Volume 2 Issue 3
August  2023
Turn off MathJax
Article Contents
Chengzhai Lv, Fanqing Zhang, Chunyang Li, Zhongyi Li, Jing Zhao. Low-dimensional optoelectronic synaptic devices for neuromorphic vision sensors[J]. Materials Futures, 2023, 2(3): 032301. doi: 10.1088/2752-5724/acda4d
Citation: Chengzhai Lv, Fanqing Zhang, Chunyang Li, Zhongyi Li, Jing Zhao. Low-dimensional optoelectronic synaptic devices for neuromorphic vision sensors[J]. Materials Futures, 2023, 2(3): 032301. doi: 10.1088/2752-5724/acda4d
Topical Review •
OPEN ACCESS

Low-dimensional optoelectronic synaptic devices for neuromorphic vision sensors

© 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 2, Number 3
  • Received Date: 2023-04-04
  • Accepted Date: 2023-05-30
  • Rev Recd Date: 2023-05-16
  • Publish Date: 2023-06-20
  • Neuromorphic systems represent a promising avenue for the development of the next generation of artificial intelligence hardware. Machine vision, one of the cores in artificial intelligence, requires system-level support with low power consumption, low latency, and parallel computing. Neuromorphic vision sensors provide an efficient solution for machine vision by simulating the structure and function of the biological retina. Optoelectronic synapses, which use light as the main means to achieve the dual functions of photosensitivity and synapse, are the basic units of the neuromorphic vision sensor. Therefore, it is necessary to develop various optoelectronic synaptic devices to expand the application scenarios of neuromorphic vision systems. This review compares the structure and function for both biological and artificial retina systems, and introduces various optoelectronic synaptic devices based on low-dimensional materials and working mechanisms. In addition, advanced applications of optoelectronic synapses as neuromorphic vision sensors are comprehensively summarized. Finally, the challenges and prospects in this field are briefly discussed.
  • loading
  • [1]
    von Neumann J 1993 First draft of a report on the EDVAC IEEE Ann. Hist. Comput. 15 27-75 doi: 10.1109/85.238389
    [2]
    Kuzum D, Yu S, Wong H P 2013 Synaptic electronics: materials, devices and applications Nanotechnology 24 382001 doi: 10.1088/0957-4484/24/38/382001
    [3]
    Zidan M A, Strachan J P, Lu W D 2018 The future of electronics based on memristive systems Nat. Electron. 1 22-29 doi: 10.1038/s41928-017-0006-8
    [4]
    Merolla P A, Arthur J V, Alvarez-Icaza R, Cassidy A S, Sawada J, Akopyan F, Jackson B L, Imam N, Guo C, Nakamura Y 2014 A million spiking-neuron integrated circuit with a scalable communication network and interface Science 345 668-73 doi: 10.1126/science.1254642
    [5]
    Wang C Y, Wang C, Meng F, Wang P, Wang S, Liang S J, Miao F 2020 2D layered materials for memristive and neuromorphic applications Adv. Electron. Mater. 6 1901107 doi: 10.1002/aelm.201901107
    [6]
    Waldrop M M 2016 The chips are down for Moore’s law Nat. News 530 144 doi: 10.1038/530144a
    [7]
    Machens C K 2012 Building the human brain Science 338 1156-7 doi: 10.1126/science.1231865
    [8]
    van de Burgt Y, Lubberman E, Fuller E J, Keene S T, Faria G C, Agarwal S, Marinella M J, Alec Talin A, Salleo A 2017 A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing Nat. Mater. 16 414-8 doi: 10.1038/nmat4856
    [9]
    Zhu J, Zhang T, Yang Y, Huang R 2020 A comprehensive review on emerging artificial neuromorphic devices Appl. Phys. Rev. 7 011312 doi: 10.1063/1.5118217
    [10]
    Choi S, Tan S H, Li Z, Kim Y, Choi C, Chen P-Y, Yeon H, Yu S, Kim J 2018 SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations Nat. Mater. 17 335-40 doi: 10.1038/s41563-017-0001-5
    [11]
    Sun L, Zhang Y, Hwang G, Jiang J, Kim D, Eshete Y A, Zhao R, Yang H 2018 Synaptic computation enabled by joule heating of single-layered semiconductors for sound localization Nano Lett. 18 3229-34 doi: 10.1021/acs.nanolett.8b00994
    [12]
    Kim S, Yoon J, Kim H-D, Choi S-J 2015 Carbon nanotube synaptic transistor network for pattern recognition ACS Appl. Mater. Interfaces 7 25479-86 doi: 10.1021/acsami.5b08541
    [13]
    Sun L, Wang Z, Jiang J, Kim Y, Joo B, Zheng S, Lee S, Yu W J, Kong B-S, Yang H 2021 In-sensor reservoir computing for language learning via two-dimensional memristors Sci. Adv. 7 eabg1455 doi: 10.1126/sciadv.abg1455
    [14]
    Mennel L, Symonowicz J, Wachter S, Polyushkin D K, Molina-Mendoza A J, Mueller T 2020 Ultrafast machine vision with 2D material neural network image sensors Nature 579 62-66 doi: 10.1038/s41586-020-2038-x
    [15]
    Liao F, Zhou F, Chai Y 2021 Neuromorphic vision sensors: principle, progress and perspectives J. Semicond. 42 013105 doi: 10.1088/1674-4926/42/1/013105
