Volume 2 Issue 4
December  2023
Turn off MathJax
Article Contents
Wanyao Zhang, Yufang Chen, Hongjing Gao, Wei Xie, Peng Gao, Chunman Zheng, Peitao Xiao. Review of regulating Zn2+ solvation structures in aqueous zinc-ion batteries[J]. Materials Futures, 2023, 2(4): 042102. doi: 10.1088/2752-5724/ace3de
Citation: Wanyao Zhang, Yufang Chen, Hongjing Gao, Wei Xie, Peng Gao, Chunman Zheng, Peitao Xiao. Review of regulating Zn2+ solvation structures in aqueous zinc-ion batteries[J]. Materials Futures, 2023, 2(4): 042102. doi: 10.1088/2752-5724/ace3de
Topical Review •
OPEN ACCESS

Review of regulating Zn2+ solvation structures in aqueous zinc-ion batteries

© 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 2, Number 4
  • Received Date: 2023-06-07
  • Accepted Date: 2023-07-04
  • Rev Recd Date: 2023-07-01
  • Publish Date: 2023-08-04
  • Aqueous zinc-ion batteries, due to their high power density, intrinsic safety, low cost, and environmental benign, have attracted tremendous attentions recently. However, their application is severely plagued by the inferior energy density and short cycling life, which was mainly ascribed to zinc dendrites, and interfacial side reactions, narrow potential window induced by water decomposition, all of which are highly related with the Zn2+ solvation structures in the aqueous electrolytes. Therefore, in this review, we comprehensively summarized the recent development of strategies of regulating Zn2+ solvation structures, specially, the effect of zinc salts, nonaqueous co-solvents, and functional additives on the Zn2+ solvation structures and the corresponding electrochemical performance of aqueous zinc-ion batteries. Moreover, future perspectives focused on the challenges and possible solutions for design and commercialization of aqueous electrolytes with unique solvation structures are provided.
  • loading
  • Conflict of interest

    There are no conflicts to declare.

  • [1]
    Xu K 2004 Nonaqueous liquid electrolytes for lithium-based rechargeable batteries Chem. Rev. 104 4303-418 doi: 10.1021/cr030203g
    [2]
    Xu K 2014 Electrolytes and interphases in Li-ion batteries and beyond Chem. Rev. 114 11503-618 doi: 10.1021/cr500003w
    [3]
    Xiao P, Yun X, Chen Y, Guo X, Gao P, Zhou G, Zheng C 2023 Insights into the solvation chemistry in liquid electrolytes for lithium-based rechargeable batteries Chem. Soc. Rev. doi: 10.1039/D3CS00151B
    [4]
    Blanc L E, Kundu D, Nazar L F 2020 Scientific challenges for the implementation of Zn-ion batteries Joule 4 771-99 doi: 10.1016/j.joule.2020.03.002
    [5]
    Liu S, Zhang R, Mao J, Zhao Y, Cai Q, Guo Z 2022 From room temperature to harsh temperature applications: fundamentals and perspectives on electrolytes in zinc metal batteries Sci. Adv. 8 eabn5097 doi: 10.1126/sciadv.abn5097
    [6]
    Zhong X, et al 2023 Flexible zinc-air batteries with ampere-hour capacities and wide-temperature adaptabilities Adv. Mater. 35 2209980 doi: 10.1002/adma.202209980
    [7]
    Huang Q, Zhong X, Zhang Q, Wu X, Jiao M, Chen B, Sheng J, Zhou G 2022 Co3O4/Mn3O4 hybrid catalysts with heterointerfaces as bifunctional catalysts for Zn-air batteries J. Energy Chem. 68 679-87 doi: 10.1016/j.jechem.2021.12.032
    [8]
    Zhou L, Wang F, Yang F, Liu X, Yu Y, Zheng D, Lu X 2022 Unshared pair electrons of zincophilic lewis base enable long-life Zn anodes under three high conditions Angew. Chem., Int. Ed. 61 202208051 doi: 10.1002/anie.202208051
    [9]
    Jiao M, Zhang Q, Ye C, Zhong X, Wang J, Li C, Dai L, Zhou G, Cheng H M 2022 Recycling spent LiNi1-x-yMnxCoyO2 cathodes to bifunctional NiMnCo catalysts for zinc-air batteries Proc. Natl Acad. Sci. USA 119 e2202202119 doi: 10.1073/pnas.2202202119
    [10]
