Volume 2 Issue 3
August  2023
Turn off MathJax
Article Contents
Huai Zhang, Yajiu Zhang, Zhipeng Hou, Minghui Qin, Xingsen Gao, Junming Liu. Magnetic skyrmions: materials, manipulation, detection, and applications in spintronic devices[J]. Materials Futures, 2023, 2(3): 032201. doi: 10.1088/2752-5724/ace1df
Citation: Huai Zhang, Yajiu Zhang, Zhipeng Hou, Minghui Qin, Xingsen Gao, Junming Liu. Magnetic skyrmions: materials, manipulation, detection, and applications in spintronic devices[J]. Materials Futures, 2023, 2(3): 032201. doi: 10.1088/2752-5724/ace1df
Topical Review •
OPEN ACCESS

Magnetic skyrmions: materials, manipulation, detection, and applications in spintronic devices

© 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 2, Number 3
  • Received Date: 2023-04-16
  • Accepted Date: 2023-06-24
  • Rev Recd Date: 2023-06-11
  • Publish Date: 2023-07-25
  • Magnetic skyrmions are vortex-like spin configurations that possess nanometric dimensions, topological stability, and high controllability through various external stimuli. Since their first experimental observation in helimagnet MnSi in 2009, magnetic skyrmions have emerged as a highly promising candidate for carrying information in future high-performance, low-energy-consumption, non-volatile information storage, and logical calculation. In this article, we provide a comprehensive review of the progress made in the field of magnetic skyrmions, specifically in materials, manipulation, detection, and application in spintronic devices. Firstly, we introduce several representative skyrmion material systems, including chiral magnets, magnetic thin films, centrosymmetric materials, and Van der Waals materials. We then discuss various methods for manipulating magnetic skyrmions, such as electric current and electric field, as well as detecting them, mainly through electrical means such as the magnetoresistance effect. Furthermore, we explore device applications based on magnetic skyrmions, such as track memory, logic computing, and neuromorphic devices. Finally, we summarize the challenges faced in skyrmion research and provide future perspectives.
  • loading
  • [1]
    Moore G E 1965 Cramming more components onto integrated circuitsNew YorkMcGraw-Hill
    [2]
    Waldrop M M 2016 The chips are down for Moore’s law Nat. News 530 144 doi: 10.1038/530144a
    [3]
    Zhang X, Zhou Y, Mee Song K, Park T E, Xia J, Ezawa M, Liu X, Zhao W, Zhao G, Woo S 2020 Skyrmion-electronics: writing, deleting, reading and processing magnetic skyrmions toward spintronic applications J. Phys.: Condens. Matter 32 143001 doi: 10.1088/1361-648X/ab5488
    [4]
    Dzyaloshinsky I 1958 A thermodynamic theory of weak’ ferromagnetism of antiferromagnetics J. Phys. Chem. Solids 4 241 doi: 10.1016/0022-3697(58)90076-3
    [5]
    Moriya T 1960 Anisotropic superexchange interaction and weak ferromagnetism Phys. Rev. 120 91 doi: 10.1103/PhysRev.120.91
    [6]
    Mhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Bni P 2009 Skyrmion lattice in a chiral magnet Science 323 915 doi: 10.1126/science.1166767
    [7]
    Fert A, Cros V, Sampaio J 2013 Skyrmions on the track Nat. Nanotechnol. 8 152 doi: 10.1038/nnano.2013.29
    [8]