    [16]
    Gollisch T, Meister M 2010 Eye smarter than scientists believed: neural computations in circuits of the retina Neuron 65 150-64 doi: 10.1016/j.neuron.2009.12.009
    [17]
    Wang G, Wang R, Kong W, Zhang J 2018 Simulation of retinal ganglion cell response using fast independent component analysis Cogn. Neurodyn. 12 615-24 doi: 10.1007/s11571-018-9490-4
    [18]
    Mead C 1990 Neuromorphic electronic systems Proc. IEEE 78 1629-36 doi: 10.1109/5.58356
    [19]
    Yang R, Huang H M, Guo X 2019 Memristive synapses and neurons for bioinspired computing Adv. Electron. Mater. 5 1900287 doi: 10.1002/aelm.201900287
    [20]
    Sun W, Gao B, Chi M, Xia Q, Yang J J, Qian H, Wu H 2019 Understanding memristive switching via in situ characterization and device modeling Nat. Commun. 10 3453 doi: 10.1038/s41467-019-11411-6
    [21]
    Tan H, Liu G, Zhu X, Yang H, Chen B, Chen X, Shang J, Lu W D, Wu Y, Li R W 2015 An optoelectronic resistive switching memory with integrated demodulating and arithmetic functions Adv. Mater. 27 2797-803 doi: 10.1002/adma.201500039
    [22]
    Tan H, Liu G, Yang H, Yi X, Pan L, Shang J, Long S, Liu M, Wu Y, Li R-W 2017 Light-gated memristor with integrated logic and memory functions ACS Nano 11 11298-305 doi: 10.1021/acsnano.7b05762
    [23]
    Fang L, Dai S, Zhao Y, Liu D, Huang J 2020 Lightstimulated artificial synapses based on 2D organic fieldeffect transistors Adv. Electron. Mater. 6 1901217 doi: 10.1002/aelm.201901217
    [24]
    Zhou F, Liu Y, Shen X, Wang M, Yuan F, Chai Y 2018 Lowvoltage, optoelectronic CH3NH3PbI3-xClx memory with integrated sensing and logic operations Adv. Funct. Mater. 28 1800080 doi: 10.1002/adfm.201800080
    [25]
    Nau S, Wolf C, Sax S, ListKratochvil E J 2015 Organic nonvolatile resistive photoswitches for flexible image detector arrays Adv. Mater. 27 1048-52 doi: 10.1002/adma.201403295
    [26]
    Zhu X, Lee J, Lu W D 2017 Iodine vacancy redistribution in organic-inorganic halide perovskite films and resistive switching effects Adv. Mater. 29 1700527 doi: 10.1002/adma.201700527
    [27]
    Burr G W, Shelby R M, Sidler S, di Nolfo C, Jang J, Boybat I, Shenoy R S, Narayanan P, Virwani K, Giacometti E U 2015 Experimental demonstration and tolerancing of a large-scale neural network (165 000 synapses) using phase-change memory as the synaptic weight element IEEE Trans. Electron Devices 62 3498-507 doi: 10.1109/TED.2015.2439635
    [28]
    Tuma T, Pantazi A, Le Gallo M, Sebastian A, Eleftheriou E 2016 Stochastic phase-change neurons Nat. Nanotechnol. 11 693-9 doi: 10.1038/nnano.2016.70
    [29]
    Pantazi A, Woniak S, Tuma T, Eleftheriou E 2016 All-memristive neuromorphic computing with level-tuned neurons Nanotechnology 27 355205 doi: 10.1088/0957-4484/27/35/355205
    [30]
    Hong S-H, Jeong J-H, Kim K-I, Lee H 2011 High density phase change data on flexible substrates by thermal curing type nanoimprint lithography Microelectron. Eng. 88 2013-6 doi: 10.1016/j.mee.2011.01.057
    [31]
    Mun B H, You B K, Yang S R, Yoo H G, Kim J M, Park W I, Yin Y, Byun M, Jung Y S, Lee K J 2015 Flexible one diode-one phase change memory array enabled by block copolymer self-assembly ACS Nano 9 4120-8 doi: 10.1021/acsnano.5b00230
    [32]
    Ohno T, Hasegawa T, Tsuruoka T, Terabe K, Gimzewski J K, Aono M 2011 Short-term plasticity and long-term potentiation mimicked in single inorganic synapses Nat. Mater. 10 591-5 doi: 10.1038/nmat3054
    [33]
    Nayak A, Ohno T, Tsuruoka T, Terabe K, Hasegawa T, Gimzewski J K, Aono M 2012 Controlling the synaptic plasticity of a Cu2S gaptype atomic switch Adv. Funct. Mater. 22 3606-13 doi: 10.1002/adfm.201200640
    [34]
    Ishiwara H I H 1993 Proposal of adaptive-learning neuron circuits with ferroelectric analog-memory weights Jpn. J. Appl. Phys. 32 442 doi: 10.1143/JJAP.32.442
    [35]
    Tian B, Liu L, Yan M, Wang J, Zhao Q, Zhong N, Xiang P, Sun L, Peng H, Shen H 2019 A robust artificial synapse based on organic ferroelectric polymer Adv. Electron. Mater. 5 1800600 doi: 10.1002/aelm.201800600
    [36]
    Tang B, Hussain S, Xu R, Cheng Z, Liao J, Chen Q 2020 Novel type of synaptic transistors based on a ferroelectric semiconductor channel ACS Appl. Mater. Interfaces 12 24920-8 doi: 10.1021/acsami.9b23595
    [37]
    Wang X, Zong Y, Liu D, Yang J, Wei Z 2023 Advanced optoelectronic devices for neuromorphic analog based on lowdimensional semiconductors Adv. Funct. Mater. 33 2213894 doi: 10.1002/adfm.202213894
    [38]
    Han X, Xu Z, Wu W, Liu X, Yan P, Pan C 2020 Recent progress in optoelectronic synapses for artificial visualperception system Small Struct. 1 2000029 doi: 10.1002/sstr.202000029
    [39]
