Volume 2 Issue 3
August  2023
Turn off MathJax
Article Contents
Leire Meabe, Itziar Aldalur, Simon Lindberg, Mikel Arrese-Igor, Michel Armand, Maria Martinez-Ibaez, Heng Zhang. Solid-state electrolytes for safe rechargeable lithium metal batteries: a strategic view[J]. Materials Futures, 2023, 2(3): 033501. doi: 10.1088/2752-5724/accdf3
Citation: Leire Meabe, Itziar Aldalur, Simon Lindberg, Mikel Arrese-Igor, Michel Armand, Maria Martinez-Ibaez, Heng Zhang. Solid-state electrolytes for safe rechargeable lithium metal batteries: a strategic view[J]. Materials Futures, 2023, 2(3): 033501. doi: 10.1088/2752-5724/accdf3
Perspective •

Solid-state electrolytes for safe rechargeable lithium metal batteries: a strategic view

© 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 2, Number 3
  • Received Date: 2023-03-05
  • Accepted Date: 2023-04-10
  • Rev Recd Date: 2023-04-06
  • Publish Date: 2023-06-30
  • Despite the efforts devoted to the identification of new electrode materials with higher specific capacities and electrolyte additives to mitigate the well-known limitations of current lithium-ion batteries, this technology is believed to have almost reached its energy density limit. It suffers also of a severe safety concern ascribed to the use of flammable liquid-based electrolytes. In this regard, solid-state electrolytes (SSEs) enabling the use of lithium metal as anode in the so-called solid-state lithium metal batteries (SSLMBs) are considered as the most desirable solution to tackle the aforementioned limitations. This emerging technology has rapidly evolved in recent years thanks to the striking advances gained in the domain of electrolyte materials, where SSEs can be classified according to their core chemistry as organic, inorganic, and hybrid/composite electrolytes. This strategic review presents a critical analysis of the design strategies reported in the field of SSEs, summarizing their main advantages and disadvantages, and providing a future perspective toward the rapid development of SSLMB technology.
  • loading
  • [1]
    Stephen N, LaRose A 2021 International Energy Outlook 2021(available at: www.eia.gov/outlooks/ieo/)(Accessed 8 May 2023)
    Obrovac M N, Christensen L, Le D B, Dahn J R 2007 Alloy design for lithium-ion battery anodes J. Electrochem. Soc. 154 A849 doi: 10.1149/1.2752985
    Feng X, Ouyang M, Liu X, Lu L, Xia Y, He X 2018 Thermal runaway mechanism of lithium ion battery for electric vehicles: a review Energy Storage Mater. 10 246-67 doi: 10.1016/j.ensm.2017.05.013
    Janek J, Zeier W G 2016 A solid future for battery development Nat. Energy 1 16141 doi: 10.1038/nenergy.2016.141
    Armand M, Tarascon J-M 2008 Building better batteries Nature 451 652-7 doi: 10.1038/451652a
    Judez X, Eshetu G G, Li C, Rodriguez-Martinez L M, Zhang H, Armand M 2018 Opportunities for rechargeable solid-state batteries based on Li-intercalation cathodes Joule 2 2208-24 doi: 10.1016/j.joule.2018.09.008
    Eshetu G G, Judez X, Li C, Martinez-Ibaez M, Snchez-Diez E, Rodriguez-Martinez L M, Zhang H, Armand M 2019 Solid electrolytes for lithium metal and future lithium-ion batteries Future Lithium-Ion BatteriesThe Royal Society of Chemistrych 4 doi: 10.3390/batteries8020019