    Fert A R 1991 Magnetic and transport properties of metallic multilayers Mater. Sci. Forum 59-60 439 doi: 10.4028/www.scientific.net/MSF.59-60.439
    [9]
    Bode M, Heide M, von Bergmann K, Ferriani P, Heinze S, Bihlmayer G, Kubetzka A, Pietzsch O, Blugel S, Wiesendanger R 2007 Chiral magnetic order at surfaces driven by inversion asymmetry Nature 447 190 doi: 10.1038/nature05802
    [10]
    Romming N, Hanneken C, Menzel M, Bickel J E, Wolter B, von Bergmann K, Kubetzka A, Wiesendanger R 2013 Writing and deleting single magnetic skyrmions Science 341 636 doi: 10.1126/science.1240573
    [11]
    Everschor-Sitte K, Sitte M 2014 Real-space Berry phases: skyrmion soccer J. Appl. Phys. 115 172602 doi: 10.1063/1.4870695
    [12]
    Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N, Tokura Y 2010 Real-space observation of a two-dimensional skyrmion crystal Nature 465 901 doi: 10.1038/nature09124
    [13]
    Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2011 Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe Nat. Mater. 10 106 doi: 10.1038/nmat2916
    [14]
    Tonomura A, Yu X, Yanagisawa K, Matsuda T, Onose Y, Kanazawa N, Park H S, Tokura Y 2012 Real-space observation of skyrmion lattice in helimagnet MnSi thin samples Nano Lett. 12 1673 doi: 10.1021/nl300073m
    [15]
    Nagaosa N, Tokura Y 2013 Topological properties and dynamics of magnetic skyrmions Nat. Nanotechnol. 8 899 doi: 10.1038/nnano.2013.243
    [16]
    Bogdanov A, Yablonskiui D 1989 Thermodynamically stable vortices’ in magnetically ordered crystals. The mixed state of magnets Sov. Phys.JETP 68 101
    [17]
    Bogdanov A N, Rler U K, Wolf M, Mller K-H 2002 Magnetic structures and reorientation transitions in noncentrosymmetric uniaxial antiferromagnets Phys. Rev. B 66 214410 doi: 10.1103/PhysRevB.66.214410
    [18]
    Nayak A K, Kumar V, Ma T, Werner P, Pippel E, Sahoo R, Damay F, Rossler U K, Felser C, Parkin S S P 2017 Magnetic antiskyrmions above room temperature in tetragonal Heusler materials Nature 548 561 doi: 10.1038/nature23466
    [19]
    Koshibae W, Nagaosa N 2016 Theory of antiskyrmions in magnets Nat. Commun. 7 10542 doi: 10.1038/ncomms10542
    [20]
    Kuchkin V M, Kiselev N S 2020 Turning a chiral skyrmion inside out Phys. Rev. B 101 064408 doi: 10.1103/PhysRevB.101.064408
    [21]
    Zheng F, Kiselev N S, Yang L, Kuchkin V M, Rybakov F N, Blgel S, Dunin-Borkowski R E 2022 Skyrmion-antiskyrmion pair creation and annihilation in a cubic chiral magnet Nat. Phys. 18 863 doi: 10.1038/s41567-022-01638-4
    [22]
    Yu X Z, Tokunaga Y, Kaneko Y, Zhang W Z, Kimoto K, Matsui Y, Taguchi Y, Tokura Y 2014 Biskyrmion states and their current-driven motion in a layered manganite Nat. Commun. 5 3198 doi: 10.1038/ncomms4198
    [23]
    Yu X Z, Koshibae W, Tokunaga Y, Shibata K, Taguchi Y, Nagaosa N, Tokura Y 2018 Transformation between meron and skyrmion topological spin textures in a chiral magnet Nature 564 95 doi: 10.1038/s41586-018-0745-3
    [24]
    Bruno P, Dugaev V K, Taillefumier M 2004 Topological Hall effect and Berry phase in magnetic nanostructures Phys. Rev. Lett. 93 096806 doi: 10.1103/PhysRevLett.93.096806
    [25]
    Jiang W, et al 2016 Direct observation of the skyrmion Hall effect Nat. Phys. 13 162 doi: 10.1038/nphys3883
    [26]