    Liu K, Zhang T, Dang B, Bao L, Xu L, Cheng C, Yang Z, Huang R, Yang Y 2022 An optoelectronic synapse based on -In2Se3 with controllable temporal dynamics for multimode and multiscale reservoir computing Nat. Electron. 5 761-73 doi: 10.1038/s41928-022-00847-2
    [40]
    Islam M M, et al 2022 Multiwavelength optoelectronic synapse with 2D materials for mixed-color pattern recognition ACS Nano 16 10188-98 doi: 10.1021/acsnano.2c01035
    [41]
    Song J K, et al 2022 Stretchable colour-sensitive quantum dot nanocomposites for shape-tunable multiplexed phototransistor arrays Nat. Nanotechnol. 17 849-56 doi: 10.1038/s41565-022-01160-x
    [42]
    Pi L, et al 2022 Broadband convolutional processing using band-alignment-tunable heterostructures Nat. Electron. 5 248-54 doi: 10.1038/s41928-022-00747-5
    [43]
    Huang X, Li Q, Shi W, Liu K, Zhang Y, Liu Y, Wei X, Zhao Z, Guo Y, Liu Y 2021 Dual-mode learning of ambipolar synaptic phototransistor based on 2D perovskite/organic heterojunction for flexible color recognizable visual system Small 17 e2102820 doi: 10.1002/smll.202102820
    [44]
    Seo S, et al 2018 Artificial optic-neural synapse for colored and color-mixed pattern recognition Nat. Commun. 9 5106 doi: 10.1038/s41467-018-07572-5
    [45]
    Li Y, Wang J, Yang Q, Shen G 2022 Flexible artificial optoelectronic synapse based on leadfree metal halide nanocrystals for neuromorphic computing and color recognition Adv. Sci. 9 2202123 doi: 10.1002/advs.202202123
    [46]
    Cai Y, Wang F, Wang X, Li S, Wang Y, Yang J, Yan T, Zhan X, Wang F, Cheng R 2023 Broadband visual adaption and image recognition in a monolithic neuromorphic machine vision system Adv. Funct. Mater. 33 2212917 doi: 10.1002/adfm.202212917
    [47]
    Meng Y, Li F, Lan C, Bu X, Kang X, Wei R, Yip S, Li D, Wang F, Takahashi T 2020 Artificial visual systems enabled by quasi-two-dimensional electron gases in oxide superlattice nanowires Sci. Adv. 6 eabc6389 doi: 10.1126/sciadv.abc6389
    [48]
    Xie D, Jiang J, Hu W, He Y, Yang J, He J, Gao Y, Wan Q 2018 Coplanar multigate MoS2 electric-double-layer transistors for neuromorphic visual recognition ACS Appl. Mater. Interfaces 10 25943-8 doi: 10.1021/acsami.8b07234
    [49]
    Kumar M, Lim J, Kim S, Seo H 2020 Environment-adaptable photonic-electronic-coupled neuromorphic angular visual system ACS Nano 14 14108-17 doi: 10.1021/acsnano.0c06874
    [50]
    Gkoupidenis P, Koutsouras D A, Lonjaret T, Fairfield J A, Malliaras G G 2016 Orientation selectivity in a multi-gated organic electrochemical transistor Sci. Rep. 6 27007 doi: 10.1038/srep27007
    [51]
    Shan X, Zhao C, Wang X, Wang Z, Fu S, Lin Y, Zeng T, Zhao X, Xu H, Zhang X 2022 Plasmonic optoelectronic memristor enabling fully lightmodulated synaptic plasticity for neuromorphic vision Adv. Sci. 9 2104632 doi: 10.1002/advs.202104632
    [52]
    Zhou F, et al 2019 Optoelectronic resistive random access memory for neuromorphic vision sensors Nat. Nanotechnol. 14 776-82 doi: 10.1038/s41565-019-0501-3
    [53]
    Dodda A, et al 2022 Active pixel sensor matrix based on monolayer MoS2 phototransistor array Nat. Mater. 21 1379-87 doi: 10.1038/s41563-022-01398-9
    [54]
    Ma S, Wu T, Chen X, Wang Y, Ma J, Chen H, Riaud A, Wan J, Xu Z, Chen L 2022 A 619-pixel machine vision enhancement chip based on two-dimensional semiconductors Sci. Adv. 8 eabn9328 doi: 10.1126/sciadv.abn9328
    [55]
    Wang C-Y, Liang S-J, Wang S, Wang P, Li Z A, Wang Z, Gao A, Pan C, Liu C, Liu J 2020 Gate-tunable van der Waals heterostructure for reconfigurable neural network vision sensor Sci. Adv. 6 eaba6173 doi: 10.1126/sciadv.aba6173
    [56]
    Sun Y, Li Q, Zhu X, Liao C, Wang Y, Li Z, Liu S, Xu H, Wang W 2023 Insensor reservoir computing based on optoelectronic synapse Adv. Intell. Syst. 5 2200196 doi: 10.1002/aisy.202200196
    [57]
    Lao J, Yan M, Tian B, Jiang C, Luo C, Xie Z, Zhu Q, Bao Z, Zhong N, Tang X 2022 Ultralowpower machine vision with selfpowered sensor reservoir Adv. Sci. 9 2106092 doi: 10.1002/advs.202106092
    [58]
    Chen G, Yu X, Gao C, Dai Y, Hao Y, Yu R, Chen H, Guo T 2023 Temperature-controlled multisensory neuromorphic devices for artificial visual dynamic capture enhancement Nano Res. 16 7661-70 doi: 10.1007/s12274-023-5420-1
    [59]
    Zhang Z, Wang S, Liu C, Xie R, Hu W, Zhou P 2022 All-in-one two-dimensional retinomorphic hardware device for motion detection and recognition Nat. Nanotechnol. 17 27-32 doi: 10.1038/s41565-021-01003-1
    [60]
    Wang S, et al 2021 Networking retinomorphic sensor with memristive crossbar for brain-inspired visual perception Natl Sci. Rev. 8 nwaa172 doi: 10.1093/nsr/nwaa172
    [61]
    Chen J, Zhou Z, Kim B J, Zhou Y, Wang Z, Wan T, Yan J, Kang J, Ahn J-H, Chai Y 2023 Optoelectronic graded neurons for bioinspired in-sensor motion perception Nat. Nanotechnol. 18 1-7 doi: 10.1038/s41565-022-01262-6