    Yun X, Chen Y, Xiao P, Zheng C 2022 Review on oxygen-free vanadium-based cathodes for aqueous zinc-ion batteries J. Electrochem. 28 2219004 doi: 10.13208/j.electrochem.2219004
    [11]
    Qiu H, Du X, Zhao J, Wang Y, Ju J, Chen Z, Hu Z, Yan D, Zhou X, Cui G 2019 Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation Nat. Commun. 10 5374 doi: 10.1038/s41467-019-13436-3
    [12]
    Zhong C, et al 2020 Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc-manganese dioxide batteries Nat. Energy 5 440-9 doi: 10.1038/s41560-020-0584-y
    [13]
    Xiao P, Luo R, Piao Z, Li C, Wang J, Yu K, Zhou G, Cheng H-M 2021 High-performance lithium metal batteries with a wide operating temperature range in carbonate electrolyte by manipulating interfacial chemistry ACS Energy Lett. 6 3170-9 doi: 10.1021/acsenergylett.1c01528
    [14]
    Chen Y, et al 2022 Engineering an insoluble cathode electrolyte interphase enabling high performance NCM811//graphite pouch cell at 60 C Adv. Energy Mater. 12 2201631 doi: 10.1002/aenm.202201631
    [15]
    Li Z, Chen Y, Yun X, Gao P, Zheng C, Xiao P 2023 Critical review of fluorinated electrolytes for highperformance lithium metal batteries Adv. Funct. Mater. 2300502 doi: 10.1002/adfm.202300502
    [16]
    Lv Y, Xiao Y, Ma L, Zhi C, Chen S 2022 Recent advances in electrolytes for beyond aqueous zinc-ion batteries Adv. Mater. 34 2106409 doi: 10.1002/adma.202106409
    [17]
    Li X, Wang X, Ma L, Huang W 2022 Solvation structures in aqueous metalion batteries Adv. Energy Mater. 12 2202068 doi: 10.1002/aenm.202202068
    [18]
    Wang D, Li Q, Zhao Y, Hong H, Li H, Huang Z, Liang G, Yang Q, Zhi C 2022 Insight on organic molecules in aqueous Znion batteries with an emphasis on the Zn anode regulation Adv. Energy Mater. 12 2102707 doi: 10.1002/aenm.202102707
    [19]
    Wu K, Huang J, Yi J, Liu X, Liu Y, Wang Y, Zhang J, Xia Y 2020 Recent advances in polymer electrolytes for zinc ion batteries: mechanisms, properties, and perspectives Adv. Energy Mater. 10 1903977 doi: 10.1002/aenm.201903977
    [20]
    Cao J, Zhang D, Zhang X, Zeng Z, Qin J, Huang Y 2022 Strategies of regulating Zn2+solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries Energy Environ. Sci. 15 499-528 doi: 10.1039/D1EE03377H
    [21]
    Zhang L, RodrguezPrez I A, Jiang H, Zhang C, Leonard D P, Guo Q, Wang W, Han S, Wang L, Ji X 2019 ZnCl2 waterinsalt electrolyte transforms the performance of vanadium oxide as a Zn battery cathode Adv. Funct. Mater. 29 1902653 doi: 10.1002/adfm.201902653
    [22]
    Du Y, Li Y, Xu B B, Liu T X, Liu X, Ma F, Gu X, Lai C 2022 Electrolyte salts and additives regulation enables high performance aqueous zinc ion batteries: a mini review Small 18 e2104640 doi: 10.1002/smll.202104640
    [23]
    Zhang N, Cheng F, Liu Y, Zhao Q, Lei K, Chen C, Liu X, Chen J 2016 Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO32 electrolyte for rechargeable aqueous Zn-ion battery J. Am. Chem. Soc. 138 12894-901 doi: 10.1021/jacs.6b05958
    [24]
    Peng Z, Wei Q, Tan S, He P, Luo W, An Q, Mai L 2018 Novel layered iron vanadate cathode for high-capacity aqueous rechargeable zinc batteries Chem. Commun. 54 4041-4 doi: 10.1039/C8CC00987B
    [25]
    Wang L, Zhang Y, Hu H, Shi H Y, Song Y, Guo D, Liu X X, Sun X 2019 A Zn(ClO42 electrolyte enabling long-life zinc metal electrodes for rechargeable aqueous zinc batteries ACS Appl. Mater. Interfaces 11 42000-5 doi: 10.1021/acsami.9b10905
    [26]
    Zhu Y, Yin J, Zheng X, Emwas A-H, Lei Y, Mohammed O F, Cui Y, Alshareef H N 2021 Concentrated dual-cation electrolyte strategy for aqueous zinc-ion batteries Energy Environ. Sci. 14 4463-73 doi: 10.1039/D1EE01472B
    [27]