    Schulz T, Ritz R, Bauer A, Halder M, Wagner M, Franz C, Pfleiderer C, Everschor K, Garst M, Rosch A 2012 Emergent electrodynamics of skyrmions in a chiral magnet Nat. Phys. 8 301 doi: 10.1038/nphys2231
    [27]
    Romming N, Kubetzka A, Hanneken C, von Bergmann K, Wiesendanger R, von Bergmann K 2015 Field-dependent size and shape of single magnetic skyrmions Phys. Rev. Lett. 114 177203 doi: 10.1103/PhysRevLett.114.177203
    [28]
    Li S, Kang W, Huang Y, Zhang X, Zhou Y, Zhao W 2017 Magnetic skyrmion-based artificial neuron device Nanotechnology 28 31lt01 doi: 10.1088/1361-6528/aa7af5
    [29]
    Huang Y, Kang W, Zhang X, Zhou Y, Zhao W 2017 Magnetic skyrmion-based synaptic devices Nanotechnology 28 08LT02 doi: 10.1088/1361-6528/aa5838
    [30]
    Skyrme T H R 1962 A unified field theory of mesons and baryons Nucl. Phys. 31 556 doi: 10.1016/0029-5582(62)90775-7
    [31]
    Sondhi S L, Karlhede A, Kivelson S A, Rezayi E H 1993 Skyrmions and the crossover from the integer to fractional quantum Hall effect at small Zeeman energies Phys. Rev. B 47 16419 doi: 10.1103/PhysRevB.47.16419
    [32]
    Abolfath M, Palacios J J, Fertig H A, Girvin S M, MacDonald A H 1997 Skrymions in quantum Hall systems Phys. Rev. B 56 6795 doi: 10.1103/PhysRevB.56.6795
    [33]
    Wright D C, Mermin N D 1989 Crystalline liquids: the blue phases Rev. Mod. Phys. 61 385 doi: 10.1103/RevModPhys.61.385
    [34]
    Ho T-L 1998 Spinor Bose condensates in optical traps Phys. Rev. Lett. 81 742 doi: 10.1103/PhysRevLett.81.742
    [35]
    Rler U K, Bogdanov A, Pfleiderer C 2006 Spontaneous skyrmion ground states in magnetic metals Nature 442 797 doi: 10.1038/nature05056
    [36]
    Karube K, et al 2018 Disordered skyrmion phase stabilized by magnetic frustration in a chiral magnet Sci. Adv. 4 eaar7043 doi: 10.1126/sciadv.aar7043
    [37]
    Chacon A, Heinen L, Halder M, Bauer A, Simeth W, Mhlbauer S, Berger H, Garst M, Rosch A, Pfleiderer C 2018 Observation of two independent skyrmion phases in a chiral magnetic material Nat. Phys. 14 936 doi: 10.1038/s41567-018-0184-y
    [38]
    Kzsmrki I, et al 2015 Nel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8 Nat. Mater. 14 1116 doi: 10.1038/nmat4402
    [39]
    Karube K, White J S, Morikawa D, Bartkowiak M, Kikkawa A, Tokunaga Y, Arima T, Rnnow H M, Tokura Y, Taguchi Y 2017 Skyrmion formation in a bulk chiral magnet at zero magnetic field and above room temperature Phys. Rev. Mater. 1 074405 doi: 10.1103/PhysRevMaterials.1.074405
    [40]
    Seki S, Yu X Z, Ishiwata S, Tokura Y 2012 Observation of skyrmions in a multiferroic material Science 336 198 doi: 10.1126/science.1214143
    [41]
    Shibata K, Yu X Z, Hara T, Morikawa D, Kanazawa N, Kimoto K, Ishiwata S, Matsui Y, Tokura Y 2013 Towards control of the size and helicity of skyrmions in helimagnetic alloys by spin-orbit coupling Nat. Nanotechnol. 8 723 doi: 10.1038/nnano.2013.174
    [42]
    Buttner F, et al 2017 Field-free deterministic ultrafast creation of magnetic skyrmions by spin-orbit torques Nat. Nanotechnol. 12 1040 doi: 10.1038/nnano.2017.178
    [43]
    Litzius K, et al 2017 Skyrmion Hall effect revealed by direct time-resolved x-ray microscopy Nat. Phys. 13 170 doi: 10.1038/nphys4000
    [44]