    [62]
    Kwon S M, Cho S W, Kim M, Heo J S, Kim Y H, Park S K 2019 Environment-adaptable artificial visual perception behaviors using a light-adjustable optoelectronic neuromorphic device array Adv. Mater. 31 e1906433 doi: 10.1002/adma.201906433
    [63]
    Meng J, Wang T, Zhu H, Ji L, Bao W, Zhou P, Chen L, Sun Q Q, Zhang D W 2022 Integrated in-sensor computing optoelectronic device for environment-adaptable artificial retina perception application Nano Lett. 22 81-89 doi: 10.1021/acs.nanolett.1c03240
    [64]
    Jin C, et al 2022 Artificial vision adaption mimicked by an optoelectrical In2O3 transistor array Nano Lett. 22 3372-9 doi: 10.1021/acs.nanolett.2c00599
    [65]
    Liao F, et al 2022 Bioinspired in-sensor visual adaptation for accurate perception Nat. Electron. 5 84-91 doi: 10.1038/s41928-022-00713-1
    [66]
    Hong S, Choi S H, Park J, Yoo H, Oh J Y, Hwang E, Yoon D H, Kim S 2020 Sensory adaptation and neuromorphic phototransistors based on CsPb(Br1-xIx3 perovskite and MoS2 hybrid structure ACS Nano 14 9796-806 doi: 10.1021/acsnano.0c01689
    [67]
    Xie D, Wei L, Xie M, Jiang L, Yang J, He J, Jiang J 2021 Photoelectric visual adaptation based on 0DCsPbBr3quantumdots/2DMoS2 mixeddimensional heterojunction transistor Adv. Funct. Mater. 31 2010655 doi: 10.1002/adfm.202010655
    [68]
    Thorpe S, Fize D, Marlot C 1996 Speed of processing in the human visual system Nature 381 520-2 doi: 10.1038/381520a0
    [69]
    Watamaniuk S N, Duchon A 1992 The human visual system averages speed information Vis. Res. 32 931-41 doi: 10.1016/0042-6989(92)90036-I
    [70]
    Wang Y, Zhu Y, Li Y, Zhang Y, Yang D, Pi X 2022 Dualmodal optoelectronic synaptic devices with versatile synaptic plasticity Adv. Funct. Mater. 32 2107973 doi: 10.1002/adfm.202107973
    [71]
    Sun Y, Ding Y, Xie D, Xu J, Sun M, Yang P, Zhang Y 2021 Optogeneticsinspired neuromorphic optoelectronic synaptic transistors with optically modulated plasticity Adv. Opt. Mater. 9 2002232 doi: 10.1002/adom.202002232
    [72]
    Pocock D C D 1981 Sight and knowledge Trans. Inst. Br. Geogr. 6 385-93 doi: 10.2307/621875
    [73]
    Grill-Spector K, Malach R 2004 The human visual cortex Annu. Rev. Neurosci. 27 649-77 doi: 10.1146/annurev.neuro.27.070203.144220
    [74]
    Abrmoff M D, Garvin M K, Sonka M 2010 Retinal imaging and image analysis IEEE Rev. Biomed. Eng. 3 169-208 doi: 10.1109/RBME.2010.2084567
    [75]
    Hageman G S, Johnson L V 1991 Structure, composition and function of the retinal interphotoreceptor matrix Prog. Retin. Res. 10 207-49 doi: 10.1016/0278-4327(91)90014-S
    [76]
    Masland R H 2001 The fundamental plan of the retina Nat. Neurosci. 4 877-86 doi: 10.1038/nn0901-877
    [77]
    Euler T, Haverkamp S, Schubert T, Baden T 2014 Retinal bipolar cells: elementary building blocks of vision Nat. Rev. Neurosci. 15 507-19 doi: 10.1038/nrn3783
    [78]
    Indiveri G, Douglas R 2000 Neuromorphic vision sensors Science 288 1189-90 doi: 10.1126/science.288.5469.1189
    [79]
    Barbour B, Brunel N, Hakim V, Nadal J-P 2007 What can we learn from synaptic weight distributions? Trends Neurosci. 30 622-9 doi: 10.1016/j.tins.2007.09.005
    [80]
    Royer S, Par D 2003 Conservation of total synaptic weight through balanced synaptic depression and potentiation Nature 422 518-22 doi: 10.1038/nature01530
    [81]
    Wang T-Y, Meng J-L, Li Q-X, He Z-Y, Zhu H, Ji L, Sun Q-Q, Chen L, Zhang D W 2021 Reconfigurable optoelectronic memristor for in-sensor computing applications Nano Energy 89 106291 doi: 10.1016/j.nanoen.2021.106291
    [82]
    Hou Y X, et al 2021 Large-scale and flexible optical synapses for neuromorphic computing and integrated visible information sensing memory processing ACS Nano 15 1497-508 doi: 10.1021/acsnano.0c08921
    [83]
    Wang S, et al 2022 Nonvolatile van der Waals heterostructure phototransistor for encrypted optoelectronic logic circuit ACS Nano 16 4528-35 doi: 10.1021/acsnano.1c10978
    [84]
    Hong S, Cho H, Kang B H, Park K, Akinwande D, Kim H J, Kim S 2021 Neuromorphic active pixel image sensor array for visual memory ACS Nano 15 15362-70 doi: 10.1021/acsnano.1c06758
    [85]
    Bian J, Cao Z, Zhou P 2021 Neuromorphic computing: devices, hardware, and system application facilitated by two-dimensional materials Appl. Phys. Rev. 8 041313 doi: 10.1063/5.0067352
    [86]
    Caporale N, Dan Y 2008 Spike timing-dependent plasticity: a Hebbian learning rule Annu. Rev. Neurosci. 31 25-46 doi: 10.1146/annurev.neuro.31.060407.125639
    [87]
    Munakata Y, Pfaffly J 2004 Hebbian learning and development Dev. Sci. 7 141-8 doi: 10.1111/j.1467-7687.2004.00331.x
