A, Zhu D 2020 Chemical doping of organic semiconductors for thermoelectric applications Chem. Soc. Rev. 49 7210-28 doi: 10.1039/D0CS00204F
|
[101] |
Cao T, Shi X-L, Zou J, Chen Z-G 2021 Advances in conducting polymer-based thermoelectric materials and devices Microstructures 1 2021007 doi: 10.20517/microstructures.2021.06
|
[102] |
Chen J, et al 2012 Superlow thermal conductivity 3D carbon nanotube network for thermoelectric applications ACS Appl. Mater. Interfaces 4 81-86 doi: 10.1021/am201330f
|
[103] |
Zheng Z-H, et al 2023 Harvesting waste heat with flexible Bi2Te3 thermoelectric thin film Nat. Sustain. 6 180-91 doi: 10.1038/s41893-022-01003-6
|
[104] |
Lu Y, et al 2023 Staggered-layer-boosted flexible Bi2Te3 films with high thermoelectric performance Nat. Nanotechnol. 18 1281-8 doi: 10.1038/s41565-023-01457-5
|
[105] |
Zhu M, Shi X-L, Wu H, Liu Q, Chen Z-G 2023 Advances in Ag2S-based thermoelectrics for wearable electronics: progress and perspective Chem. Eng. J. 475 146194 doi: 10.1016/j.cej.2023.146194
|
[106] |
Wu H, Shi X-L, Duan J, Liu Q, Chen Z-G 2023 Advances in Ag2Se-based thermoelectrics from materials to applications Energy Environ. Sci. 16 1870-906 doi: 10.1039/D3EE00378G
|
[107] |
Wei T-R, Qiu P, Zhao K, Shi X, Chen L 2023 Ag2Q-based (Q = S, Se, Te) silver chalcogenide thermoelectric materials Adv. Mater. 35 2110236 doi: 10.1002/adma.202110236
|
[108] |
Wu H, et al 2023 Optimized thermoelectric performance and plasticity of ductile semiconductor Ag2S0.5Se0.5via dual-phase engineering Adv. Energy Mater. 13 2302551 doi: 10.1002/aenm.202302551
|
[109] |
Tang X, Li Z, Liu W, Zhang Q, Uher C 2022 A comprehensive review on Bi2Te3-based thin films: thermoelectrics and beyond Interdiscip. Mater. 1 88-115 doi: 10.1002/idm2.12009
|
[110] |
Min H, Shuai S, Wanyu L, Meng L, Weidi L, Xiao-Lei S, Zhi-Gang C 2023 Advances in printing techniques for thermoelectric materials and devices Soft Sci. 3 29 doi: 10.20517/ss.2023.20
|
[111] |
Zeng M, Zavanelli D, Chen J, Saeidi-Javash M, Du Y, LeBlanc S, Snyder G J, Zhang Y 2022 Printing thermoelectric inks toward next-generation energy and thermal devices Chem. Soc. Rev. 51 485-512 doi: 10.1039/D1CS00490E
|
[112] |
Wang L, Fu X, He J, Shi X, Chen T, Chen P, Wang B, Peng H 2020 Application challenges in fiber and textile electronics Adv. Mater. 32 1901971 doi: 10.1002/adma.201901971
|
[113] |
Lee J, Llerena Zambrano B, Woo J, Yoon K, Lee T 2020 Recent advances in 1D stretchable electrodes and devices for textile and wearable electronics: materials, fabrications, and applications Adv. Mater. 32 1902532 doi: 10.1002/adma.201902532
|
[114] |
Shi X-L, Chen W-Y, Zhang T, Zou J, Chen Z-G 2021 Fiber-based thermoelectrics for solid, portable, and wearable electronics Energy Environ. Sci. 14 729-64 doi: 10.1039/D0EE03520C
|
[115] |
Chen W-Y, Shi X-L, Zou J, Chen Z-G 2020 Wearable fiber-based thermoelectrics from materials to applications Nano Energy 81 105684 doi: 10.1016/j.nanoen.2020.105684
|
[116] |
Zhang L, Lin S, Hua T, Huang B, Liu S, Tao X 2018 Fiber-based thermoelectric generators: materials, device structures, fabrication, characterization, and applications Adv. Energy Mater. 8 1700524 doi: 10.1002/aenm.201700524
|
[117] |
Huang L, Lin S, Xu Z, Zhou H, Duan J, Hu B, Zhou J 2020 Fiber-based energy conversion devices for human-body energy harvesting Adv. Mater. 32 1902034 doi: 10.1002/adma.201902034
|
[118] |
Zhang P, Deng B, Sun W, Zheng Z, Liu W 2021 Fiber-based thermoelectric materials and devices for wearable electronics Micromachines 12 869 doi: 10.3390/mi12080869
|
[119] |
Wang L, Zhang K 2020 Textile-based thermoelectric generators and their applications Energy Environ. Mater. 3 67-79 doi: 10.1002/eem2.12045
|