    Woo S, et al 2016 Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets Nat. Mater. 15 501 doi: 10.1038/nmat4593
    [45]
    Jiang W, et al 2015 Blowing magnetic skyrmion bubbles Science 349 283 doi: 10.1126/science.aaa1442
    [46]
    Wang K, Qian L, Chen W, Ying S-C, Xiao G, Wu X 2019 Spin torque effect on topological defects and transitions of magnetic domain phases in Ta/CoFeB/MgO Phys. Rev. B 99 184410 doi: 10.1103/PhysRevB.99.184410
    [47]
    Wang K, Zhang Y, Bheemarasetty V, Zhou S, Ying S-C, Xiao G 2022 Single skyrmion true random number generator using local dynamics and interaction between skyrmions Nat. Commun. 13 722 doi: 10.1038/s41467-022-28334-4
    [48]
    Moreau-Luchaire C, et al 2016 Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature Nat. Nanotechnol. 11 444 doi: 10.1038/nnano.2015.313
    [49]
    Wang W, et al 2016 A centrosymmetric hexagonal magnet with superstable biskyrmion magnetic nanodomains in a wide temperature range of 100-340 K Adv. Mater. 28 6887 doi: 10.1002/adma.201600889
    [50]
    Yasui Y, et al 2020 Imaging the coupling between itinerant electrons and localised moments in the centrosymmetric skyrmion magnet GdRu2Si2 Nat. Commun. 11 5925 doi: 10.1038/s41467-020-19751-4
    [51]
    Khanh N D, et al 2020 Nanometric square skyrmion lattice in a centrosymmetric tetragonal magnet Nat. Nanotechnol. 15 444 doi: 10.1038/s41565-020-0684-7
    [52]
    Paddison J A, Rai B K, May A F, Calder S, Stone M B, Frontzek M D, Christianson A D 2022 Magnetic interactions of the centrosymmetric skyrmion material Gd2PdSi3 Phys. Rev. Lett. 129 137202 doi: 10.1103/PhysRevLett.129.137202
    [53]
    Zuo S, Qiao K, Zhang Y, Zhao T, Jiang C, Shen B 2023 Spontaneous biskyrmion lattice in a centrosymmetric rhombohedral rare-earth magnet with easy-plane anisotropy Nano Lett. 23 550 doi: 10.1021/acs.nanolett.2c04001
    [54]
    Ding B, Li Z, Xu G, Li H, Hou Z, Liu E, Xi X, Xu F, Yao Y, Wang W 2019 Observation of magnetic skyrmion bubbles in a van der Waals ferromagnet Fe3GeTe2 Nano Lett. 20 868 doi: 10.1021/acs.nanolett.9b03453
    [55]
    Zhang C, et al 2022 Magnetic skyrmions with unconventional helicity polarization in a Van Der Waals ferromagnet Adv. Mater. 34 2204163 doi: 10.1002/adma.202204163
    [56]
    Onose Y, Okamura Y, Seki S, Ishiwata S, Tokura Y 2012 Observation of magnetic excitations of skyrmion crystal in a helimagnetic insulator Cu2OSeO3 Phys. Rev. Lett. 109 037603 doi: 10.1103/PhysRevLett.109.037603
    [57]
    Milde P, et al 2013 Unwinding of a skyrmion lattice by magnetic monopoles Science 340 1076 doi: 10.1126/science.1234657
    [58]
    Tokunaga Y, Yu X, White J, Rnnow H M, Morikawa D, Taguchi Y, Tokura Y 2015 A new class of chiral materials hosting magnetic skyrmions beyond room temperature Nat. Commun. 6 1 doi: 10.1038/ncomms8638
    [59]
    Tanigaki T, Shibata K, Kanazawa N, Yu X, Onose Y, Park H S, Shindo D, Tokura Y 2015 Real-space observation of short-period cubic lattice of skyrmions in MnGe Nano Lett. 15 5438 doi: 10.1021/acs.nanolett.5b02653
    [60]
    Matsumoto T, So Y-G, Kohno Y, Sawada H, Ikuhara Y, Shibata N 2016 Direct observation of 7 domain boundary core structure in magnetic skyrmion lattice Sci. Adv. 2 e1501280 doi: 10.1126/sciadv.1501280