    [88]
    Lei S, Wen F, Li B, Wang Q, Huang Y, Gong Y, He Y, Dong P, Bellah J, George A 2015 Optoelectronic memory using two-dimensional materials Nano Lett. 15 259-65 doi: 10.1021/nl503505f
    [89]
    Star A, Lu Y, Bradley K, Grner G 2004 Nanotube optoelectronic memory devices Nano Lett. 4 1587-91 doi: 10.1021/nl049337f
    [90]
    Borisenko K B, Shanmugam J, Williams B A, Ewart P, Gholipour B, Hewak D W, Hussain R, Jvorfi T, Siligardi G, Kirkland A I 2015 Photo-induced optical activity in phase-change memory materials Sci. Rep. 5 1-5 doi: 10.1038/srep08770
    [91]
    Wang S, Dong X, Xiong Y, Sha J, Cao Y, Wu Y, Li W, Yin Y, Wang Y 2021 CsFAMAPbIBr photoelectric memristor based on ionmigration induced memristive behavior Adv. Electron. Mater. 7 2100014 doi: 10.1002/aelm.202100014
    [92]
    Park H L, Kim H, Lim D, Zhou H, Kim Y H, Lee Y, Park S, Lee T W 2020 Retinainspired carbon nitridebased photonic synapses for selective detection of UV light Adv. Mater. 32 1906899 doi: 10.1002/adma.201906899
    [93]
    Yang Q, Luo Z-D, Zhang D, Zhang M, Gan X, Seidel J, Liu Y, Hao Y, Han G 2022 Controlled optoelectronic response in van der Waals heterostructures for in-sensor computing Adv. Funct. Mater. 32 202207290 doi: 10.1002/adfm.202207290
    [94]
    Zhang E, Wang W, Zhang C, Jin Y, Zhu G, Sun Q, Zhang D W, Zhou P, Xiu F 2015 Tunable charge-trap memory based on few-layer MoS2 ACS Nano 9 612-9 doi: 10.1021/nn5059419
    [95]
    Lee J-S, Cho J, Lee C, Kim I, Park J, Kim Y-M, Shin H, Lee J, Caruso F 2007 Layer-by-layer assembled charge-trap memory devices with adjustable electronic properties Nat. Nanotechnol. 2 790-5 doi: 10.1038/nnano.2007.380
    [96]
    Han T H, Tan S, Xue J, Meng L, Lee J W, Yang Y 2019 Interface and defect engineering for metal halide perovskite optoelectronic devices Adv. Mater. 31 1803515 doi: 10.1002/adma.201803515
    [97]
    Sun Y, Ding Y, Xie D 2021 Mixeddimensional van der Waals heterostructures enabled optoelectronic synaptic devices for neuromorphic applications Adv. Funct. Mater. 31 2105625 doi: 10.1002/adfm.202105625
    [98]
    Ni Y, Zhang S, Sun L, Liu L, Wei H, Xu Z, Xu W, Xu W 2021 A low-dimensional hybrid p-i-n heterojunction neuromorphic transistor with ultra-high UV sensitivity and immediate switchable plasticity Appl. Mater. Today 25 101223 doi: 10.1016/j.apmt.2021.101223
    [99]
    Mu H, Yu W, Yuan J, Lin S, Zhang G 2022 Interface and surface engineering of black phosphorus: a review for optoelectronic and photonic applications Mater. Futures 1 012301 doi: 10.1088/2752-5724/ac49e3
    [100]
    Cho S W, Kwon S M, Kim Y-H, Park S K 2021 Recent progress in transistorbased optoelectronic synapses: from neuromorphic computing to artificial sensory system Adv. Intell. Syst. 3 2000162 doi: 10.1002/aisy.202000162
    [101]
    Ma J W, Lee W-J, Bae J M, Jeong K-S, Oh S H, Kim J H, Kim S-H, Seo J-H, Ahn J-P, Kim H 2015 Carrier mobility enhancement of tensile strained Si and SiGe nanowires via surface defect engineering Nano Lett. 15 7204-10 doi: 10.1021/acs.nanolett.5b01634
    [102]
    Abebe B, Murthy H A, Amare E 2020 Enhancing the photocatalytic efficiency of ZnO: defects, heterojunction, and optimization Environ. Nanotechnol. Monitor. Manage. 14 100336 doi: 10.1016/j.enmm.2020.100336
    [103]
    Panda D, Tseng T-Y 2013 One-dimensional ZnO nanostructures: fabrication, optoelectronic properties, and device applications J. Mater. Sci. 48 6849-77 doi: 10.1007/s10853-013-7541-0
    [104]
    St Laurent B, Dey D, Yu L, Hollen S 2021 Atomic-scale investigation of oxidation at the black phosphorus surface ACS Appl. Electron. Mater. 3 4066-72 doi: 10.1021/acsaelm.1c00558
    [105]
    Ahmed T, Kuriakose S, Abbas S, Spencer M J, Rahman M A, Tahir M, Lu Y, Sonar P, Bansal V, Bhaskaran M 2019 Multifunctional optoelectronics via harnessing defects in layered black phosphorus Adv. Funct. Mater. 29 1901991 doi: 10.1002/adfm.201901991
    [106]
    Schwidtal K 1978 SiO2 surface defect centers studied by AES Surf. Sci. 77 523-36 doi: 10.1016/0039-6028(78)90138-3
    [107]
    Farronato M, Mannocci P, Melegari M, Ricci S, Compagnoni C M, Ielmini D 2022 Reservoir computing with chargetrap memory based on a MoS2 channel for neuromorphic engineering Adv. Mater. 34 2205381 doi: 10.1002/adma.202205381
    [108]
    Illarionov Y Y, Rzepa G, Waltl M, Knobloch T, Grill A, Furchi M M, Mueller T, Grasser T 2016 The role of charge trapping in MoS2/SiO2 and MoS2/hBN field-effect transistors 2D Mater. 3 035004 doi: 10.1088/2053-1583/3/3/035004
    [109]
    Guo Y, Wei X, Shu J, Liu B, Yin J, Guan C, Han Y, Gao S, Chen Q 2015 Charge trapping at the MoS2-SiO2 interface and its effects on the characteristics of MoS2 metal-oxide-semiconductor field effect transistors Appl. Phys. Lett. 106 103109 doi: 10.1063/1.4914968