    Webpage of Blue Solutions (available at: www.blue-solutions.com/en/)(Accessed 8 May 2023)
    Li S, Zhang S Q, Shen L, Liu Q, Ma J B, Lv W, He Y B, Yang Q H 2020 Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries Adv. Sci. 7 1903088 doi: 10.1002/advs.201903088
    Wang H, Sheng L, Yasin G, Wang L, Xu H, He X 2020 Reviewing the current status and development of polymer electrolytes for solid-state lithium batteries Energy Storage Mater. 33 188-215 doi: 10.1016/j.ensm.2020.08.014
    Xu K 2004 Nonaqueous liquid electrolytes for lithium-based rechargeable batteries Chem. Rev. 104 4303-418 doi: 10.1021/cr030203g
    Xu K 2014 Electrolytes and interphases in Li-ion batteries and beyond Chem. Rev. 114 11503-618 doi: 10.1021/cr500003w
    Zhang H, Qiao L, Khnle H, Figgemeier E, Armand M, Eshetu G G 2023 From lithium to emerging mono- and multivalent-cation-based rechargeable batteries: non-aqueous organic electrolyte and interphase perspectives Energy Environ. Sci. 16 11-52 doi: 10.1039/D2EE02998G
    Zhang Z, Nazar L F 2022 Exploiting the paddle-wheel mechanism for the design of fast ion conductors Nat. Rev. Mater. 7 389-405 doi: 10.1038/s41578-021-00401-0
    Cazorla C 2019 Refrigeration based on plastic crystals Nature 567 470-1 doi: 10.1038/d41586-019-00974-5
    Ratner M A, Shriver D F 1988 Ion transport in solvent-free polymers Chem. Rev. 88 109-24 doi: 10.1021/cr00083a006
    Wang C, et al 2020 Garnet-type solid-state electrolytes: materials, interfaces, and batteries Chem. Rev. 120 4257-300 doi: 10.1021/acs.chemrev.9b00427
    Zou Z, et al 2020 Mobile ions in composite solids Chem. Rev. 120 4169-221 doi: 10.1021/acs.chemrev.9b00760
    Wang X, Zhu H, Greene G W, Zhou Y, Yoshizawafujita M, Miyachi Y, Armand M, Forsyth M, Pringle J M, Howlett P C 2017 Organic ionic plastic crystal-based composite electrolyte with surface enhanced ion transport and its use in all-solid-state lithium batteries Adv. Mater. Technol. 2 1700046 doi: 10.1002/admt.201700046
    Wang X, Kerr R, Chen F, Goujon N, Pringle J M, Mecerreyes D, Forsyth M, Howlett P C 2020 Toward high-energy-density lithium metal batteries: opportunities and challenges for solid organic electrolytes Adv. Mater. 32 1905219 doi: 10.1002/adma.201905219
    Yunis R, Al-Masri D, Hollenkamp A F, Doherty C M, Zhu H, Pringle J M 2020 Plastic crystals utilising small ammonium cations and sulfonylimide anions as electrolytes for lithium batteries J. Electrochem. Soc. 167 070529 doi: 10.1149/1945-7111/ab76a2
    Tlmmermans K 1961 (Solids Pergamon Press)
    MacFarlane D R, et al 2016 Ionic liquids and their solid-state analogues as materials for energy generation and storage Nat. Rev. Mater. 1 15005 doi: 10.1038/natrevmats.2015.5
    Basile A, Hilder M, Makhlooghiazad F, Pozogonzalo C, MacFarlane D R, Howlett P C, Forsyth M 2018 Ionic liquids and organic ionic plastic crystals: advanced electrolytes for safer high performance sodium energy storage technologies Adv. Energy Mater. 8 1703491 doi: 10.1002/aenm.201703491
    Zhu H, MacFarlane D R, Pringle J M, Forsyth M 2019 Organic ionic plastic crystals as solid-state electrolytes Trends Chem. 1 126-40 doi: 10.1016/j.trechm.2019.01.002