[120] |
Shi J, et al 2020 Smart textile-integrated microelectronic systems for wearable applications Adv. Mater. 32 1901958 doi: 10.1002/adma.201901958
|
[121] |
Fang Y, Chen G, Bick M, Chen J 2021 Smart textiles for personalized thermoregulation Chem. Soc. Rev. 50 9357-74 doi: 10.1039/D1CS00003A
|
[122] |
Park K T, Lee T, Ko Y, Cho Y S, Park C R, Kim H 2021 High-performance thermoelectric fabric based on a stitched carbon nanotube fiber ACS Appl. Mater. Interfaces 13 6257-64 doi: 10.1021/acsami.0c20252
|
[123] |
Park K T, et al 2022 Highly integrated, wearable carbon-nanotube-yarn-based thermoelectric generators achieved by selective inkjet-printed chemical doping Adv. Energy Mater. 12 2200256 doi: 10.1002/aenm.202200256
|
[124] |
Zheng Y, et al 2020 Carbon nanotube yarn based thermoelectric textiles for harvesting thermal energy and powering electronics J. Mater. Chem. A 8 2984-94 doi: 10.1039/C9TA12494B
|
[125] |
Culebras M, Ren G, O’Connell S, Vilatela J J, Collins M N 2020 Lignin doped carbon nanotube yarns for improved thermoelectric efficiency Adv. Sustain. Syst. 4 2000147 doi: 10.1002/adsu.202000147
|
[126] |
Heriyanto A D M, Cho Y, Okamoto N, Abe R, Pandey M, Benten H, Nakamura M 2023 Influence of halogen elements in organic salts on n-type doping of CNT yarn for thermoelectric applications RSC Adv. 13 22226-33 doi: 10.1039/D3RA03755J
|
[127] |
Xia X, Zhang Q, Zhou W, Mei J, Xiao Z, Xi W, Wang Y, Xie S, Zhou W 2021 Integrated, highly flexible, and tailorable thermoelectric type temperature detectors based on a continuous carbon nanotube fiber Small 17 2102825 doi: 10.1002/smll.202102825
|
[128] |
Xiao-Gang X, Qiang Z, Wen-Bin Z, Zhuo-Jian X, Wei X, Yan-Chun W, Wei-Ya Z 2021 Highly flexible and excellent performance continuous carbon nanotube fibrous thermoelectric modules for diversified applications Chin. Phys. B 30 078801 doi: 10.1088/1674-1056/abff33
|
[129] |
Komatsu N, Ichinose Y, Dewey O S, Taylor L W, Trafford M A, Yomogida Y, Wehmeyer G, Pasquali M, Yanagi K, Kono J 2021 Macroscopic weavable fibers of carbon nanotubes with giant thermoelectric power factor Nat. Commun. 12 4931 doi: 10.1038/s41467-021-25208-z
|
[130] |
Sun T, Chen S, Sun H, Li J, Wu X, Jin L, Wang L, Jiang W 2021 Wavy-structured thermoelectric device integrated with high-performance n-type carbon nanotube fiber prepared by multistep treatment for energy harvesting Compos. Commun. 27 100871 doi: 10.1016/j.coco.2021.100871
|
[131] |
Wen N, et al 2020 Highly conductive, ultra-flexible and continuously processable PEDOT:PSS fibers with high thermoelectric properties for wearable energy harvesting Nano Energy 78 105361 doi: 10.1016/j.nanoen.2020.105361
|
[132] |
Wen N, Fan Z, Yang S, Zhao Y, Li C, Cong T, Huang H, Zhang J, Guan X, Pan L 2021 High-performance stretchable thermoelectric fibers for wearable electronics Chem. Eng. J. 426 130816 doi: 10.1016/j.cej.2021.130816
|
[133] |
Pan Y, Song Y, Jiang Q, Jia Y, Liu P, Song H, Liu G 2022 Solvent treatment of wet-spinning PEDOT:PSS fiber towards wearable thermoelectric energy harvesting Synth. Met. 283 116969 doi: 10.1016/j.synthmet.2021.116969
|
[134] |
Liu L, Chen J, Liang L, Deng L, Chen G 2022 A PEDOT:PSS thermoelectric fiber generator Nano Energy 102 107678 doi: 10.1016/j.nanoen.2022.107678
|
[135] |
Gao Q, Wang M, Kang X, Zhu C, Ge M 2020 Continuous wet-spinning of flexible and water-stable conductive PEDOT: PSS/PVA composite fibers for wearable sensors Compos. Commun. 17 134-40 doi: 10.1016/j.coco.2019.12.001
|
[136] |
Lund A, Tian Y, Darabi S, Mller C 2020 A polymer-based textile thermoelectric generator for wearable energy harvesting J. Power Sources 480 228836 doi: 10.1016/j.jpowsour.2020.228836
|
[137] |