    Wang J, Yang Y, Wang Y, Dong S, Cheng L, Li Y, Wang Z, Trabzon L, Wang H 2022 Working aqueous Zn metal batteries at 100 degrees C ACS Nano 16 15770-8 doi: 10.1021/acsnano.2c04114
    [28]
    Qin R, et al 2021 Tuning Zn2+ coordination environment to suppress dendrite formation for high-performance Zn-ion batteries Nano Energy 80 105478 doi: 10.1016/j.nanoen.2020.105478
    [29]
    Yan M, Dong N, Zhao X, Sun Y, Pan H 2021 Tailoring the stability and kinetics of Zn anodes through trace organic polymer additives in dilute aqueous electrolyte ACS Energy Lett. 6 3236-43 doi: 10.1021/acsenergylett.1c01418
    [30]
    Geng L, et al 2022 Eutectic electrolyte with unique solvation structure for high-performance zinc-ion batteries Angew. Chem., Int. Ed. 61 e202206717 doi: 10.1002/anie.202206717
    [31]
    Tang X, Wang P, Bai M, Wang Z, Wang H, Zhang M, Ma Y 2021 Unveiling the reversibility and stability origin of the aqueous V2 O5 -Zn batteries with a ZnCl2 water-in-salt electrolyte Adv. Sci. 8 e2102053 doi: 10.1002/advs.202102053
    [32]
    Wang F, Borodin O, Gao T, Fan X, Sun W, Han F, Faraone A, Dura J A, Xu K, Wang C 2018 Highly reversible zinc metal anode for aqueous batteries Nat. Mater. 17 543-9 doi: 10.1038/s41563-018-0063-z
    [33]
    Wan F, Zhang Y, Zhang L, Liu D, Wang C, Song L, Niu Z, Chen J 2019 Reversible oxygen redox chemistry in aqueous zinc-ion batteries Angew. Chem., Int. Ed. 58 7062-7 doi: 10.1002/anie.201902679
    [34]
    Li C, Yuan W, Li C, Wang H, Wang L, Liu Y, Zhang N 2021 Boosting Li3V2 (PO43 cathode stability using a concentrated aqueous electrolyte for high-voltage zinc batteries Chem. Commun. 57 4319-22 doi: 10.1039/D0CC08115A
    [35]
    Zhao J, Zhang J, Yang W, Chen B, Zhao Z, Qiu H, Dong S, Zhou X, Cui G, Chen L 2019 Water-in-deep eutectic solvent electrolytes enable zinc metal anodes for rechargeable aqueous batteries Nano Energy 57 625-34 doi: 10.1016/j.nanoen.2018.12.086
    [36]
    Lin X, Zhou G, Robson M J, Yu J, Kwok S C T, Ciucci F 2021 Hydrated deep eutectic electrolytes for highperformance Znion batteries capable of lowtemperature operation Adv. Funct. Mater. 32 2109322 doi: 10.1002/adfm.202109322
    [37]
    Yang M, Zhu J, Bi S, Wang R, Niu Z 2022 A binary hydrate-melt electrolyte with acetate-oriented cross-linking solvation shells for stable zinc anodes Adv. Mater. 34 e2201744 doi: 10.1002/adma.202201744
    [38]
    Ma L, et al 2021 Functionalized phosphonium cations enable zinc metal reversibility in aqueous electrolytes Angew. Chem., Int. Ed. 60 12438-45 doi: 10.1002/anie.202017020
    [39]
    Yang H, Chang Z, Qiao Y, Deng H, Mu X, He P, Zhou H 2020 Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries Angew. Chem., Int. Ed. 59 9377-81 doi: 10.1002/anie.202001844
    [40]
    Yang H, Qiao Y, Chang Z, Deng H, Zhu X, Zhu R, Xiong Z, He P, Zhou H 2021 Reducing water activity by zeolite molecular sieve membrane for long-life rechargeable zinc battery Adv. Mater. 33 e2102415 doi: 10.1002/adma.202102415
    [41]
    Zhang Q, Ma Y, Lu Y, Li L, Wan F, Zhang K, Chen J 2020 Modulating electrolyte structure for ultralow temperature aqueous zinc batteries Nat. Commun. 11 4463 doi: 10.1038/s41467-020-18284-0
    [42]
    Sun T, Yuan X, Wang K, Zheng S, Shi J, Zhang Q, Cai W, Liang J, Tao Z 2021 An ultralow-temperature aqueous zinc-ion battery J. Mater. Chem. A 9 7042-7 doi: 10.1039/D0TA12409E
    [43]
    Wang R, Yao M, Yang M, Zhu J, Chen J, Niu Z 2023 Synergetic modulation on ionic association and solvation structure by electron-withdrawing effect for aqueous zinc-ion batteries Proc. Natl Acad. Sci. USA 120 e2221980120 doi: 10.1073/pnas.2221980120
    [44]
    Kundu D, Hosseini Vajargah S, Wan L, Adams B, Prendergast D, Nazar L F 2018 Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface Energy Environ. Sci. 11 881-92 doi: 10.1039/C8EE00378E