    [61]
    Li W, Jin C, Che R, Wei W, Lin L, Zhang L, Du H, Tian M, Zang J 2016 Emergence of skyrmions from rich parent phases in the molybdenum nitrides Phys. Rev. B 93 060409 doi: 10.1103/PhysRevB.93.060409
    [62]
    Kurumaji T, Nakajima T, Hirschberger M, Kikkawa A, Yamasaki Y, Sagayama H, Nakao H, Taguchi Y, Arima T-H, Tokura Y 2019 Skyrmion lattice with a giant topological Hall effect in a frustrated triangular-lattice magnet Science 365 914 doi: 10.1126/science.aau0968
    [63]
    Kaneko K, et al 2019 Unique helical magnetic order and field-induced phase in trillium lattice antiferromagnet EuPtSi J. Phys. Soc. Japan 88 013702 doi: 10.7566/JPSJ.88.013702
    [64]
    Karube K, Peng L, Masell J, Yu X, Kagawa F, Tokura Y, Taguchi Y 2021 Room-temperature antiskyrmions and sawtooth surface textures in a non-centrosymmetric magnet with S4 symmetry Nat. Mater. 20 335 doi: 10.1038/s41563-020-00898-w
    [65]
    Zhang H, et al 2022 Room-temperature skyrmion lattice in a layered magnet (Fe0.5Co0.55GeTe2 Sci. Adv. 8 eabm7103 doi: 10.1126/sciadv.abm7103
    [66]
    Heinze S, Von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G, Blgel S 2011 Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions Nat. Phys. 7 713 doi: 10.1038/nphys2045
    [67]
    Chen G, Mascaraque A, N’Diaye A T, Schmid A K 2015 Room temperature skyrmion ground state stabilized through interlayer exchange coupling Appl. Phys. Lett. 106 242404 doi: 10.1063/1.4922726
    [68]
    Boulle O, et al 2016 Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures Nat. Nanotechnol. 11 449 doi: 10.1038/nnano.2015.315
    [69]
    Soumyanarayanan A, et al 2017 Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers Nat. Mater. 16 898 doi: 10.1038/nmat4934
    [70]
    Yu X, Mostovoy M, Tokunaga Y, Zhang W, Kimoto K, Matsui Y, Kaneko Y, Nagaosa N, Tokura Y 2012 Magnetic stripes and skyrmions with helicity reversals Proc. Natl Acad. Sci. 109 8856 doi: 10.1073/pnas.1118496109
    [71]
    Hou Z, et al 2017 Observation of various and spontaneous magnetic skyrmionic bubbles at room temperature in a frustrated kagome magnet with uniaxial magnetic anisotropy Adv. Mater. 29 1701144 doi: 10.1002/adma.201701144
    [72]
    Makarova O L, Tsvyashchenko A V, Andre G, Porcher F, Fomicheva L N, Rey N, Mirebeau I 2012 Neutron diffraction study of the chiral magnet MnGe Phys. Rev. B 85 205205 doi: 10.1103/PhysRevB.85.205205
    [73]
    Tokura Y, Kanazawa N 2020 Magnetic skyrmion materials Chem. Rev. 121 2857 doi: 10.1021/acs.chemrev.0c00297
    [74]
    Vir P, Kumar N, Borrmann H, Jamijansuren B, Kreiner G, Shekhar C, Felser C 2019 Tetragonal superstructure of the antiskyrmion hosting heusler compound Mn1.4PtSn Chem. Mater. 31 5876 doi: 10.1021/acs.chemmater.9b02013
    [75]
    Ma T, Sharma A K, Saha R, Srivastava A K, Werner P, Vir P, Kumar V, Felser C, Parkin S S P 2020 Tunable magnetic antiskyrmion size and helical period from nanometers to micrometers in a D(2d) heusler compound Adv. Mater. 32 e2002043 doi: 10.1002/adma.202002043
    [76]
    Peng L, Takagi R, Koshibae W, Shibata K, Nakajima K, Arima T-H, Nagaosa N, Seki S, Yu X, Tokura Y 2020 Controlled transformation of skyrmions and antiskyrmions in a non-centrosymmetric magnet Nat. Nanotechnol. 15 181 doi: 10.1038/s41565-019-0616-6