Reid D O, Smith R E, Garcia-Torres J, Watts J F, Crean C 2019 Solvent treatment of wet-spun PEDOT: PSS fibers for fiber-based wearable pH sensing Sensors 19 4213 doi: 10.3390/s19194213
|
[138] |
Kim Y, Lund A, Noh H, Hofmann A I, Craighero M, Darabi S, Zokaei S, Park J I, Yoon M-H, Mller C 2020 Robust PEDOT:PSS wet-spun fibers for thermoelectric textiles Macromol. Mater. Eng. 305 1900749 doi: 10.1002/mame.201900749
|
[139] |
Wang X-Y, Feng G-Y, Li M-J, Ge M-Q 2019 Effect of PEDOT:PSS content on structure and properties of PEDOT:PSS/poly(vinyl alcohol) composite fiber Polym. Bull. 76 2097-111 doi: 10.1007/s00289-018-2459-y
|
[140] |
Feng D, Wang P, Wang M, Zhu C, Gao Q, Shen M 2021 A facile route toward continuous wet-spinning of PEDOT: PSS fibers with enhanced strength and electroconductivity Fiber Polym. 22 1491-5 doi: 10.1007/s12221-021-0172-1
|
[141] |
Yuk H, Lu B, Lin S, Qu K, Xu J, Luo J, Zhao X 2020 3D printing of conducting polymers Nat. Commun. 11 1604 doi: 10.1038/s41467-020-15316-7
|
[142] |
Ruan L, Zhao Y, Chen Z, Zeng W, Wang S, Liang D, Zhao J 2020 A self-powered flexible thermoelectric sensor and its application on the basis of the hollow PEDOT:PSS fiber Polymers 12 553 doi: 10.3390/polym12030553
|
[143] |
Sarabia-Riquelme R, Shahi M, Brill J W, Weisenberger M C 2019 Effect of drawing on the electrical, thermoelectrical, and mechanical properties of wet-spun PEDOT:PSS fibers ACS Appl. Polym. Mater. 1 2157-67 doi: 10.1021/acsapm.9b00425
|
[144] |
Ge R, Dong X, Sun L, Hu L, Liu T, Zeng W, Luo B, Jiang X, Jiang Y, Zhou Y 2020 Meters-long, sewable, wearable conductive polymer wires for thermoelectric applications J. Mater. Chem. C 8 1571-6 doi: 10.1039/C9TC06079K
|
[145] |
Chen Z, Guan X, Wen N, Pan L, Fan Z 2023 Construction of flexible, self-supporting, and in-plane anisotropic PEDOT:PSS thermoelectric films via the wet-winding approach ACS Appl. Polym. Mater. 5 2905-16 doi: 10.1021/acsapm.3c00122
|
[146] |
Sarabia-Riquelme R, Andrews R, Anthony J E, Weisenberger M C 2020 Highly conductive wet-spun PEDOT:PSS fibers for applications in electronic textiles J. Mater. Chem. C 8 11618-30 doi: 10.1039/D0TC02558E
|
[147] |
Wang Y, Gao C, Zhao C, Chen Z, Ye H, Shen M, Gao Q, Zhu J, Chen T 2023 Engineering PEDOT:PSS/PEG fibers with a textured surface toward comprehensive personal thermal management ACS Appl. Mater. Interfaces 15 17175-87 doi: 10.1021/acsami.2c23269
|
[148] |
Fu Y, Kang S, Gu H, Tan L, Gao C, Fang Z, Dai S, Lin C 2023 Superflexible inorganic Ag2Te0.6S0.4 fiber with high thermoelectric performance Adv. Sci. 10 2207642 doi: 10.1002/advs.202207642
|
[149] |
Kruppa K, Maor I I, Steinbach F, Beilin V, Mann-Lahav M, Wolf M, Grader G S, Feldhoff A 2023 Electrospun Ca3Co4-xO9+ nanofibers and nanoribbons: microstructure and thermoelectric properties J. Am. Ceram. Soc. 106 1170-81 doi: 10.1111/jace.18842
|
[150] |
Zheng Y, et al 2022 Durable, stretchable and washable inorganic-based woven thermoelectric textiles for power generation and solid-state cooling Energy Environ. Sci. 15 2374-85 doi: 10.1039/D1EE03633E
|
[151] |
Zhang J, et al 2020 Single-crystal SnSe thermoelectric fibers via laser-induced directional crystallization: from 1D fibers to multidimensional fabrics Adv. Mater. 32 2002702 doi: 10.1002/adma.202002702
|
[152] |
He X, Li B, Cai J, Zhang H, Li C, Li X, Yu J, Wang L, Qin X 2023 A waterproof, environment-friendly, multifunctional, and stretchable thermoelectric fabric for continuous self-powered personal health signal collection at high humidity SusMat 3 709-20 doi: 10.1002/sus2.155
|
[153] |
Meng C, Qian Y, He J, Dong X 2020 Wet-spinning fabrication of multi-walled carbon nanotubes reinforced poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) hybrid fibers for high-performance fiber-shaped supercapacitor J. Mater. Sci. 31 19293-308 doi: 10.1007/s10854-020-04464-7