    [45]
    Segler M H S, Preuss M, Waller M P 2018 Planning chemical syntheses with deep neural networks and symbolic AI Nature 555 604-10 doi: 10.1038/nature25978
    [46]
    Yang W, et al 2020 Hydrated eutectic electrolytes with ligand-oriented solvation shells for long-cycling zinc-organic batteries Joule 4 1557-74 doi: 10.1016/j.joule.2020.05.018
    [47]
    Han D, et al 2021 A non-flammable hydrous organic electrolyte for sustainable zinc batteries Nat. Sustain. 5 205-13 doi: 10.1038/s41893-021-00800-9
    [48]
    Ming F, Zhu Y, Huang G, Emwas A H, Liang H, Cui Y, Alshareef H N 2022 Co-solvent electrolyte engineering for stable anode-free zinc metal batteries J. Am. Chem. Soc. 144 7160-70 doi: 10.1021/jacs.1c12764
    [49]
    Liu S, Mao J, Pang W K, Vongsvivut J, Zeng X, Thomsen L, Wang Y, Liu J, Li D, Guo Z 2021 Tuning the electrolyte solvation structure to suppress cathode dissolution, water reactivity, and Zn dendrite growth in zincion batteries Adv. Funct. Mater. 31 2104281 doi: 10.1002/adfm.202104281
    [50]
    Miao L, et al 2022 Aqueous electrolytes with hydrophobic organic cosolvents for stabilizing zinc metal anodes ACS Nano 16 9667-78 doi: 10.1021/acsnano.2c02996
    [51]
    Liu D S, et al 2022 Regulating the electrolyte solvation structure enables ultralong lifespan vanadiumbased cathodes with excellent lowtemperature performance Adv. Funct. Mater. 32 2111714 doi: 10.1002/adfm.202111714
    [52]
    Qiu B, Xie L, Zhang G, Cheng K, Lin Z, Liu W, He C, Zhang P, Mi H 2022 Toward reversible wide-temperature Zn storage by regulating the electrolyte solvation structure via trimethyl phosphate Chem. Eng. J. 449 137843 doi: 10.1016/j.cej.2022.137843
    [53]
    Dong Y, Miao L, Ma G, Di S, Wang Y, Wang L, Xu J, Zhang N 2021 Non-concentrated aqueous electrolytes with organic solvent additives for stable zinc batteries Chem. Sci. 12 5843-52 doi: 10.1039/D0SC06734B
    [54]
    Ma G, Miao L, Dong Y, Yuan W, Nie X, Di S, Wang Y, Wang L, Zhang N 2022 Reshaping the electrolyte structure and interface chemistry for stable aqueous zinc batteries Energy Storage Mater. 47 203-10 doi: 10.1016/j.ensm.2022.02.019
    [55]
    Hao J, Yuan L, Ye C, Chao D, Davey K, Guo Z, Qiao S Z 2021 Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents Angew. Chem., Int. Ed. 60 7366-75 doi: 10.1002/anie.202016531
    [56]
    Cao L, Li D, Hu E, Xu J, Deng T, Ma L, Wang Y, Yang X Q, Wang C 2020 Solvation structure design for aqueous Zn metal batteries J. Am. Chem. Soc. 142 21404-9 doi: 10.1021/jacs.0c09794
    [57]
    Li T C, Lim Y, Li X L, Luo S, Lin C, Fang D, Xia S, Wang Y, Yang H Y 2022 A universal additive strategy to reshape electrolyte solvation structure toward reversible Zn storage Adv. Energy Mater. 12 2103231 doi: 10.1002/aenm.202103231
    [58]
    Du H, Wang K, Sun T, Shi J, Zhou X, Cai W, Tao Z 2022 Improving zinc anode reversibility by hydrogen bond in hybrid aqueous electrolyte Chem. Eng. J. 427 131705 doi: 10.1016/j.cej.2021.131705
    [59]
    Li C, Kingsbury R, Zhou L, Shyamsunder A, Persson K A, Nazar L F 2022 Tuning the solvation structure in aqueous zinc batteries to maximize Zn-ion intercalation and optimize dendrite-free zinc plating ACS Energy Lett. 7 533-40 doi: 10.1021/acsenergylett.1c02514
    [60]
    Wu Y, Zhu Z, Shen D, Chen L, Song T, Kang T, Tong Z, Tang Y, Wang H, Lee C S 2022 Electrolyte engineering enables stable Zn-Ion deposition for long-cycling life aqueous Zn-ion batteries Energy Storage Mater. 45 1084-91 doi: 10.1016/j.ensm.2021.11.003
    [61]
    Sun Y, et al 2022 Low-cost and long-life Zn/Prussian blue battery using a water-in-ethanol electrolyte with a normal salt concentration Energy Storage Mater. 48 192-204 doi: 10.1016/j.ensm.2022.03.023
