Volume 2 Issue 4
December  2023
Turn off MathJax
Article Contents
Dorian Santander, Shaun Whitley, Jungmyung Kim, Dowon Bae. Analysis of temperature distribution in PV-integrated electrochemical flow cells[J]. Materials Futures, 2023, 2(4): 045103. doi: 10.1088/2752-5724/acf32e
Citation: Dorian Santander, Shaun Whitley, Jungmyung Kim, Dowon Bae. Analysis of temperature distribution in PV-integrated electrochemical flow cells[J]. Materials Futures, 2023, 2(4): 045103. doi: 10.1088/2752-5724/acf32e
Paper •
OPEN ACCESS

Analysis of temperature distribution in PV-integrated electrochemical flow cells

© 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 2, Number 4
  • Received Date: 2023-06-06
  • Accepted Date: 2023-08-22
  • Rev Recd Date: 2023-07-26
  • Publish Date: 2023-09-19
  • Photovoltaic (PV)-integrated flow cells for electrochemical energy conversion and storage underwent a huge development. The advantages of this type of integrated flow cell system include the simultaneous storage of solar energy into chemicals that can be readily utilized for generating electricity. However, most studies overlook the practical challenges arising from the inherent heat exposure and consequent overheating of the reactor under the sun. This work aims to predict the temperature profiles across PV-integrated electrochemical flow cells under light exposure conditions by introducing a computational fluid dynamics-based method. Furthermore, we discuss the effects of the flow channel block architecture on the temperature profile to provide insights and guidelines for the effective remedy of overheating.
  • loading
  • Conflict of interest

    The authors declare that they have no known competing financial interests.