    Zhou H, Xie J, Bao L, Qiao S, Sui J, Wang J 2022 Poly(carbonate)-based ionic plastic crystal fast ion-conductor for solid-state rechargeable lithium batteries J. Energy Chem. 73 360-9 doi: 10.1016/j.jechem.2022.06.038
    Dong Y, Ding T, Fan L-Z 2017 A free-standing and thermostable polymer/plastic crystal electrolyte for all-solid-state lithium batteries Ionics 23 3339-45 doi: 10.1007/s11581-017-2152-4
    Wang A, Geng S, Zhao Z, Hu Z, Luo J 2022 In situ cross-linked plastic crystal electrolytes for wide-temperature and high-energy-density lithium metal batteries Adv. Funct. Mater. 32 2201861 doi: 10.1002/adfm.202201861
    Alarco P-J, Abu-Lebdeh Y, Abouimrane A, Armand M 2004 The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors Nat. Mater. 3 476-81 doi: 10.1038/nmat1158
    Liu Y, Zhao Y, Lu W, Sun L, Lin L, Zheng M, Sun X, Xie H 2021 PEO based polymer in plastic crystal electrolytes for room temperature high-voltage lithium metal batteries Nano Energy 88 106205 doi: 10.1016/j.nanoen.2021.106205
    Lee M J, Han J, Lee K, Lee Y J, Kim B G, Jung K-N, Kim B J, Lee S W 2022 Elastomeric electrolytes for high-energy solid-state lithium batteries Nature 601 217-22 doi: 10.1038/s41586-021-04209-4
    Forsyth M, Porcarelli L, Wang X, Goujon N, Mecerreyes D 2019 Innovative electrolytes based on ionic liquids and polymers for next-generation solid-state batteries Acc. Chem. Res. 52 686-94 doi: 10.1021/acs.accounts.8b00566
    Warrington A, et al 2022 Thermal, structural and dynamic properties of ionic liquids and organic ionic plastic crystals with a small ether-functionalised cation Mater. Chem. Front. 6 1437-55 doi: 10.1039/D2QM00045H
    Park H, Park C B, Sung B J 2021 The effects of vacancies and their mobility on the dynamic heterogeneity in 1,3-dimethylimidazolium hexafluorophosphate organic ionic plastic crystals Phys. Chem. Chem. Phys. 23 11980-9 doi: 10.1039/D1CP00952D
    Zhu H, Wang X, Vijayaraghava R, Zhou Y, Macfarlane D R, Forsyth M 2018 Structure and ion dynamics in imidazolium-based protic organic ionic plastic crystals J. Phys. Chem. Lett. 9 3904-9 doi: 10.1021/acs.jpclett.8b01500
    Abeysooriya S, Lee M, O’Dell L A, Pringle J M 2022 Plastic crystal-based electrolytes using novel dicationic salts Phys. Chem. Chem. Phys. 24 4899-909 doi: 10.1039/D1CP04314E
    Yamada H, Miyachi Y, Takeoka Y, Rikukawa M, Yoshizawa-Fujita M 2019 Pyrrolidinium-based organic ionic plastic crystals: relationship between side chain length and properties Electrochim. Acta 303 293-8 doi: 10.1016/j.electacta.2019.02.076
    Sirigiri N, Chen F, Forsyth C M, Yunis R, O’Dell L, Pringle J M, Forsyth M 2022 Factors controlling the physical properties of an organic ionic plastic crystal Mater. Today Phys. 22 100603 doi: 10.1016/j.mtphys.2022.100603
    Li S, Yang K, Zhang Z, Yang L, Hirano S-I 2018 Organic ionic plastic crystal-poly(ethylene oxide) solid polymer electrolytes: application in all-solid-state lithium batteries Ind. Eng. Chem. Res. 57 13608-14 doi: 10.1021/acs.iecr.8b01964
    Fang Z, Zhao M, Peng Y, Guan S 2021 Organic ionic plastic crystal enhanced interface compatibility of PEO-based solid polymer electrolytes for lithium-metal batteries Solid State Ion. 373 115806 doi: 10.1016/j.ssi.2021.115806