    [62]
    Zhang Y, Zhu M, Wu K, Yu F, Wang G, Xu G, Wu M, Liu H-K, Dou S-X, Wu C 2021 An in-depth insight of a highly reversible and dendrite-free Zn metal anode in an hybrid electrolyte J. Mater. Chem. A 9 4253-61 doi: 10.1039/D0TA11668H
    [63]
    Chang N, Li T, Li R, Wang S, Yin Y, Zhang H, Li X 2020 An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices Energy Environ. Sci. 13 3527-35 doi: 10.1039/D0EE01538E
    [64]
    Yang J, et al 2022 Three birds with one stone: tetramethylurea as electrolyte additive for highly reversible Znmetal anode Adv. Funct. Mater. 32 2209642 doi: 10.1002/adfm.202209642
    [65]
    Li Z, Liao Y, Wang Y, Cong J, Ji H, Huang Z, Huang Y 2023 A co-solvent in aqueous electrolyte towards ultralong-life rechargeable zinc-ion batteries Energy Storage Mater. 56 174-82 doi: 10.1016/j.ensm.2023.01.020
    [66]
    Deng W, Xu Z, Wang X 2022 High-donor electrolyte additive enabling stable aqueous zinc-ion batteries Energy Storage Mater. 52 52-60 doi: 10.1016/j.ensm.2022.07.032
    [67]
    Wu F, Chen Y, Chen Y, Yin R, Feng Y, Zheng D, Xu X, Shi W, Liu W, Cao X 2022 Achieving highly reversible zinc anodes via N, N-dimethylacetamide enabled Zn-ion solvation regulation Small 18 e2202363 doi: 10.1002/smll.202202363
    [68]
    Ma L, et al 2018 Initiating a mild aqueous electrolyte Co3O4/Zn battery with 2.2 V-high voltage and 5000-cycle lifespan by a Co(iii) rich-electrode Energy Environ. Sci. 11 2521-30 doi: 10.1039/C8EE01415A
    [69]
    Pan H, et al 2016 Reversible aqueous zinc/manganese oxide energy storage from conversion reactions Nat. Energy 1 16039 doi: 10.1038/nenergy.2016.39
    [70]
    Feng R, Chi X, Qiu Q, Wu J, Huang J, Liu J, Liu Y 2021 Cyclic ether-water hybrid electrolyte-guided dendrite-free lamellar zinc deposition by tuning the solvation structure for high-performance aqueous zinc-ion batteries ACS Appl. Mater. Interfaces 13 40638-47 doi: 10.1021/acsami.1c11106
    [71]
    Zhao K, Liu F, Fan G, Liu J, Yu M, Yan Z, Zhang N, Cheng F 2021 Stabilizing zinc electrodes with a vanillin additive in mild aqueous electrolytes ACS Appl. Mater. Interfaces 13 47650-8 doi: 10.1021/acsami.1c14407
    [72]
    Feng X, Li P, Yin J, Gan Z, Gao Y, Li M, Cheng Y, Xu X, Su Y, Ding S 2023 Enabling highly reversible Zn anode by multifunctional synergistic effects of hybrid solute additives ACS Energy Lett. 8 1192-200 doi: 10.1021/acsenergylett.2c02455
    [73]
    Meng R, Li H, Lu Z, Zhang C, Wang Z, Liu Y, Wang W, Ling G, Kang F, Yang Q H 2022 Tuning Zn-ion solvation chemistry with chelating ligands toward stable aqueous Zn anodes Adv. Mater. 34 e2200677 doi: 10.1002/adma.202200677
    [74]
    Zhang H, Zhong Y, Li J, Liao Y, Zeng J, Shen Y, Yuan L, Li Z, Huang Y 2022 Inducing the preferential growth of Zn (002) plane for long cycle aqueous Znion batteries Adv. Energy Mater. 13 2203254 doi: 10.1002/aenm.202203254
    [75]
    Qin H, Kuang W, Hu N, Zhong X, Huang D, Shen F, Wei Z, Huang Y, Xu J, He H 2022 Building metalmolecule interface towards stable and reversible Zn metal anodes for aqueous rechargeable zinc batteries Adv. Funct. Mater. 32 2206695 doi: 10.1002/adfm.202206695
    [76]
    Luo J, et al 2023 Regulating the inner helmholtz plane with a high donor additive for efficient anode reversibility in aqueous Zn-ion batteries Angew. Chem., Int. Ed. 62 e202302302 doi: 10.1002/anie.202302302
    [77]
    Sun P, Ma L, Zhou W, Qiu M, Wang Z, Chao D, Mai W 2021 Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive Angew. Chem., Int. Ed. 60 18247-55 doi: 10.1002/anie.202105756
    [78]