    [110]
    Padgaonkar S, Olding J N, Lauhon L J, Hersam M C, Weiss E A 2020 Emergent optoelectronic properties of mixed-dimensional heterojunctions Acc. Chem. Res. 53 763-72 doi: 10.1021/acs.accounts.9b00581
    [111]
    Shim J, Kang D-H, Kim Y, Kum H, Kong W, Bae S-H, Almansouri I, Lee K, Park J-H, Kim J 2018 Recent progress in van der Waals (vdW) heterojunction-based electronic and optoelectronic devices Carbon 133 78-89 doi: 10.1016/j.carbon.2018.02.104
    [112]
    Lan S, Zhong J, Chen J, He W, He L, Yu R, Chen G, Chen H 2021 An optoelectronic synaptic transistor with efficient dual modulation by light illumination J. Mater. Chem. C 9 3412-20 doi: 10.1039/D0TC05738J
    [113]
    Wang S, Chen C, Yu Z, He Y, Chen X, Wan Q, Shi Y, Zhang D W, Zhou H, Wang X 2019 A MoS2/PTCDA hybrid heterojunction synapse with efficient photoelectric dual modulation and versatility Adv. Mater. 31 1806227 doi: 10.1002/adma.201806227
    [114]
    Gao S, Liu G, Yang H, Hu C, Chen Q, Gong G, Xue W, Yi X, Shang J, Li R-W 2019 An oxide Schottky junction artificial optoelectronic synapse ACS Nano 13 2634-42 doi: 10.1021/acsnano.9b00340
    [115]
    Allain A, Kang J, Banerjee K, Kis A 2015 Electrical contacts to two-dimensional semiconductors Nat. Mater. 14 1195-205 doi: 10.1038/nmat4452
    [116]
    Schulman D S, Arnold A J, Das S 2018 Contact engineering for 2D materials and devices Chem. Soc. Rev. 47 3037-58 doi: 10.1039/C7CS00828G
    [117]
    Wang H, Jiang S, Hao Z, Xu X, Pei M, Guo J, Wang Q, Li Y, Chen J, Xu J 2022 Molecular-layer-defined asymmetric Schottky contacts in organic planar diodes for self-powered optoelectronic synapses J. Phys. Chem. Lett. 13 2338-47 doi: 10.1021/acs.jpclett.2c00176
    [118]
    Yang C, Qian J, Jiang S, Wang H, Wang Q, Wan Q, Chan P K L, Shi Y, Li Y 2020 An optically modulated organic Schottkybarrier planardiodebased artificial synapse Adv. Opt. Mater. 8 2000153 doi: 10.1002/adom.202000153
    [119]
    Liang K, Ren H, Wang Y, Li D, Tang Y, Song C, Chen Y, Li F, Wang H, Zhu B 2022 Tunable plasticity in printed optoelectronic synaptic transistors by contact engineering IEEE Electron Device Lett. 43 882-5 doi: 10.1109/LED.2022.3166507
    [120]
    Pham P V, Bodepudi S C, Shehzad K, Liu Y, Xu Y, Yu B, Duan X 2022 2D heterostructures for ubiquitous electronics and optoelectronics: principles, opportunities, and challenges Chem. Rev. 122 6514-613 doi: 10.1021/acs.chemrev.1c00735
    [121]
    Liao W, Huang Y, Wang H, Zhang H 2019 Van der Waals heterostructures for optoelectronics: progress and prospects Appl. Mater. Today 16 435-55 doi: 10.1016/j.apmt.2019.07.004
    [122]
    Zhang F, Li C, Li Z, Dong L, Zhao J 2023 Recent progress in three-terminal artificial synapses based on 2D materials: from mechanisms to applications Microsyst. Nanoeng. 9 16 doi: 10.1038/s41378-023-00487-2
    [123]
    Duan H, Liang L, Wu Z, Zhang H, Huang L, Cao H 2021 IGZO/CsPbBr3-nanoparticles/IGZO neuromorphic phototransistors and their optoelectronic coupling applications ACS Appl. Mater. Interfaces 13 30165-73 doi: 10.1021/acsami.1c05396
    [124]
    Lv Z, Chen M, Qian F, Roy V A, Ye W, She D, Wang Y, Xu Z X, Zhou Y, Han S T 2019 Mimicking neuroplasticity in a hybrid biopolymer transistor by dual modes modulation Adv. Funct. Mater. 29 1902374 doi: 10.1002/adfm.201902374
    [125]
    Han C, Han X, Han J, He M, Peng S, Zhang C, Liu X, Gou J, Wang J 2022 Lightstimulated synaptic transistor with high PPF feature for artificial visual perception system application Adv. Funct. Mater. 32 2113053 doi: 10.1002/adfm.202113053
    [126]
    Wang Y, Lv Z, Chen J, Wang Z, Zhou Y, Zhou L, Chen X, Han S T 2018 Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing Adv. Mater. 30 e1802883 doi: 10.1002/adma.201802883
    [127]
    Tan H, et al 2018 Broadband optoelectronic synaptic devices based on silicon nanocrystals for neuromorphic computing Nano Energy 52 422-30 doi: 10.1016/j.nanoen.2018.08.018
    [128]
    Yin L, Han C, Zhang Q, Ni Z, Zhao S, Wang K, Li D, Xu M, Wu H, Pi X 2019 Synaptic silicon-nanocrystal phototransistors for neuromorphic computing Nano Energy 63 103859 doi: 10.1016/j.nanoen.2019.103859
    [129]
    Shao L, et al 2019 Optoelectronic properties of printed photogating carbon nanotube thin film transistors and their application for light-stimulated neuromorphic devices ACS Appl. Mater. Interfaces 11 12161-9 doi: 10.1021/acsami.9b02086
    [130]
    Pilarczyk K, Podborska A, Lis M, Kawa M, Migdal D, Szaciowski K 2016 Synaptic behavior in an optoelectronic device based on semiconductornanotube hybrid Adv. Electron. Mater. 2 1500471 doi: 10.1002/aelm.201500471
    [131]