    [77]
    Yu G, et al 2018 Room-temperature skyrmions in an antiferromagnet-based heterostructure Nano Lett. 18 980 doi: 10.1021/acs.nanolett.7b04400
    [78]
    Liu J, Wang Z, Xu T, Zhou H, Zhao L, Je S-G, Im M-Y, Fang L, Jiang W 2022 The 20 nm skyrmion generated at room temperature by spin-orbit torques Chin. Phys. Lett. 39 017501 doi: 10.1088/0256-307X/39/1/017501
    [79]
    Zhou Y, Ezawa M 2014 A reversible conversion between a skyrmion and a domain-wall pair in a junction geometry Nat. Commun. 5 4652 doi: 10.1038/ncomms5652
    [80]
    Caretta L, et al 2018 Fast current-driven domain walls and small skyrmions in a compensated ferrimagnet Nat. Nanotechnol. 13 1154 doi: 10.1038/s41565-018-0255-3
    [81]
    Jonietz F, et al 2010 Spin transfer torques in MnSi at ultralow current densities Science 330 1648 doi: 10.1126/science.1195709
    [82]
    Yu X Z, Kanazawa N, Zhang W Z, Nagai T, Hara T, Kimoto K, Matsui Y, Onose Y, Tokura Y 2012 Skyrmion flow near room temperature in an ultralow current density Nat. Commun. 3 988 doi: 10.1038/ncomms1990
    [83]
    Yu G, et al 2017 Room-temperature skyrmion shift device for memory application Nano Lett. 17 261 doi: 10.1021/acs.nanolett.6b04010
    [84]
    Hou Z, et al 2020 Current-induced helicity reversal of a single skyrmionic bubble Chain in a nanostructured frustrated magnet Adv. Mater. 32 e1904815 doi: 10.1002/adma.201904815
    [85]
    Hsu P-J, Kubetzka A, Finco A, Romming N, von Bergmann K, Wiesendanger R 2016 Electric-field-driven switching of individual magnetic skyrmions Nat. Nanotechnol. 12 123 doi: 10.1038/nnano.2016.234
    [86]
    Schott M, Bernand-Mantel A, Ranno L, Pizzini S, Vogel J, Bea H, Baraduc C, Auffret S, Gaudin G, Givord D 2017 The skyrmion switch: turning magnetic skyrmion bubbles on and off with an electric field Nano Lett. 17 3006 doi: 10.1021/acs.nanolett.7b00328
    [87]
    Ma C, Zhang X, Xia J, Ezawa M, Jiang W, Ono T, Piramanayagam S N, Morisako A, Zhou Y, Liu X 2019 Electric field-induced creation and directional motion of domain walls and skyrmion bubbles Nano Lett. 19 353 doi: 10.1021/acs.nanolett.8b03983
    [88]
    Bhattacharya D, Razavi S A, Wu H, Dai B, Wang K L, Atulasimha J 2020 Creation and annihilation of non-volatile fixed magnetic skyrmions using voltage control of magnetic anisotropy Nat. Electron. 3 539 doi: 10.1038/s41928-020-0432-x
    [89]
    Huang P, Cantoni M, Kruchkov A, Rajeswari J, Magrez A, Carbone F, Rnnow H M 2018 In situ electric field skyrmion creation in magnetoelectric CuOSeO Nano Lett. 18 5167 doi: 10.1021/acs.nanolett.8b02097
    [90]
    Li Z, Zhang Y, Huang Y, Wang C, Zhang X, Liu Y, Zhou Y, Kang W, Koli S C, Lei N 2018 Strain-controlled skyrmion creation and propagation in ferroelectric/ferromagnetic hybrid wires J. Magn. Magn. Mater. 455 19 doi: 10.1016/j.jmmm.2017.07.008
    [91]
    Wang Y, et al 2020 Electric-field-driven non-volatile multi-state switching of individual skyrmions in a multiferroic heterostructure Nat. Commun. 11 3577 doi: 10.1038/s41467-020-17354-7
    [92]
    Finazzi M, Savoini M, Khorsand A R, Tsukamoto A, Itoh A, Duo L, Kirilyuk A, Rasing T, Ezawa M 2013 Laser-induced magnetic nanostructures with tunable topological properties Phys. Rev. Lett. 110 177205 doi: 10.1103/PhysRevLett.110.177205