|
[154] |
Liu J, Zhu Z, Zhou W, Liu P, Liu P, Liu G, Xu J, Jiang Q, Jiang F 2020 Flexible metal-free hybrid hydrogel thermoelectric fibers J. Mater. Sci. 55 8376-87 doi: 10.1007/s10853-020-04382-3
|
[155] |
He X, Gu J, Hao Y, Zheng M, Wang L, Yu J, Qin X 2022 Continuous manufacture of stretchable and integratable thermoelectric nanofiber yarn for human body energy harvesting and self-powered motion detection Chem. Eng. J. 450 137937 doi: 10.1016/j.cej.2022.137937
|
[156] |
Zheng Y, Liu H, Chen X, Qiu Y, Zhang K 2022 Wearable thermoelectric-powered textile-based temperature and pressure dual-mode sensor arrays Org. Electron. 106 106535 doi: 10.1016/j.orgel.2022.106535
|
[157] |
Wu B, Wei W, Guo Y, Hou Yip W, Kang Tay B, Hou C, Zhang Q, Li Y, Wang H 2023 Stretchable thermoelectric generators with enhanced output by infrared reflection for wearable application Chem. Eng. J. 453 139749 doi: 10.1016/j.cej.2022.139749
|
[158] |
Zhang C, et al 2021 Highly stretchable carbon nanotubes/polymer thermoelectric fibers Nano Lett. 21 1047-55 doi: 10.1021/acs.nanolett.0c04252
|
[159] |
Jang D, Park K T, Lee S-S, Kim H 2022 Highly stretchable three-dimensional thermoelectric fabrics exploiting woven structure deformability and passivation-induced fiber elasticity Nano Energy 97 107143 doi: 10.1016/j.nanoen.2022.107143
|
[160] |
Xu C, Yang S, Li P, Wang H, Li H, Liu Z 2022 Wet-spun PEDOT:PSS/CNT composite fibers for wearable thermoelectric energy harvesting Compos. Commun. 32 101179 doi: 10.1016/j.coco.2022.101179
|
[161] |
Li H, Liu Y, Liu S, Li P, Zhang C, He C 2023 Wet-spun flexible carbon nanotubes/polyaniline fibers for wearable thermoelectric energy harvesting Composites A 166 107386 doi: 10.1016/j.compositesa.2022.107386
|
[162] |
Lee T, Lee J W, Park K T, Kim J-S, Park C R, Kim H 2021 Nanostructured inorganic chalcogenide-carbon nanotube yarn having a high thermoelectric power factor at low temperature ACS Nano 15 13118-28 doi: 10.1021/acsnano.1c02508
|
[163] |
Liu Y, Liu P, Jiang Q, Jiang F, Liu J, Liu G, Liu C, Du Y, Xu J 2021 Organic/inorganic hybrid for flexible thermoelectric fibers Chem. Eng. J. 405 126510 doi: 10.1016/j.cej.2020.126510
|
[164] |
Xu H, Guo Y, Wu B, Hou C, Zhang Q, Li Y, Wang H 2020 Highly integrable thermoelectric fiber ACS Appl. Mater. Interfaces 12 33297-304 doi: 10.1021/acsami.0c09446
|
[165] |
Akram R, Khan J S, Qamar Z, Rafique S, Hussain M, Kayani F B 2022 Ultra-low thermal conductivity and thermoelectric properties of polymer-mixed Bi2Te3 nanofibers by electrospinning J. Mater. Sci. 57 3309-21 doi: 10.1007/s10853-021-06750-z
|
[166] |
Yang J, Jia Y, Liu Y, Liu P, Wang Y, Li M, Jiang F, Lan X, Xu J 2021 PEDOT:PSS/PVA/Te ternary composite fibers toward flexible thermoelectric generator Compos. Commun. 27 100855 doi: 10.1016/j.coco.2021.100855
|
[167] |
Yang L, et al 2021 High thermoelectric figure of merit of porous Si nanowires from 300 to 700K Nat. Commun. 12 3926 doi: 10.1038/s41467-021-24208-3
|
[168] |
Park D, Kim M, Kim J 2021 High-performance PANI-coated Ag2Se nanowire and PVDF thermoelectric composite film for flexible energy harvesting J. Alloys Compd. 884 161098 doi: 10.1016/j.jallcom.2021.161098
|
[169] |
Lv H, Liang L, Zhang Y, Deng L, Chen Z, Liu Z, Wang H, Chen G 2021 A flexible spring-shaped architecture with optimized thermal design for wearable thermoelectric energy harvesting Nano Energy 88 106260 doi: 10.1016/j.nanoen.2021.106260
|
[170] |
Wang K, Hou C, Zhang Q, Li Y, Wang H 2022 Highly integrated fiber-shaped thermoelectric generators with radially heterogeneous interlayers Nano Energy 95 107055 doi: 10.1016/j.nanoen.2022.107055