    Xie D, Sang Y, Wang D H, Diao W Y, Tao F Y, Liu C, Wang J W, Sun H Z, Zhang J P, Wu X L 2023 ZnF2 -riched inorganic/organic hybrid SEI: in situ-chemical construction and performance-improving mechanism for aqueous zinc-ion batteries Angew. Chem., Int. Ed. 62 e202216934 doi: 10.1002/anie.202216934
    [79]
    Wei T, Zhang X, Ren Y, Wang Y, Li Z, Zhang H, Hu L 2023 Reconstructing anode/electrolyte interface and solvation structure towards high stable zinc anode Chem. Eng. J. 457 141272 doi: 10.1016/j.cej.2023.141272
    [80]
    Xin T, Zhou R, Xu Q, Yuan X, Zheng Z, Li Y, Zhang Q, Liu J 2023 15-Crown-5 ether as efficient electrolyte additive for performance enhancement of aqueous Zn-ion batteries Chem. Eng. J. 452 139572 doi: 10.1016/j.cej.2022.139572
    [81]
    Chen Y, Gong F, Deng W, Zhang H, Wang X 2023 Dual-function electrolyte additive enabling simultaneous electrode interface and coordination environment regulation for zinc-ion batteries Energy Storage Mater. 58 20-29 doi: 10.1016/j.ensm.2023.03.010
    [82]
    Hu Q, Hu J, Li L, Ran Q, Ji Y, Liu X, Zhao J, Xu B 2023 In-depth study on the regulation of electrode interface and solvation structure by hydroxyl chemistry Energy Storage Mater. 54 374-81 doi: 10.1016/j.ensm.2022.10.051
    [83]
    Li R, Li M, Chao Y, Guo J, Xu G, Li B, Liu Z, Yang C 2022 Hexaoxacyclooctadecane induced interfacial engineering to achieve dendrite-free Zn ion batteries Energy Storage Mater. 46 605-12 doi: 10.1016/j.ensm.2021.11.015
    [84]
    Yin J, et al 2023 Integrated electrolyte regulation strategy: trace trifunctional tranexamic acid additive for highly reversible Zn metal anode and stable aqueous zinc ion battery Energy Storage Mater. 59 102800 doi: 10.1016/j.ensm.2023.102800
    [85]
    Wu X, et al 2015 The electrochemical performance improvement of LiMn2O4/Zn based on zinc foil as the current collector and thiourea as an electrolyte additive J. Power Sources 300 453-9 doi: 10.1016/j.jpowsour.2015.09.096
    [86]
    Cui J, Liu X, Xie Y, Wu K, Wang Y, Liu Y, Zhang J, Yi J, Xia Y 2020 Improved electrochemical reversibility of Zn plating/stripping: a promising approach to suppress water-induced issues through the formation of H-bonding Mater. Today Energy 18 100563 doi: 10.1016/j.mtener.2020.100563
    [87]
    Miao Z, et al 2022 Unveiling unique steric effect of threonine additive for highly reversible Zn anode Nano Energy 97 107145 doi: 10.1016/j.nanoen.2022.107145
    [88]
    Xu W, Zhao K, Huo W, Wang Y, Yao G, Gu X, Cheng H, Mai L, Hu C, Wang X 2019 Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries Nano Energy 62 275-81 doi: 10.1016/j.nanoen.2019.05.042
    [89]
    Wang M, Cheng Y, Zhao H, Gao J, Li J, Wang Y, Qiu J, Zhang H, Chen X, Wei Y 2023 A multifunctional organic electrolyte additive for aqueous zinc ion batteries based on polyaniline cathode Small 19 2302105 doi: 10.1002/smll.202302105
    [90]
    Shi X, Wang J, Yang F, Liu X, Yu Y, Lu X 2022 Metallic zinc anode working at 50 and 50 mAh cm-2 with high depth of discharge via electrical double layer reconstruction Adv. Funct. Mater. 33 2211917 doi: 10.1002/adfm.202211917
    [91]
    Jin Y, Han K S, Shao Y, Sushko M L, Xiao J, Pan H, Liu J 2020 Stabilizing zinc anode reactions by polyethylene oxide polymer in mild aqueous electrolytes Adv. Funct. Mater. 30 2003932 doi: 10.1002/adfm.202003932
    [92]
    Yan M, Xu C, Sun Y, Pan H, Li H 2021 Manipulating Zn anode reactions through salt anion involving hydrogen bonding network in aqueous electrolytes with PEO additive Nano Energy 82 105739 doi: 10.1016/j.nanoen.2020.105739
    [93]
    Xu J, et al 2022 In situ construction of protective films on Zn metal anodes via natural protein additives enabling high-performance zinc ion batteries ACS Nano 16 11392-404 doi: 10.1021/acsnano.2c05285
    [94]