    [93]
    Berruto G, et al 2018 Laser-induced skyrmion writing and erasing in an ultrafast cryo-lorentz transmission electron microscope Phys. Rev. Lett. 120 117201 doi: 10.1103/PhysRevLett.120.117201
    [94]
    Feng C, et al 2021 Fieldfree manipulation of skyrmion creation and annihilation by tunable strain engineering Adv. Funct. Mater. 31 2008715 doi: 10.1002/adfm.202008715
    [95]
    Koshibae W, Nagaosa N 2014 Creation of skyrmions and antiskyrmions by local heating Nat. Commun. 5 5148 doi: 10.1038/ncomms6148
    [96]
    Liu Y, Yin G, Zang J, Shi J, Lake R K 2015 Skyrmion creation and annihilation by spin waves Appl. Phys. Lett. 107 152411 doi: 10.1063/1.4933407
    [97]
    Hamamoto K, Ezawa M, Nagaosa N 2016 Purely electrical detection of a skyrmion in constricted geometry Appl. Phys. Lett. 108 112401 doi: 10.1063/1.4943949
    [98]
    Maccariello D, Legrand W, Reyren N, Garcia K, Bouzehouane K, Collin S, Cros V, Fert A 2018 Electrical detection of single magnetic skyrmions in metallic multilayers at room temperature Nat. Nanotechnol. 13 233 doi: 10.1038/s41565-017-0044-4
    [99]
    Hanneken C, Otte F, Kubetzka A, Dupe B, Romming N, von Bergmann K, Wiesendanger R, Heinze S 2015 Electrical detection of magnetic skyrmions by tunnelling non-collinear magnetoresistance Nat. Nanotechnol. 10 1039 doi: 10.1038/nnano.2015.218
    [100]
    Crum D M, Bouhassoune M, Bouaziz J, Schweflinghaus B, Blugel S, Lounis S 2015 Perpendicular reading of single confined magnetic skyrmions Nat. Commun. 6 8541 doi: 10.1038/ncomms9541
    [101]
    Guang Y, et al 2022 Electrical detection of magnetic skyrmions in a magnetic tunnel junction Adv. Electron. Mater. 9 2200570 doi: 10.1002/aelm.202200570
    [102]
    Li S, et al 2022 Experimental demonstration of skyrmionic magnetic tunnel junction at room temperature Sci. Bull. 67 691 doi: 10.1016/j.scib.2022.01.016
    [103]
    Parkin S S P, Hayashi M, Thomas L 2008 Magnetic domain-wall racetrack memory Science 320 190 doi: 10.1126/science.1145799
    [104]
    Parkin S, Yang S-H 2015 Memory on the racetrack Nat. Nanotechnol. 10 195 doi: 10.1038/nnano.2015.41
    [105]
    Zhang X, Zhao G P, Fangohr H, Liu J P, Xia W X, Xia J, Morvan F J 2015 Skyrmion-skyrmion and skyrmion-edge repulsions in skyrmion-based racetrack memory Sci. Rep. 5 7643 doi: 10.1038/srep07643
    [106]
    Kang W, Huang Y, Zheng C, Lv W, Lei N, Zhang Y, Zhang X, Zhou Y, Zhao W 2016 Voltage controlled magnetic skyrmion motion for racetrack memory Sci. Rep. 6 23164 doi: 10.1038/srep23164
    [107]
    Kang W, Zheng C, Huang Y, Zhang X, Zhou Y, Lv W, Zhao W 2016 Complementary skyrmion racetrack memory with voltage manipulation IEEE Electr. Device. Lett. 37 924 doi: 10.1109/LED.2016.2574916
    [108]
    Zhang X, Zhou Y, Ezawa M 2016 Magnetic bilayer-skyrmions without skyrmion Hall effect Nat. Commun. 7 10293 doi: 10.1038/ncomms10293
    [109]
    Zang J, Mostovoy M, Han J H, Nagaosa N 2011 Dynamics of skyrmion crystals in metallic thin films Phys. Rev. Lett. 107 136804 doi: 10.1103/PhysRevLett.107.136804
    [110]