    Chen Y, Qiu W, Wang X, Liu W, Wang J, Dai G, Yuan Y, Gao Y, Sun J 2019 Solar-blind SnO2 nanowire photo-synapses for associative learning and coincidence detection Nano Energy 62 393-400 doi: 10.1016/j.nanoen.2019.05.064
    [132]
    Li B, Wei W, Yan X, Zhang X, Liu P, Luo Y, Zheng J, Lu Q, Lin Q, Ren X 2018 Mimicking synaptic functionality with an InAs nanowire phototransistor Nanotechnology 29 464004 doi: 10.1088/1361-6528/aadf63
    [133]
    Xie P, Huang Y, Wang W, Meng Y, Lai Z, Wang F, Yip S, Bu X, Wang W, Li D 2022 Ferroelectric P (VDF-TrFE) wrapped InGaAs nanowires for ultralow-power artificial synapses Nano Energy 91 106654 doi: 10.1016/j.nanoen.2021.106654
    [134]
    Li X, Yu B, Wang B, Bi R, Li H, Tu K, Chen G, Li Z, Huang R, Li M 2021 Complementary photo-synapses based on light-stimulated porphyrin-coated silicon nanowires field-effect transistors (LPSNFET) Small 17 e2101434 doi: 10.1002/smll.202101434
    [135]
    Abnavi A, Ahmadi R, Hasani A, Fawzy M, Mohammadzadeh M R, de Silva T, Yu N, Adachi M M 2021 Free-standing multilayer molybdenum disulfide memristor for brain-inspired neuromorphic applications ACS Appl. Mater. Interfaces 13 45843-53 doi: 10.1021/acsami.1c11359
    [136]
    Luo Z-D, Xia X, Yang M-M, Wilson N R, Gruverman A, Alexe M 2019 Artificial optoelectronic synapses based on ferroelectric field-effect enabled 2D transition metal dichalcogenide memristive transistors ACS Nano 14 746-54 doi: 10.1021/acsnano.9b07687
    [137]
    Li J, Li N, Wang Q, Wei Z, He C, Shang D, Guo Y, Zhang W, Tang J, Liu J 2022 Highly stretchable MoS2based transistors with optosynaptic functionalities Adv. Electron. Mater. 8 2200238 doi: 10.1002/aelm.202200238
    [138]
    John R A, Liu F, Chien N A, Kulkarni M R, Zhu C, Fu Q, Basu A, Liu Z, Mathews N 2018 Synergistic gating of electro-iono-photoactive 2D chalcogenide neuristors: coexistence of Hebbian and homeostatic synaptic metaplasticity Adv. Mater. 30 e1800220 doi: 10.1002/adma.201800220
    [139]
    Seo S, et al 2021 An optogenetics-inspired flexible van der Waals optoelectronic synapse and its application to a convolutional neural network Adv. Mater. 33 e2102980 doi: 10.1002/adma.202102980
    [140]
    Hu Y, et al 2021 Ultralow power optical synapses based on MoS2 layers by indium-induced surface charge doping for biomimetic eyes Adv. Mater. 33 e2104960 doi: 10.1002/adma.202104960
    [141]
    Wang X, Wang B, Zhang Q, Sun Y, Wang E, Luo H, Wu Y, Gu L, Li H, Liu K 2021 Grain-boundary engineering of monolayer MoS2 for energy-efficient lateral synaptic devices Adv. Mater. 33 e2102435 doi: 10.1002/adma.202102435
    [142]
    Wang X, et al 2021 Flexo-photoelectronic effect in n-type/p-type two-dimensional semiconductors and a deriving light-stimulated artificial synapse Mater. Horiz. 8 1985-97 doi: 10.1039/D1MH00024A
    [143]
    Luo Z, et al 2021 Plasmonically engineered light-matter interactions in Au-nanoparticle/MoS2 heterostructures for artificial optoelectronic synapse Nano Res. 15 3539-47 doi: 10.1007/s12274-021-3875-0
    [144]
    Hao D, Zhang J, Dai S, Zhang J, Huang J 2020 Perovskite/organic semiconductor-based photonic synaptic transistor for artificial visual system ACS Appl. Mater. Interfaces 12 39487-95 doi: 10.1021/acsami.0c10851
    [145]
    Pei Y, Yan L, Wu Z, Lu J, Zhao J, Chen J, Liu Q, Yan X 2021 Artificial visual perception nervous system based on low-dimensional material photoelectric memristors ACS Nano 15 17319-26 doi: 10.1021/acsnano.1c04676
    [146]
    Liang K, et al 2022 Fully printed optoelectronic synaptic transistors based on quantum dot-metal oxide semiconductor heterojunctions ACS Nano 16 8651-61 doi: 10.1021/acsnano.2c00439
    [147]
    Guo F, Song M, Wong M C, Ding R, Io W F, Pang S Y, Jie W, Hao J 2022 Multifunctional optoelectronic synapse based on ferroelectric van der Waals heterostructure for emulating the entire human visual system Adv. Funct. Mater. 32 2108014 doi: 10.1002/adfm.202108014
    [148]
    Li X, Li S, Tang B, Liao J, Chen Q 2022 A visSWIR photonic synapse with low power consumption based on WSe2/In2Se3 ferroelectric heterostructure Adv. Electron. Mater. 8 2200343 doi: 10.1002/aelm.202200343
    [149]
    Wang W, Gao S, Li Y, Yue W, Kan H, Zhang C, Lou Z, Wang L, Shen G 2021 Artificial optoelectronic synapses based on TiNxO2-x/MoS2 heterojunction for neuromorphic computing and visual system Adv. Funct. Mater. 31 2101201 doi: 10.1002/adfm.202101201
    [150]
    Sun Y, Li M, Ding Y, Wang H, Wang H, Chen Z, Xie D 2022 Programmable vanderWaals heterostructureenabled optoelectronic synaptic floatinggate transistors with ultralow energy consumption InfoMat 4 e12317 doi: 10.1002/inf2.12317
    [151]