|
[171] |
Mytafides C K, Tzounis L, Karalis G, Formanek P, Paipetis A S 2021 High-power all-carbon fully printed and wearable SWCNT-based organic thermoelectric generator ACS Appl. Mater. Interfaces 13 11151-65 doi: 10.1021/acsami.1c00414
|
[172] |
Hasan M N, Nayan N, Nafea M, Muthalif A G A, Ali M M S 2022 Novel structural design of wearable thermoelectric generator with vertically oriented thermoelements Energy 259 125032 doi: 10.1016/j.energy.2022.125032
|
[173] |
Hou Y, Yang Y, Wang Z, Li Z, Zhang X, Bethers B, Xiong R, Guo H, Yu H 2022 Whole fabric-assisted thermoelectric devices for wearable electronics Adv. Sci. 9 2103574 doi: 10.1002/advs.202103574
|
[174] |
Jing Y, et al 2023 Scalable manufacturing of a durable, tailorable, and recyclable multifunctional woven thermoelectric textile system Energy Environ. Sci. 16 4334-44 doi: 10.1039/D3EE01031G
|
[175] |
Kim W-G, Kim D, Lee H M, Choi Y-K 2022 Wearable fabric-based hybrid energy harvester from body motion and body heat Nano Energy 100 107485 doi: 10.1016/j.nanoen.2022.107485
|
[176] |
He X, Zhang X, Zhang H, Li C, Luo Q, Li X, Wang L, Qin X 2022 Facile fabrication of stretchable and multifunctional thermoelectric composite fabrics with strain-enhanced self-powered sensing performance Compos. Commun. 35 101275 doi: 10.1016/j.coco.2022.101275
|
[177] |
Rousti A M, Maji T, Drew C, Kumar J, Christodouleas D C 2021 High-performance thermoelectric fabric based on PEDOT:tosylate/CuI Appl. Mater. Today 25 101180 doi: 10.1016/j.apmt.2021.101180
|
[178] |
Vinodhini J, Shalini V, Harish S, Ikeda H, Archana J, Navaneethan M 2023 Solvent-assisted synthesis of Ag2Se and Ag2S nanoparticles on carbon fabric for enhanced thermoelectric performance J. Colloid Interface Sci. 651 436-47 doi: 10.1016/j.jcis.2023.07.090
|
[179] |
Liu S, Zhang M, Kong J, Li H, He C 2023 Flexible, durable, green thermoelectric composite fabrics for textile-based wearable energy harvesting and self-powered sensing Compos. Sci. Technol. 243 110245 doi: 10.1016/j.compscitech.2023.110245
|
[180] |
Serrano-Claumarchirant J F, Nasiri M A, Cho C, Cantarero A, Culebras M, Gmez C M 2023 Textile-based thermoelectric generator produced via electrochemical polymerization Adv. Mater. Interfaces 10 2202105 doi: 10.1002/admi.202202105
|
[181] |
Liu Y, Wang X, Hou S, Wu Z, Wang J, Mao J, Zhang Q, Liu Z, Cao F 2023 Scalable-produced 3D elastic thermoelectric network for body heat harvesting Nat. Commun. 14 3058 doi: 10.1038/s41467-023-38852-4
|
[182] |
Zhang X, Li T-T, Jiang Q, Wu L, Ren H-T, Peng H-K, Shiu B-C, Wang Y, Lou C-W, Lin J-H 2020 Worm-like PEDOT:Tos coated polypropylene fabrics via low-temperature interfacial polymerization for high-efficiency thermoelectric textile Prog. Org. Coat. 149 105919 doi: 10.1016/j.porgcoat.2020.105919
|
[183] |
He X, Shi J, Hao Y, He M, Cai J, Qin X, Wang L, Yu J 2022 Highly stretchable, durable, and breathable thermoelectric fabrics for human body energy harvesting and sensing Carbon Energy 4 621-32 doi: 10.1002/cey2.186
|
[184] |
Zhang D, et al 2023 3D-printed porous thermoelectrics for in situ energy harvesting ACS Energy Lett. 8 332-8 doi: 10.1021/acsenergylett.2c02425
|
[185] |
Selestina A, Sudha L, Vijay V, Karunagaran N, Navaneethan M 2023 Enhanced thermoelectric power factor of Se-doped SnS nanostructures for flexible thermoelectric applications J. Mater. Sci. 34 255 doi: 10.1007/s10854-022-09489-8
|
[186] |
Shi T, et al 2023 Modifying carbon fiber fabric for flexible thermoelectric energy conversion Appl. Surf. Sci. 610 155479 doi: 10.1016/j.apsusc.2022.155479
|
[187] |
Xing S-C, Yu C, Gao C-F 2021 Analysis of a hollow fiber in thermoelectric materials considering interfacial thermal resistance J. Appl. Math. Mech. 101 e202000158 doi: 10.1002/zamm.202000158