    Wang W, Fang Z, Zhao M, Peng Y, Zhang J, Guan S 2020 Solid polymer electrolytes based on the composite of PEO-LiFSI and organic ionic plastic crystal Chem. Phys. Lett. 747 137335 doi: 10.1016/j.cplett.2020.137335
    Iranipour N, Gunzelmann D J, Seeber A J, Vongsvivut J, Hollenkamp A F, Forsyth M, Howlett P C 2017 Effect of secondary phase on thermal behaviour and solid-state ion conduction in lithium doped N-ethyl-N-methylpyrrolidinium tetrafluoroborate organic ionic plastic crystal J. Mater. Chem. A 5 24909-19 doi: 10.1039/C7TA08653A
    Zhou Y, Wang X, Zhu H, Armand M, Forsyth M, Greene G W, Pringle L M, Howlett P C 2017 N-ethyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide-electrospun polyvinylidene fluoride composite electrolytes: characterization and lithium cell studies Phys. Chem. Chem. Phys. 19 2225-34 doi: 10.1039/C6CP07415D
    Al-Masri D, Yunis R, Hollenkamp A F, Pringle J M 2020 Designing solid-state electrolytes through the structural modification of a high-performing ionic liquid ChemElectroChem. 7 4118-23 doi: 10.1002/celc.202000772
    Al-Masri D, Yunis R, Zhu H, Jin L, Bruce P, Hollenkamp A F, Pringle J M 2019 A new approach to very high lithium salt content quasi-solid state electrolytes for lithium metal batteries using plastic crystals J. Mater. Chem. A 7 25389-98 doi: 10.1039/C9TA11175A
    Biernacka K, Al-Masri D, Yunis R, Zhu H, Hollenkamp A F, Pringle J M 2020 Development of new solid-state electrolytes based on a hexamethylguanidinium plastic crystal and lithium salts Electrochim. Acta 357 136863 doi: 10.1016/j.electacta.2020.136863
    Jin L, Howlett P C, Pringle J M, Janikowski J, Armand M, MacFarlane D R, Forsyth M 2014 An organic ionic plastic crystal electrolyte for rate capability and stability of ambient temperature lithium batteries Energy Environ. Sci. 7 3352-61 doi: 10.1039/C4EE01085J
    Zhou Y, Wang X, Zhu H, Greene G W, Armand M, Forsyth M, Pringle K M, Howlett P C 2021 Phase behavior and electrochemical properties of solid lithium electrolytes based on N-ethyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide and PVdF composites Solid State Ion. 363 115588 doi: 10.1016/j.ssi.2021.115588
    Yang K, Zhang Z, Liao Z, Yang L, Hirano S-I 2018 Organic ionic plastic crystal-polymer solid electrolytes with high ionic conductivity and mechanical ability for solid-state lithium ion batteries ChemistrySelect 3 12595-9 doi: 10.1002/slct.201803094
    Zhou Y, Wang X, Zhu H, YoshizawaFujita M, Miyachi Y, Armand M, Forsyth M, Greene G W, Pringle J M, Howlett P C 2017 Solid-state lithium conductors for lithium metal batteries based on electrospun nanofiber/plastic crystal composites ChemSusChem 10 3135-45 doi: 10.1002/cssc.201700691
    Rao J, Vijayaraghavan R, Wang X, Zhou Y, Howlett P C, Macfarlane D R, Forsyth M, Zhu H 2018 Influence of electrospun poly(vinylidene difluoride) nanofiber matrix on the ion dynamics of a protic organic ionic plastic crystal J. Phys. Chem C 122 14546-53 doi: 10.1021/acs.jpcc.8b02985
    Nti F, Greene G W, Zhu H, Howlett P C, Forsyth M, Wang X 2021 Anion effects on the properties of OIPC/PVDF composites Mater. Adv. 2 1683-94 doi: 10.1039/D0MA00992J
    Nti F, Porcarelli L, Greene G W, Zhu H, Makhlooghiazad F, Mecerreyes D, Howlett P C, Forsyth M, Wang X 2020 The influence of interfacial interactions on the conductivity and phase behaviour of organic ionic plastic crystal/polymer nanoparticle composite electrolytes J. Mater. Chem. A 8 5350-62 doi: 10.1039/C9TA12827A