    Wang B, Zheng R, Yang W, Han X, Hou C, Zhang Q, Li Y, Li K, Wang H 2022 Synergistic solvation and interface regulations of ecofriendly silk peptide additive enabling stable aqueous zincion batteries Adv. Funct. Mater. 32 2112693 doi: 10.1002/adfm.202112693
    [95]
    Bayaguud A, Luo X, Fu Y, Zhu C 2020 Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries ACS Energy Lett. 5 3012-20 doi: 10.1021/acsenergylett.0c01792
    [96]
    Wan J, et al 2023 A double-functional additive containing nucleophilic groups for high-performance Zn-ion batteries ACS Nano 17 1610-21 doi: 10.1021/acsnano.2c11357
    [97]
    Zeng X, et al 2021 Electrolyte design for in situ construction of highly Zn2+ -conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions Adv. Mater. 33 e2007416 doi: 10.1002/adma.202007416
    [98]
    Wang P, Xie X, Xing Z, Chen X, Fang G, Lu B, Zhou J, Liang S, Fan H J 2021 Mechanistic insights of Mg2+ electrolyte additive for highenergy and longlife zincion hybrid capacitors Adv. Energy Mater. 11 2101158 doi: 10.1002/aenm.202101158
    [99]
    Cao L, et al 2021 Highly reversible aqueous zinc batteries enabled by zincophilic-zincophobic interfacial layers and interrupted hydrogen-bond electrolytes Angew. Chem., Int. Ed. 60 18845-51 doi: 10.1002/anie.202107378
    [100]
    Kim M, Shin S J, Lee J, Park Y, Kim Y, Kim H, Choi J W 2022 Cationic additive with a rigid solvation shell for high-performance zinc ion batteries Angew. Chem., Int. Ed. 61 e202211589 doi: 10.1002/anie.202211589
    [101]
    Lv Y, Zhao M, Du Y, Kang Y, Xiao Y, Chen S 2022 Engineering a self-adaptive electric double layer on both electrodes for high-performance zinc metal batteries Energy Environ. Sci. 15 4748-60 doi: 10.1039/D2EE02687B
    [102]
    Hao R, et al 2023 Reconstructing the solvation structure and solid-liquid interface enables dendrite-free zinc-ion batteries Mater. Today Energy 33 101279 doi: 10.1016/j.mtener.2023.101279
    [103]
    Chen S, et al 2019 Critical parameters for evaluating coin cells and pouch cells of rechargeable li-metal batteries Joule 3 1094-105 doi: 10.1016/j.joule.2019.02.004
    [104]
    Cao Y, Li M, Lu J, Liu J, Amine K 2019 Bridging the academic and industrial metrics for next-generation practical batteries Nat. Nanotechnol. 14 200-7 doi: 10.1038/s41565-019-0371-8
    [105]
    Niu C, Lee H, Chen S, Li Q, Du J, Xu W, Zhang J-G, Whittingham M S, Xiao J, Liu J 2019 High-energy lithium metal pouch cells with limited anode swelling and long stable cycles Nat. Energy 4 551-9 doi: 10.1038/s41560-019-0390-6
    [106]
    Jain R, Lakhnot A S, Bhimani K, Sharma S, Mahajani V, Panchal R A, Kamble M, Han F, Wang C, Koratkar N 2022 Nanostructuring versus microstructuring in battery electrodes Nat. Rev. Mater. 7 736-46 doi: 10.1038/s41578-022-00454-9
    [107]
    Xiao P, Bu F, Zhao R, Aly Aboud M F, Shakir I, Xu Y 2018 Sub-5 nm ultrasmall metal-organic framework nanocrystals for highly efficient electrochemical energy storage ACS Nano 12 3947-53 doi: 10.1021/acsnano.8b01488
    [108]
    Xiao P, Li S, Yu C, Wang Y, Xu Y 2020 Interface engineering between the metal-organic framework nanocrystal and graphene toward ultrahigh potassium-ion storage performance ACS Nano 14 10210-8 doi: 10.1021/acsnano.0c03488
    [109]
    Piao Z, Xiao P, Luo R, Ma J, Gao R, Li C, Tan J, Yu K, Zhou G, Cheng H M 2022 Constructing a stable interface layer by tailoring solvation chemistry in carbonate electrolytes for high-performance lithium-metal batteries Adv. Mater. 34 e2108400 doi: 10.1002/adma.202108400
    [110]
    Xiao P, Bu F, Yang G, Zhang Y, Xu Y 2017 Integration of graphene, nano sulfur, and conducting polymer into compact, flexible lithium-sulfur battery cathodes with ultrahigh volumetric capacity and superior cycling stability for foldable devices Adv. Mater. 29 1703324 doi: 10.1002/adma.201703324