|
[188] |
Zhang L-S, Yang B, Lin S-P, Hua T, Tao X-M 2020 Predicting performance of fiber thermoelectric generator arrays in wearable electronic applications Nano Energy 76 105117 doi: 10.1016/j.nanoen.2020.105117
|
[189] |
Zhu P, Wang Y, Wang Y, Mao H, Zhang Q, Deng Y 2020 Flexible 3D architectured piezo/thermoelectric bimodal tactile sensor array for E-skin application Adv. Energy Mater. 10 2001945 doi: 10.1002/aenm.202001945
|
[190] |
Sun S, Shi X-L, Li M, Wu T, Yin L, Wang D, Liu Q, Chen Z-G 2023 Ultrafast and cost-effective fabrication of high-performance carbon-based flexible thermoelectric hybrid films and their devices ACS Appl. Mater. Interfaces 15 25650-60 doi: 10.1021/acsami.3c05226
|
[191] |
Sun S, Shi X-L, Liu W-D, Wu T, Wang D, Wu H, Zhang X, Wang Y, Liu Q, Chen Z-G 2022 Cheap, large-scale, and high-performance graphite-based flexible thermoelectric materials and devices with supernormal industry feasibility ACS Appl. Mater. Interfaces 14 8066-75 doi: 10.1021/acsami.1c24649
|
[192] |
Zheng Z-H, et al 2022 Achieving ultrahigh power factor in n-type Ag2Se thin films by carrier engineering Mater. Today Energy 24 100933 doi: 10.1016/j.mtener.2021.100933
|
[193] |
Zheng Z-H, et al 2021 In-situ growth of high-performance (Ag, Sn) co-doped CoSb3 thermoelectric thin films J. Mater. Sci. Technol. 92 178-85 doi: 10.1016/j.jmst.2021.04.007
|
[194] |
Sun M, Qian Q, Tang G, Liu W, Qian G, Shi Z, Huang K, Chen D, Xu S, Yang Z 2018 Enhanced thermoelectric properties of polycrystalline Bi2Te3 core fibers with preferentially oriented nanosheets APL Mater. 6 036103 doi: 10.1063/1.5018621
|
[195] |
Liu X, Shi X-L, Zhang L, Liu W-D, Yang Y, Chen Z-G 2023 One-step post-treatment boosts thermoelectric properties of PEDOT:PSS flexible thin films J. Mater. Sci. Technol. 132 81-89 doi: 10.1016/j.jmst.2022.05.047
|
[196] |
Wu T, Shi X-L, Liu W-D, Sun S, Liu Q, Chen Z-G 2022 Dual post-treatments boost thermoelectric performance of PEDOT:PSS films and their devices Macromol. Mater. Eng. 307 2200411 doi: 10.1002/mame.202200411
|
[197] |
Wang X, Feng G-Y, Ge M-Q 2017 Influence of ethylene glycol vapor annealing on structure and property of wet-spun PVA/PEDOT:PSS blend fiber J. Mater. Sci. 52 6917-27 doi: 10.1007/s10853-017-0756-8
|
[198] |
Xu S, Hong M, Shi X-L, Wang Y, Ge L, Bai Y, Wang L, Dargusch M, Zou J, Chen Z-G 2019 High-performance PEDOT:PSS flexible thermoelectric materials and their devices by triple post-treatments Chem. Mater. 31 5238-44 doi: 10.1021/acs.chemmater.9b01500
|
[199] |
Hu Q-X, Liu W-D, Zhang L, Sun W, Gao H, Shi X-L, Yang Y-L, Liu Q, Chen Z-G 2023 SWCNTs/Ag2Se film with superior bending resistance and enhanced thermoelectric performance via in situ compositing Chem. Eng. J. 457 141024 doi: 10.1016/j.cej.2022.141024
|
[200] |
Zhang L, Xia B, Shi X-L, Liu W-D, Yang Y, Hou X, Ye X, Suo G, Chen Z-G 2022 Achieving high thermoelectric properties in PEDOT:PSS/SWCNTs composite films by a combination of dimethyl sulfoxide doping and NaBH4 dedoping Carbon 196 718-26 doi: 10.1016/j.carbon.2022.05.043
|
[201] |
Wang Y, Hong M, Liu W-D, Shi X-L, Xu S-D, Sun Q, Gao H, Lu S, Zou J, Chen Z-G 2020 Bi0.5Sb1.5Te3/PEDOT:PSS-based flexible thermoelectric film and device Chem. Eng. J. 397 125360 doi: 10.1016/j.cej.2020.125360
|
[202] |
Chen R, Lee J, Lee W, Li D 2019 Thermoelectrics of nanowires Chem. Rev. 119 9260-302 doi: 10.1021/acs.chemrev.8b00627
|
[203] |
Zheng Y, Shi X-L, Yuan H, Lu S, Qu X, Liu W, Wang L, Zheng K, Zou J, Chen Z-G 2020 A synergy of strain loading and laser radiation in determining the high-performing electrical transports in the single Cu-doped SnSe microbelt Mater. Today Phys. 13 100198 doi: 10.1016/j.mtphys.2020.100198