    Zhang H, et al 2019 Enhanced lithium-ion conductivity of polymer electrolytes by selective introduction of hydrogen into the anion Angew. Chem., Int. Ed. Engl. 58 7829-34 doi: 10.1002/anie.201813700
    Hei Z, Wu S, Zheng H, Liu H, Duan H 2022 Increasing the electrochemical stability window for polyethylene-oxide-based solid polymer electrolytes by understanding the affecting factors Solid State Ion. 375 115837 doi: 10.1016/j.ssi.2021.115837
    Burjanadze M, et al 2010 Salt-in-polymer electrolytes for lithium ion batteries based on organo-functionalized polyphosphazenes and polysiloxanes Z. Phys. Chem. 224 1439-73 doi: 10.1524/zpch.2010.0046
    Hu P, Chai J, Duan Y, Liu Z, Cui G, Chen L 2016 Progress in nitrile-based polymer electrolytes for high performance lithium batteries J. Mater. Chem. A 4 10070-83 doi: 10.1039/C6TA02907H
    Mindemark J, Sun B, Trm E, Brandell D 2015 High-performance solid polymer electrolytes for lithium batteries operational at ambient temperature J. Power Sources 298 166-70 doi: 10.1016/j.jpowsour.2015.08.035
    Mindemark J, Lacey M J, Bowden T, Brandell D 2018 Beyond PEOalternative host materials for Li+-conducting solid polymer electrolytes Prog. Polym. Sci. 81 114-43 doi: 10.1016/j.progpolymsci.2017.12.004
    Eriksson T, Mindemark J, Yue M, Brandell D 2019 Effects of nanoparticle addition to poly(-caprolactone) electrolytes: crystallinity, conductivity and ambient temperature battery cycling Electrochim. Acta 300 489-96 doi: 10.1016/j.electacta.2019.01.117
    Commarieu B, Paolella A, Collin-Martin S, Gagnon C, Vijh A, Guerfi A, Zaghib K 2019 Solid-to-liquid transition of polycarbonate solid electrolytes in Li-metal batteries J. Power Sources 436 226852 doi: 10.1016/j.jpowsour.2019.226852
    Aldalur I, Zhang H, Piszcz M, Oteo U, Rodriguez-Martinez L M, Shanmukaraj D, Rojo T, Armand M 2017 Jeffamine based polymers as highly conductive polymer electrolytes and cathode binder materials for battery application J. Power Sources 347 37-46 doi: 10.1016/j.jpowsour.2017.02.047
    Aldalur I, Martinez-Ibaez M, Piszcz M, Rodriguez-Martinez L M, Zhang H, Armand M 2018 Lowering the operational temperature of all-solid-state lithium polymer cell with highly conductive and interfacially robust solid polymer electrolytes J. Power Sources 383 144-9 doi: 10.1016/j.jpowsour.2018.02.066
    Aldalur I, Martinez-Ibaez M, Krzto-Maziopa A, Piszcz M, Armand M, Zhang H 2019 Flowable polymer electrolytes for lithium metal batteries J. Power Sources 423 218-26 doi: 10.1016/j.jpowsour.2019.03.057
    Aldalur I, Martinezibaez M, Piszcz M, Zhang H, Armand M 2018 Self-standing highly conductive solid electrolytes based on block copolymers for rechargeable all-solid-state lithium-metal batteries Batter. Supercaps 1 149-59 doi: 10.1002/batt.201800048
    Aldalur I, et al 2020 Nanofiber-reinforced polymer electrolytes toward room temperature solid-state lithium batteries J. Power Sources 448 227424 doi: 10.1016/j.jpowsour.2019.227424