  • [1]
    Bae D, Kanellos G, Faasse G M, Draevi E, Venugopal A, Smith W A 2020 Design principles for efficient photoelectrodes in solar rechargeable redox flow cell applications Commun. Mater. 1 17 doi: 10.1038/s43246-020-0020-7
    [2]
    Li W, Fu H C, Zhao Y, He J H, Jin S 2018 14.1% efficient monolithically integrated solar flow battery Chem 4 2644-57 doi: 10.1016/j.chempr.2018.08.023
    [3]
    Li W, et al 2020 High-performance solar flow battery powered by a perovskite/silicon tandem solar cell Nat. Mater. 19 1326-31 doi: 10.1038/s41563-020-0720-x
    [4]
    Khataee A, Azevedo J, Dias P, Ivanou D, Draevi E, Bentien A, Mendes A 2019 Integrated design of hematite and dye-sensitized solar cell for unbiased solar charging of an organic-inorganic redox flow battery Nano Energy 62 832-43 doi: 10.1016/j.nanoen.2019.06.001
    [5]
    Ye R, Henkensmeier D, Yoon S J, Huang Z, Kim D K, Chang Z, Kim S, Chen R 2017 Redox flow batteries for energy storage: a technology review J. Electrochem. Energy Convers. Storage 15 010801 doi: 10.1115/1.4037248
    [6]
    Kamat P V, Karkhanavala M D, Moorthy P N 1979 Temperature effects in photoelectrochemical cells J. Appl. Phys. 50 4228-30 doi: 10.1063/1.326454
    [7]
    Tembhurne S, Nandjou F, Haussener S 2019 A thermally synergistic photo-electrochemical hydrogen generator operating under concentrated solar irradiation Nat. Energy 4 399-407 doi: 10.1038/s41560-019-0373-7
    [8]
    Dias P, Lopes T, Andrade L, Mendes A 2014 Temperature effect on water splitting using a Si-doped hematite photoanode J. Power Sources 272 567-80 doi: 10.1016/j.jpowsour.2014.08.108
    [9]
    Lopes T, Dias P, Andrade L, Mendes A 2012 E-MRS/MRS bilateral energy conference innovative technological configurations of photoelectrochemical cells Energy Proc. 22 35-40 doi: 10.1016/j.egypro.2012.05.229
    [10]
    Bae D, Faasse G M, Smith W A 2020 Hidden figures of photo-charging: a thermo-electrochemical approach for solar-rechargeable redox flow cell system Sustain. Energy Fuels 4 2650-5 doi: 10.1039/D0SE00348D
    [11]
    Whitley S, Bae D 2021 Perspectiveinsights into solar-rechargeable redox flow cell design: a practical perspective for lab-scale experiments J. Electrochem. Soc. 168 120517 doi: 10.1149/1945-7111/ac3ab3
    [12]
    Wedege K, Bae D, Smith W A, Mendes A, Bentien A 2018 Solar redox flow batteries with organic redox couples in aqueous electrolytes: a mini-review J. Phys. Chem. C 122 25729-40 doi: 10.1021/acs.jpcc.8b04914
    [13]
    Bae D, et al 2015 Back-illuminated Si photocathode: a combined experimental and theoretical study for photocatalytic hydrogen evolution Energy Environ. Sci. 8 650-60 doi: 10.1039/C4EE03723E
    [14]
    Leow W Z, Irwan Y M, Asri M, Irwanto M, Amelia A B, Syafiqah Z, Safwati I 2016 Investigation of solar panel performance based on different wind velocity using ANSYS Indones. J. Electr. Eng. Comput. Sci. 1 456-63 doi: 10.11591/ijeecs.v1.i3.pp456-463
    [15]
    Al-Fetlawi H, Shah A A, Walsh F C 2009 Non-isothermal modelling of the all-vanadium redox flow battery Electrochim. Acta 55 78-89 doi: 10.1016/j.electacta.2009.08.009
    [16]
    Schweiss R, Meiser C, Damjanovic T, Galbiati I, Haak N 2016 SIGRACET gas diffusion layers for PEM fuel cells, electrolyzers and batteries SGL Group 1-10
    [17]
    Kant K, Shukla A, Sharma A, Biwole P H 2016 Heat transfer studies of photovoltaic panel coupled with phase change material Sol. Energy 140 151-61 doi: 10.1016/j.solener.2016.11.006
    [18]
    Rodriguez A, Adansi R, Enriquez A, Ingram N 2021 ResearchGateReynolds numbers: The K-epsilon (k-e) turbulence model vs. laminar model for flow over a circular cylinder multiphase flow project view project scientific machine learning view project 10.13140/RG.2.2.14890.13767
    [19]
    Bedeaux D, Flekky E G, Hansen A, Kjelstrup S, Mly K J, Torsaeter O 2020 Physics of Porous MediaFrontiers Media SA
    [20]
    Gladwell G M L, Huyghe J M, Raats P A C, Cowin S C 2005 (eds) IUTAM symposium on physicochemical and electromechanical interactions in porous media 10.1007/1-4020-3865-8
    [21]
    Schweiss R, Meiser C, Damjanovic T, Galbati I, Haak N 2016 (SGL Group)(SGL Group)SIGRACET gas diffusion layers for PEM fuel cells, electrolyzers and batteries
    [22]
    Lee J, Kim J, Park H 2019 Numerical simulation of the power-based efficiency in vanadium redox flow battery with different serpentine channel size Int. J. Hydrog. Energy 44 29483-92 doi: 10.1016/j.ijhydene.2019.05.013
    [23]
    da Silva Lopes T, Dias P, Monteiro R, Vilanova A, Ivanou D, Mendes A 2022 A 25 cm2 solar redox flow cell: facing the engineering challenges of upscaling Adv. Energy Mater. 12 2102893 doi: 10.1002/aenm.202102893
    [24]
    Trov A, Saccardo A, Giomo M, Guarnieri M 2019 Thermal modeling of industrial-scale vanadium redox flow batteries in high-current operations J. Power Sources 424 204-14 doi: 10.1016/j.jpowsour.2019.03.080
    [25]
    Chen R, Henkensmeier D, Kim S, Yoon S J, Zinkevich T, Indris S 2018 Improved all-vanadium redox flow batteries using catholyte additive and a cross-linked methylated polybenzimidazole membrane ACS Appl. Energy Mater. 1 6047-55 doi: 10.1021/acsaem.8b01116
    [26]
    Bae D, Bentien A 2022 Take it to the carnot limit: perspectives and thermodynamics of dual-cell electrochemical heat engines Energy Convers. Manage. 271 116315 doi: 10.1016/j.enconman.2022.116315
    [27]
    Bleeker J, Reichert S, Veerman J, Vermaas D A 2022 Thermo-electrochemical redox flow cycle for continuous conversion of low-grade waste heat to power Sci. Rep. 12 17993 doi: 10.1038/s41598-022-11817-1
    [28]
    Kennedy J H, Frese K W 1976 Photooxidation of water at barium titanate electrodes J. Electrochem. Soc. 123 1683-6 doi: 10.1149/1.2132667
    [29]
    Skyllas-Kazacos M, Cao L, Kazacos M, Kausar N, Mousa A 2016 Vanadium electrolyte studies for the vanadium redox battery-a review ChemSusChem 9 1521-43 doi: 10.1002/cssc.201600102
    [30]
    Wedege K, Draevi E, Konya D, Bentien A 2016 Organic redox species in aqueous flow batteries: redox potentials, chemical stability and solubility Sci. Rep. 6 39101 doi: 10.1038/srep39101
    [31]
    Vermeire F H, Chung Y, Green W H 2022 Predicting solubility limits of organic solutes for a wide range of solvents and temperatures J. Am. Chem. Soc. 144 10785-97 doi: 10.1021/jacs.2c01768
    [32]
    Tang A, Ting S, Bao J, Skyllas-Kazacos M 2012 Thermal modelling and simulation of the all-vanadium redox flow battery J. Power Sources 203 165-76 doi: 10.1016/j.jpowsour.2011.11.079
    [33]
    Bae D, Kanellos G, Wedege K, Draevi E, Bentien A, Smith W A 2020 Tailored energy level alignment at MoOX/GaP interface for solar-driven redox flow battery application J. Chem. Phys. 152 124710 doi: 10.1063/1.5136252
    [34]
    Facchinetti I, Ruffo R, La Mantia F, Brogioli D 2020 Thermally regenerable redox flow battery for exploiting low-temperature heat sources Cell Rep. Phys. Sci. 1 100056 doi: 10.1016/j.xcrp.2020.100056
    [35]
    Ahadi A, Antoun S, Saghir M Z, Swift J 2019 Computational fluid dynamic evaluation of heat transfer enhancement in microchannel solar collectors sustained by alumina nanofluid Energy Storage 1 e37 doi: 10.1002/est2.37
  • mfacf32esupp1.pdf
  • 加载中

Catalog

    Figures(6)  / Tables(1)

    Article Metrics

    Article Views(363) PDF downloads(59)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return