|
[204] |
Yang W, Gong W, Hou C, Su Y, Guo Y, Zhang W, Li Y, Zhang Q, Wang H 2019 All-fiber tribo-ferroelectric synergistic electronics with high thermal-moisture stability and comfortability Nat. Commun. 10 5541 doi: 10.1038/s41467-019-13569-5
|
[205] |
El Chaar L, Lamont L A, El Zein N 2011 Review of photovoltaic technologies Renew. Sustain. Energy Rev. 15 2165-75 doi: 10.1016/j.rser.2011.01.004
|
[206] |
Shen D, Duley W W, Peng P, Xiao M, Feng J, Liu L, Zou G, Zhou Y N 2020 Moisture-enabled electricity generation: from physics and materials to self-powered applications Adv. Mater. 32 2003722 doi: 10.1002/adma.202003722
|
[207] |
Maiti T, Saxena M, Roy P 2019 Double perovskite (Sr2BBO6) oxides for high-temperature thermoelectric power generationa review J. Mater. Res. 34 107-25 doi: 10.1557/jmr.2018.376
|
[208] |
Lin R, Kim H-J, Achavananthadith S, Kurt S A, Tan S C C, Yao H, Tee B C K, Lee J K W, Ho J S 2020 Wireless battery-free body sensor networks using near-field-enabled clothing Nat. Commun. 11 444 doi: 10.1038/s41467-020-14311-2
|
[209] |
Wu Y, Mechael S S, Lerma C, Carmichael R S, Carmichael T B 2020 Stretchable ultrasheer fabrics as semitransparent electrodes for wearable light-emitting e-textiles with changeable display patterns Matter 2 882-95 doi: 10.1016/j.matt.2020.01.017
|
[210] |
Homayounfar S Z, Rostaminia S, Kiaghadi A, Chen X, Alexander E T, Ganesan D, Andrew T L 2020 Multimodal smart eyewear for longitudinal eye movement tracking Matter 3 1275-93 doi: 10.1016/j.matt.2020.07.030
|
[211] |
Zhu M, Sun Z, Zhang Z, Shi Q, He T, Liu H, Chen T, Lee C 2020 Haptic-feedback smart glove as a creative human-machine interface (HMI) for virtual/augmented reality applications Sci. Adv. 6 eaaz8693 doi: 10.1126/sciadv.aaz8693
|
[212] |
Zhou Z, et al 2020 Single-layered ultra-soft washable smart textiles for all-around ballistocardiograph, respiration, and posture monitoring during sleep Biosens. Bioelectron. 155 112064 doi: 10.1016/j.bios.2020.112064
|
[213] |
Meng K, et al 2020 A wireless textile-based sensor system for self-powered personalized health care Matter 2 896-907 doi: 10.1016/j.matt.2019.12.025
|
[214] |
Wicaksono I, Tucker C I, Sun T, Guerrero C A, Liu C, Woo W M, Pence E J, Dagdeviren C 2020 A tailored, electronic textile conformable suit for large-scale spatiotemporal physiological sensing in vivo npj Flex. Electron. 4 5 doi: 10.1038/s41528-020-0068-y
|
[215] |
Li D, Shi X-L, Zhu J, Li M, Wang J, Liu W-D, Zhao Q, Zhong H, Li S, Chen Z-G 2023 Ce-filled Ni1.5Co2.5Sb12 skutterudite thin films with record-high figure of merit and device performance Adv. Energy Mater. 13 2301525 doi: 10.1002/aenm.202301525
|
[216] |
Tan M, Shi X-L, Liu W-D, Li M, Wang Y, Li H, Deng Y, Chen Z-G 2021 Synergistic texturing and Bi/Sb-Te antisite doping secure high thermoelectric performance in Bi0.5Sb1.5Te3-based thin films Adv. Energy Mater. 11 2102578 doi: 10.1002/aenm.202102578
|
[217] |
Wei M, et al 2022 Directional thermal diffusion realizing inorganic Sb2Te3/Te hybrid thin films with high thermoelectric performance and flexibility Adv. Funct. Mater. 32 2207903 doi: 10.1002/adfm.202207903
|
[218] |
Zheng Z-H, et al 2021 Rational band engineering and structural manipulations inducing high thermoelectric performance in n-type CoSb3 thin films Nano Energy 81 105683 doi: 10.1016/j.nanoen.2020.105683
|
[219] |
Tan M, Liu W-D, Shi X-L, Shang J, Li H, Liu X, Kou L, Dargusch M, Deng Y, Chen Z-G 2020 In situ crystal-amorphous compositing inducing ultrahigh thermoelectric performance of p-type Bi0.5Sb1.5Te3 hybrid thin films Nano Energy 78 105379 doi: 10.1016/j.nanoen.2020.105379
|
[220] |