    Arrese-Igor M, Martinez-Ibaez M, Pavlenko E, Forsyth M, Zhu H, Armand M, Aguesse F, Lpez-Aranguren P 2022 Toward high-voltage solid-state li-metal batteries with double-layer polymer electrolytes ACS Energy Lett. 7 1473-80 doi: 10.1021/acsenergylett.2c00488
    Zhang J, et al 2015 Safety-reinforced poly(propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries Adv. Energy Mater. 5 1501082 doi: 10.1002/aenm.201501082
    Wang C, Zhang H, Li J, Chai J, Dong S, Cui G 2018 The interfacial evolution between polycarbonate-based polymer electrolyte and Li-metal anode J. Power Sources 397 157-61 doi: 10.1016/j.jpowsour.2018.07.008
    Meabe L, Pea S R, Martinez-Ibaez M, Zhang Y, Lobato E, Manzano H, Armand M, Carrasco J, Zhang H 2020 Insight into the ionic transport of solid polymer electrolytes in polyether and polyester blends J. Phys. Chem. C 124 17981-91 doi: 10.1021/acs.jpcc.0c04987
    Arrese-Igor M, Martinez-Ibaez M, Lpez Del Amo J M, Sanchez-Diez E, Shanmukaraj D, Dumont E, Armand M, Aguesse F, Lpez-Aranguren P 2022 Enabling double layer polymer electrolyte batteries: overcoming the Li-salt interdiffusion Energy Storage Mater. 45 578-85 doi: 10.1016/j.ensm.2021.11.052
    Arrese-Igor M, Martinez-Ibaez M, Orue A, Pavlenko E, Dumont E, Armand M, Aguesse F, Lpez-Aranguren P 2022 Influence of the operating temperature on the ageing and interfaces of double layer polymer electrolyte solid state Li metal batteries Nano Res. 1998-0124 doi: 10.1007/s12274-022-5278-2
    Porcarelli L, Shaplov A S, Salsamendi M, Nair J R, Vygodskii Y S, Mecerreyes D, Gerbaldi C 2016 Single-ion block copoly(ionic liquid)s as electrolytes for all-solid state lithium batteries ACS Appl. Mater. Interfaces 8 10350-9 doi: 10.1021/acsami.6b01973
    Porcarelli L, Aboudzadeh M A, Rubatat L, Nair J R, Shaplov A S, Gerbaldi C, Mecerreyes D 2017 Single-ion triblock copolymer electrolytes based on poly(ethylene oxide) and methacrylic sulfonamide blocks for lithium metal batteries J. Power Sources 364 191-9 doi: 10.1016/j.jpowsour.2017.08.023
    Mindemark J, Trm E, Sun B, Brandell D 2015 Copolymers of trimethylene carbonate and -caprolactone as electrolytes for lithium-ion batteries Polymer 63 91-98 doi: 10.1016/j.polymer.2015.02.052
    Johansson I L, Brandell D, Mindemark J 2020 Mechanically stable UV-crosslinked polyester-polycarbonate solid polymer electrolyte for high-temperature batteries Batter. Supercaps 3 527-33 doi: 10.1002/batt.201900228
    Luo Y, Li X, Zhang Y, Ge L, Chen H, Guo L 2019 Electrochemical properties and structural stability of Ga- and Y- co-doping in Li7La3Zr2O12 ceramic electrolytes for lithium-ion batteries Electrochim. Acta 294 217-25 doi: 10.1016/j.electacta.2018.10.078
    Ohta S, Kobayashi T, Seki J, Asaoka T 2012 Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte J. Power Sources 202 332-5 doi: 10.1016/j.jpowsour.2011.10.064
    Shao Y, et al 2018 Drawing a soft interface: an effective interfacial modification strategy for garnet-type solid-state Li batteries ACS Energy Lett. 3 1212-8 doi: 10.1021/acsenergylett.8b00453
    Zhang W, Nie J, Li F, Wang Z L, Sun C 2018 A durable and safe solid-state lithium battery with a hybrid electrolyte membrane Nano Energy 45 413-9 doi: 10.1016/j.nanoen.2018.01.028
    Zhou L, Kwok C Y, Shyamsunder A, Zhang Q, Wu X, Nazar L F 2020 A new halospinel superionic conductor for high-voltage all solid state lithium batteries Energy Environ. Sci. 13 2056-63 doi: 10.1039/D0EE01017K