    [111]
    Xiao P, Zhao Y, Piao Z, Li B, Zhou G, Cheng H-M 2022 A nonflammable electrolyte for ultrahigh-voltage (4.8 V-class) Li||NCM811 cells with a wide temperature range of 100 C Energy Environ. Sci. 15 2435-44 doi: 10.1039/D1EE02959B
    [112]
    Xiao P, Xu Y 2018 Recent progress in two-dimensional polymers for energy storage and conversion: design, synthesis, and applications J. Mater. Chem. A 6 21676-95 doi: 10.1039/C8TA02820F
    [113]
    Wu Y, Liu N 2018 Visualizing battery reactions and processes by using in situ and in operando microscopies Chem 4 438-65 doi: 10.1016/j.chempr.2017.12.022
    [114]
    Ji Y, et al 2021 From bulk to interface: electrochemical phenomena and mechanism studies in batteries via electrochemical quartz crystal microbalance Chem. Soc. Rev. 50 10743-63 doi: 10.1039/D1CS00629K
    [115]
    Tripathi A M, Su W N, Hwang B J 2018 In situ analytical techniques for battery interface analysis Chem. Soc. Rev. 47 736-851 doi: 10.1039/c7cs00180k
    [116]
    Zhang L, Qian T, Zhu X, Hu Z, Wang M, Zhang L, Jiang T, Tian J H, Yan C 2019 In situ optical spectroscopy characterization for optimal design of lithium-sulfur batteries Chem. Soc. Rev. 48 5432-53 doi: 10.1039/C9CS00381A
    [117]
    Yang H, Tang P, Piao N, Li J, Shan X, Tai K, Tan J, Cheng H-M, Li F 2022 In-situ imaging techniques for advanced battery development Mater. Today 57 279-94 doi: 10.1016/j.mattod.2022.05.021
    [118]
    Yousaf M, et al 2022 Visualization of battery materials and their interfaces/interphases using cryogenic electron microscopy Mater. Today 58 238-74 doi: 10.1016/j.mattod.2022.06.022
    [119]
    Wang Y, Liu Y, Song S, Yang Z, Qi X, Wang K, Liu Y, Zhang Q, Tian Y 2018 Accelerating the discovery of insensitive high-energy-density materials by a materials genome approach Nat. Commun. 9 2444 doi: 10.1038/s41467-018-04897-z
    [120]
    Liu Y, Guo B, Zou X, Li Y, Shi S 2020 Machine learning assisted materials design and discovery for rechargeable batteries Energy Storage Mater. 31 434-50 doi: 10.1016/j.ensm.2020.06.033
    [121]
    Burger B, et al 2020 A mobile robotic chemist Nature 583 237-41 doi: 10.1038/s41586-020-2442-2
    [122]
    Deringer V L, Bernstein N, Csanyi G, Ben Mahmoud C, Ceriotti M, Wilson M, Drabold D A, Elliott S R 2021 Origins of structural and electronic transitions in disordered silicon Nature 589 59-64 doi: 10.1038/s41586-020-03072-z
    [123]
    Raccuglia P, Elbert K C, Adler P D, Falk C, Wenny M B, Mollo A, Zeller M, Friedler S A, Schrier J, Norquist A J 2016 Machine-learning-assisted materials discovery using failed experiments Nature 533 73-76 doi: 10.1038/nature17439
    [124]
    Correa-Baena J-P, Hippalgaonkar K, van Duren J, Jaffer S, Chandrasekhar V R, Stevanovic V, Wadia C, Guha S, Buonassisi T 2018 Accelerating materials development via automation, machine learning, and high-performance computing Joule 2 1410-20 doi: 10.1016/j.joule.2018.05.009
    [125]
    Nolan A M, Zhu Y, He X, Bai Q, Mo Y 2018 Computation-accelerated design of materials and interfaces for all-solid-state lithium-ion batteries Joule 2 2016-46 doi: 10.1016/j.joule.2018.08.017
    [126]
    Xiao Y, Miara L J, Wang Y, Ceder G 2019 Computational screening of cathode coatings for solid-state batteries Joule 3 1252-75 doi: 10.1016/j.joule.2019.02.006
    [127]
    Butler K T, Davies D W, Cartwright H, Isayev O, Walsh A 2018 Machine learning for molecular and materials science Nature 559 547-55 doi: 10.1038/s41586-018-0337-2
  • 加载中

Catalog

    Figures(11)  / Tables(1)

    Article Metrics

    Article Views(674) PDF downloads(190)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return