    Wang Y, Yang J, Wang Z, Chen J, Yang Q, Lv Z, Zhou Y, Zhai Y, Li Z, Han S T 2019 Near-infrared annihilation of conductive filaments in quasiplane MoSe2/Bi2Se3 nanosheets for mimicking heterosynaptic plasticity Small 15 e1805431 doi: 10.1002/smll.201805431
    [152]
    Zhou J, et al 2022 Multi-stimuli-responsive synapse based on vertical van der Waals heterostructures ACS Appl. Mater. Interfaces 14 35917-26 doi: 10.1021/acsami.2c08335
    [153]
    Hu Y, et al 2022 Flexible optical synapses based on In2Se3/MoS2 heterojunctions for artificial vision systems in the near-infrared range ACS Appl. Mater. Interfaces 14 55839-49 doi: 10.1021/acsami.2c19097
    [154]
    Gou G, Sun J, Qian C, He Y, Kong L-A, Fu Y, Dai G, Yang J, Gao Y 2016 Artificial synapses based on biopolymer electrolyte-coupled SnO2 nanowire transistors J. Mater. Chem. C 4 11110-7 doi: 10.1039/C6TC03731C
    [155]
    Zhou W, Yang R, He H-K, Huang H-M, Xiong J, Guo X 2018 Optically modulated electric synapses realized with memristors based on ZnO nanorods Appl. Phys. Lett. 113 061107 doi: 10.1063/1.5045643
    [156]
    Hu G, An H, Xi J, Lu J, Hua Q, Peng Z 2021 A ZnO micro/nanowire-based photonic synapse with piezo-phototronic modulation Nano Energy 89 106282 doi: 10.1016/j.nanoen.2021.106282
    [157]
    Shen C, Gao X, Chen C, Ren S, Xu J-L, Xia Y-D, Wang S-D 2021 ZnO nanowire optoelectronic synapse for neuromorphic computing Nanotechnology 33 065205 doi: 10.1088/1361-6528/ac3687
    [158]
    O’kelly C J, Fairfield J A, Mccloskey D, Manning H G, Donegan J F, Boland J J 2016 Associative enhancement of time correlated response to heterogeneous stimuli in a neuromorphic nanowire device Adv. Electron. Mater. 2 1500458 doi: 10.1002/aelm.201500458
    [159]
    Ahmed T, Tahir M, Low M X, Ren Y, Tawfik S A, Mayes E L, Kuriakose S, Nawaz S, Spencer M J, Chen H 2021 Fully lightcontrolled memory and neuromorphic computation in layered black phosphorus Adv. Mater. 33 2004207 doi: 10.1002/adma.202004207
    [160]
    Ahmed T, Kuriakose S, Mayes E L, Ramanathan R, Bansal V, Bhaskaran M, Sriram S, Walia S 2019 Optically stimulated artificial synapse based on layered black phosphorus Small 15 1900966 doi: 10.1002/smll.201900966
    [161]
    Lv Z, Wang Y, Chen J, Wang J, Zhou Y, Han S-T 2020 Semiconductor quantum dots for memories and neuromorphic computing systems Chem. Rev. 120 3941-4006 doi: 10.1021/acs.chemrev.9b00730
    [162]
    Garca de Arquer F P, Talapin D V, Klimov V I, Arakawa Y, Bayer M, Sargent E H 2021 Semiconductor quantum dots: technological progress and future challenges Science 373 eaaz8541 doi: 10.1126/science.aaz8541
    [163]
    Gidwani B, Sahu V, Shukla S S, Pandey R, Joshi V, Jain V K, Vyas A 2021 Quantum dots: prospectives, toxicity, advances and applications J. Drug Deliv. Sci. Technol. 61 102308 doi: 10.1016/j.jddst.2020.102308
    [164]
    Huang W, Hang P, Wang Y, Wang K, Han S, Chen Z, Peng W, Zhu Y, Xu M, Zhang Y 2020 Zero-power optoelectronic synaptic devices Nano Energy 73 104790 doi: 10.1016/j.nanoen.2020.104790
    [165]
    Schroeder V, Savagatrup S, He M, Lin S, Swager T M 2018 Carbon nanotube chemical sensors Chem. Rev. 119 599-663 doi: 10.1021/acs.chemrev.8b00340
    [166]
    Chen X, Chen B, Jiang B, Gao T, Shang G, Han S T, Kuo C C, Roy V A, Zhou Y 2023 Nanowires for UV-vis-IR optoelectronic synaptic devices Adv. Funct. Mater. 33 2208807 doi: 10.1002/adfm.202208807
    [167]
    Zhang D, Zhang Q, Zhu Y, Poddar S, Zhang Y, Gu L, Zeng H, Fan Z 2022 Metal halide perovskite nanowires: synthesis, integration, properties, and applications in optoelectronics Adv. Energy Mater. 12 2201735 doi: 10.1002/aenm.202201735
    [168]
    Chen X, Chen B, Zhao P, Roy V A, Han S-T, Zhou Y 2023 Nanowires based synaptic devices for neuromorphic computing Mater. Futures 2 023501 doi: 10.1088/2752-5724/acc678
    [169]
    Kadantsev E S, Hawrylak P 2012 Electronic structure of a single MoS2 monolayer Solid State Commun. 152 909-13 doi: 10.1016/j.ssc.2012.02.005
    [170]
    Liu L, Sun Y, Huang X, Liu C, Tang Z, Zeng S, Zhang D W, Deng S, Zhou P 2022 Ultrafast flash memory with large self-rectifying ratio based on atomically thin MoS2-channel transistor Mater. Futures 1 025301 doi: 10.1088/2752-5724/ac7067
    [171]
    Li C, Li L, Zhang F, Li Z, Zhu W, Dong L, Zhao J 2023 High-performance C60 coupled ferroelectric enhanced MoS2 nonvolatile memory ACS Appl. Mater. Interfaces 15 16910-7 doi: 10.1021/acsami.3c02610
    [172]
    Novoselov K S, Mishchenko A, Carvalho O A, Castro Neto A 2016 2D materials and van der Waals heterostructures Science 353 aac9439 doi: 10.1126/science.aac9439
  • 加载中

Catalog

    Figures(8)  / Tables(1)

    Article Metrics

    Article Views(823) PDF downloads(197)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return