    Kwak H, et al 2021 New cost-effective halide solid electrolytes for all-solid-state batteries: mechanochemically prepared Fe3+-Substituted Li2ZrCl6 Adv. Energy Mater. 11 2003190 doi: 10.1002/aenm.202003190
    Liu Z, Ma S, Liu J, Xiong S, Ma Y, Chen H 2021 High ionic conductivity achieved in Li3Y(Br3Cl3) mixed halide solid electrolyte via promoted diffusion pathways and enhanced grain boundary ACS Energy Lett. 6 298-304 doi: 10.1021/acsenergylett.0c01690
    Cronk A, et al 2023 Overcoming the interfacial challenges of LiFePO4 in inorganic all-solid-state batteries ACS Energy Lett. 8 827-35 doi: 10.1021/acsenergylett.2c02138
    Zhou L, Assoud A, Zhang Q, Wu X, Nazar L F 2019 New family of argyrodite thioantimonate lithium superionic conductors J. Am. Chem. Soc. 141 19002-13 doi: 10.1021/jacs.9b08357
    Kamaya N, et al 2011 A lithium superionic conductor Nat. Mater. 10 682-6 doi: 10.1038/nmat3066
    Zhang J, Zhong H, Zheng C, Xia Y, Liang C, Huang H, Gan Y, Tao X, Zhang W 2018 All-solid-state batteries with slurry coated LiNi0.8Co0.1Mn0.1O2 composite cathode and Li6PS5Cl electrolyte: effect of binder content J. Power Sources 391 73-79 doi: 10.1016/j.jpowsour.2018.04.069
    Okada K, Machida N, Naito M, Shigematsu T, Ito S, Fujiki S, Nakano M, Aihara Y 2014 Preparation and electrochemical properties of LiAlO2-coated Li(Ni1/3Mn1/3Co1/3)O2 for all-solid-state batteries Solid State Ion. 255 120-7 doi: 10.1016/j.ssi.2013.12.019
    DeWees R, Wang H 2019 Synthesis and properties of NaSICON-type LATP and LAGP solid electrolytes ChemSusChem 12 3713-25 doi: 10.1002/cssc.201900725
    Xu X, Wen Z, Yang X, Chen L 2008 Dense nanostructured solid electrolyte with high Li-ion conductivity by spark plasma sintering technique Mater. Res. Bull. 43 2334-41 doi: 10.1016/j.materresbull.2007.08.007
    Benabed Y, Rioux M, Rousselot S, Hautier G, Doll M 2021 Assessing the electrochemical stability window of NASICON-type solid electrolytes Front. Energy Res. 9 682008 doi: 10.3389/fenrg.2021.682008
    Zheng F, Kotobuki M, Song S, Lai M O, Lu L 2018 Review on solid electrolytes for all-solid-state lithium-ion batteries J. Power Sources 389 198-213 doi: 10.1016/j.jpowsour.2018.04.022
    Ohta S, Kobayashi T, Asaoka T 2011 High lithium ionic conductivity in the garnet-type oxide Li7-X La3(Zr2-X, NbX)O12 (X = 0-2) J. Power Sources 196 3342-5 doi: 10.1016/j.jpowsour.2010.11.089
    Murugan R, Thangadurai V, Weppner W 2007 Fast lithium ion conduction in garnet-type Li7La 3Zr2O12 Angew. Chem., Int. Ed. 46 7778-81 doi: 10.1002/anie.200701144
    Wang Y, Wu Y, Wang Z, Chen L, Li H, Wu F 2022 Doping strategy and mechanism for oxide and sulfide solid electrolytes with high ionic conductivity J. Mater. Chem. A 10 4517-32 doi: 10.1039/D1TA10966A
    Thangadurai V, Weppner W 2006 Recent progress in solid oxide and lithium ion conducting electrolytes research Ionics 12 81-92 doi: 10.1007/s11581-006-0013-7
    Kim K J, Balaish M, Wadaguchi M, Kong L, Rupp J L M 2021 Solid-state Li-metal batteries: challenges and horizons of oxide and sulfide solid electrolytes and their interfaces Adv. Energy Mater. 11 2002689 doi: 10.1002/aenm.202002689