    Legrand W, Maccariello D, Ajejas F, Collin S, Vecchiola A, Bouzehouane K, Reyren N, Cros V, Fert A 2020 Room-temperature stabilization of antiferromagnetic skyrmions in synthetic antiferromagnets Nat. Mater. 19 34 doi: 10.1038/s41563-019-0468-3
    [111]
    Dohi T, DuttaGupta S, Fukami S, Ohno H 2019 Formation and current-induced motion of synthetic antiferromagnetic skyrmion bubbles Nat. Commun. 10 5153 doi: 10.1038/s41467-019-13182-6
    [112]
    Shiino T, Oh S-H, Haney P M, Lee S-W, Go G, Park B-G, Lee K-J 2016 Antiferromagnetic domain wall motion driven by spin-orbit torques Phys. Rev. Lett. 117 087203 doi: 10.1103/PhysRevLett.117.087203
    [113]
    Zhang X, Zhou Y, Ezawa M 2016 Antiferromagnetic skyrmion: stability, creation and manipulation Sci. Rep. 6 24795 doi: 10.1038/srep24795
    [114]
    Zhang X, Zhou Y, Ezawa M, Zhao G P, Zhao W 2015 Magnetic skyrmion transistor: skyrmion motion in a voltage-gated nanotrack Sci. Rep. 5 11369 doi: 10.1038/srep11369
    [115]
    Zhang X, Ezawa M, Zhou Y 2015 Magnetic skyrmion logic gates: conversion, duplication and merging of skyrmions Sci. Rep. 5 9400 doi: 10.1038/srep09400
    [116]
    Raab K, Brems M A, Beneke G, Dohi T, Rothorl J, Kammerbauer F, Mentink J H, Klaui M 2022 Brownian reservoir computing realized using geometrically confined skyrmion dynamics Nat. Commun. 13 6982 doi: 10.1038/s41467-022-34309-2
    [117]
    Yu D, Yang H, Chshiev M, Fert A 2022 Skyrmions-based logic gates in one single nanotrack completely reconstructed via chirality barrier Nat. Sci. Rev. 9 12 doi: 10.1093/nsr/nwac021
    [118]
    Locatelli N, Cros V, Grollier J 2014 Spin-torque building blocks Nat. Mater. 13 11 doi: 10.1038/nmat3823
    [119]
    Grollier J, Querlioz D, Stiles M D 2016 Spintronic nanodevices for bioinspired computing Proc. IEEE 104 2024 doi: 10.1109/JPROC.2016.2597152
    [120]
    Zhou J, Chen J 2021 Prospect of spintronics in neuromorphic computing Adv. Electron. Mater. 7 2100465 doi: 10.1002/aelm.202100465
    [121]
    Song K M, et al 2020 Skyrmion-based artificial synapses for neuromorphic computing Nat. Electron. 3 148 doi: 10.1038/s41928-020-0385-0
    [122]
    Hodgkin A L, Huxley A F 1952 A quantitative description of membrane current and its application to conduction and excitation in nerve J. Physiol. 117 500 doi: 10.1113/jphysiol.1952.sp004764
    [123]
    Izhikevich E M 2003 Simple model of spiking neurons IEEE Trans. Neural Netw. 14 1569 doi: 10.1109/TNN.2003.820440
    [124]
    Ghosh-Dastiday S, Adeli H 2009 Spiking neural networks Int. J. Neural Syst. 19 295 doi: 10.1142/S0129065709002002
    [125]
    Hou Z, et al 2022 Controlled switching of the number of skyrmions in a magnetic nanodot by electric fields Adv. Mater. 34 e2107908 doi: 10.1002/adma.202107908
    [126]
    Psaroudaki C, Panagopoulos C 2021 Skyrmion qubits: a new class of quantum logic elements based on nanoscale magnetization Phys. Rev. Lett. 127 067201 doi: 10.1103/PhysRevLett.127.067201
    [127]
    Xia J, Zhang X, Liu X, Zhou Y, Ezawa M 2023 Universal quantum computation based on nanoscale skyrmion helicity qubits in frustrated magnets Phys. Rev. Lett. 130 106701 doi: 10.1103/PhysRevLett.130.106701
  • 加载中

Catalog

    Figures(10)  / Tables(2)

    Article Metrics

    Article Views(657) PDF downloads(191)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return