Tan M, Liu W D, Shi X L, Gao H, Li H, Li C, Liu X B, Deng Y, Chen Z G 2019 Anisotropy control-induced unique anisotropic thermoelectric performance in the n-type Bi2Te2.7Se0.3 thin films Small Methods 3 1900582 doi: 10.1002/smtd.201900582
|
[221] |
Ao D-W, et al 2022 Novel thermal diffusion temperature engineering leading to high thermoelectric performance in Bi2Te3-based flexible thin-films Adv. Sci. 9 2103547 doi: 10.1002/advs.202103547
|
[222] |
Shi X-L, Chen Z-G 2023 Quasi-one-dimensional bulk thermoelectrics Joule 7 1108-10 doi: 10.1016/j.joule.2023.05.008
|
[223] |
Shi X-L, Wu H, Liu Q, Zhou W, Lu S, Shao Z, Dargusch M, Chen Z-G 2020 SrTiO3-based thermoelectrics: progress and challenges Nano Energy 78 105195 doi: 10.1016/j.nanoen.2020.105195
|
[224] |
Xu S, Hong M, Li M, Sun Q, Yin Y, Liu W, Shi X, Dargusch M, Zou J, Chen Z-G 2021 Two-dimensional flexible thermoelectric devices: using modeling to deliver optimal capability Appl. Phys. Rev. 8 041404 doi: 10.1063/5.0067930
|
[225] |
Cao R, et al 2018 Screen-printed washable electronic textiles as self-powered touch/gesture tribo-sensors for intelligent human-machine interaction ACS Nano 12 5190-6 doi: 10.1021/acsnano.8b02477
|
[226] |
Satharasinghe A, Hughes-Riley T, Dias T 2020 An investigation of a wash-durable solar energy harvesting textile Prog. Photovolt. 28 578-92 doi: 10.1002/pip.3229
|
[227] |
Choi J, Dun C, Forsythe C, Gordon M P, Urban J J 2021 Lightweight wearable thermoelectric cooler with rationally designed flexible heatsink consisting of phase-change material/graphite/silicone elastomer J. Mater. Chem. A 9 15696-703 doi: 10.1039/D1TA01911B
|
[228] |
Huo W, Xia Z, Gao Y, Guo R, Huang X 2023 Flexible thermoelectric devices with flexible heatsinks of phase-change materials and stretchable interconnectors of semi-liquid metals ACS Appl. Mater. Interfaces 15 29330-40 doi: 10.1021/acsami.3c05418
|
[229] |
Mu X, Shi X-L, Zhou J, Chen H, Yang T, Wang Y, Miao L, Chen Z-G 2023 Self-hygroscopic and smart color-changing hydrogels as coolers for improving energy conversion efficiency of electronics Nano Energy 108 108177 doi: 10.1016/j.nanoen.2023.108177
|
[230] |
Sun S, Li M, Shi X-L, Chen Z-G 2023 Advances in ionic thermoelectrics: from materials to devices Adv. Energy Mater. 13 2203692 doi: 10.1002/aenm.202203692
|
[231] |
Tan M, Liu W-D, Shi X-L, Sun Q, Chen Z-G 2023 Minimization of the electrical contact resistance in thin-film thermoelectric device Appl. Phys. Rev. 10 021404 doi: 10.1063/5.0141075
|
[232] |
Ao D-W, Liu W-D, Zheng Z-H, Shi X-L, Wei M, Zhong Y-M, Li M, Liang G-X, Fan P, Chen Z-G 2022 Assembly-free fabrication of high-performance flexible inorganic thin-film thermoelectric device prepared by a thermal diffusion Adv. Energy Mater. 12 2202731 doi: 10.1002/aenm.202202731
|
[233] |
Xu S, Hong M, Shi X, Li M, Sun Q, Chen Q, Dargusch M, Zou J, Chen Z-G 2020 Computation-guided design of high-performance flexible thermoelectric modules for sunlight-to-electricity conversion Energy Environ. Sci. 13 3480-8 doi: 10.1039/D0EE01895C
|
[234] |
Sun W, Liu W-D, Li L, Wang D-Z, Yin L-C, Li M, Shi X-L, Liu Q, Chen Z-G 2023 Performance optimization of a dual-thermoelectric-liquid hybrid system for central processing unit cooling Energy Convers. Manage. 290 117222 doi: 10.1016/j.enconman.2023.117222
|
[235] |
Li L, Liu W-D, Sun W, Wang D-Z, Yin L-C, Li M, Shi X-L, Liu Q, Chen Z-G 2023 Performance optimization of a thermoelectric-water hybrid cooling garment Adv. Mater. Technol. 2301069 doi: 10.1002/admt.202301069
|
[236] |
Liang L, Lv H, Shi X-L, Liu Z, Chen G, Chen Z-G, Sun G 2021 A flexible quasi-solid-state thermoelectrochemical cell with high stretchability as an energy-autonomous strain sensor Mater. Horiz. 8 2750-60 doi: 10.1039/D1MH00775K
|