    Monroe C, Newman J 2005 The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces J. Electrochem. Soc. 152 A396 doi: 10.1149/1.1850854
    Golozar M, Paolella A, Demers H, Savoie S, Girard G, Delaporte N, Gauvin R, Guerfi A, Lorrmann H, Zaghib K 2020 Direct observation of lithium metal dendrites with ceramic solid electrolyte Sci. Rep. 10 18410 doi: 10.1038/s41598-020-75456-0
    Wu J, Liu S, Han F, Yao X, Wang C 2021 Lithium/sulfide all-solid-state batteries using sulfide electrolytes Adv. Mater. 33 2000751 doi: 10.1002/adma.202000751
    Zhou L, Minafra N, Zeier W G, Nazar L F 2021 Innovative approaches to Li-argyrodite solid electrolytes for all-solid-state lithium batteries Acc. Chem. Res. 54 2717-28 doi: 10.1021/acs.accounts.0c00874
    Lian P J, Zhao B S, Zhang L Q, Xu N, Wu M T, Gao X P 2019 Inorganic sulfide solid electrolytes for all-solid-state lithium secondary batteries J. Mater. Chem. A 7 20540-57 doi: 10.1039/C9TA04555D
    Lau J, DeBlock R H, Butts D M, Ashby D S, Choi C S, Dunn B S 2018 Sulfide solid electrolytes for lithium battery applications Adv. Energy Mater. 8 1800933 doi: 10.1002/aenm.201800933
    Wang S, Fang R, Li Y, Liu Y, Xin C, Richter F H, Nan C-W 2021 Interfacial challenges for all-solid-state batteries based on sulfide solid electrolytes J. Materiomics 7 209-18 doi: 10.1016/j.jmat.2020.09.003
    Wang C, Liang J, Kim J T, Sun X 2022 Prospects of halide-based all-solid-state batteries: from material design to practical application Sci Adv. 8 doi: 10.1126/sciadv.adc9516
    Combs S R, Todd P K, Gorai P, Maughan A E 2022 Editors’ choicereviewdesigning defects and diffusion through substitutions in metal halide solid electrolytes J. Electrochem. Soc. 169 040551 doi: 10.1149/1945-7111/ac5bad
    Asano T, Sakai A, Ouchi S, Sakaida M, Miyazaki A, Hasegawa S 2018 Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries Adv. Mater. 30 1803075 doi: 10.1002/adma.201803075
    Boaretto N, Garbayo I, Valiyaveettil-sobhanraj S, Quintela A, Li C, Casas-Cabanas M, Aguesse F 2021 Lithium solid-state batteries: state-of-the-art and challenges for materials, interfaces and processing J. Power Sources 502 229919 doi: 10.1016/j.jpowsour.2021.229919
    Balaish M, Gonzalez-Rosillo J C, Kim K J, Zhu Y, Hood Z D, Rupp J L M 2021 Processing thin but robust electrolytes for solid-state batteries Nat. Energy 6 227-39 doi: 10.1038/s41560-020-00759-5
    Lpez-Aranguren P, Reynaud M, Guchowski P, Bustinza A, Galceran M, Lpez Del Amo J M, Armand M, Casas-Cabanas M 2021 Crystalline LiPON as a bulk-type solid electrolyte ACS Energy Lett. 6 445-50 doi: 10.1021/acsenergylett.0c02336
    Manthiram A, Yu X, Wang S 2017 Lithium battery chemistries enabled by solid-state electrolytes Nat. Rev. Mater. 2 16103 doi: 10.1038/natrevmats.2016.103
    Reddy M V, Julien C M, Mauger A, Zaghib K 2019 Sulfide and oxide inorganic solid electrolytes for all-solid-state li batteries: a review Nanomaterials 10 1-80 doi: 10.3390/nano10010001
    Campanella D, Belanger D, Paolella A 2021 Beyond garnets, phosphates and phosphosulfides solid electrolytes: new ceramic perspectives for all solid lithium metal batteries J. Power Sources 482 228949 doi: 10.1016/j.jpowsour.2020.228949
    Yan Y, Khnel R-S, Remhof A, Duchne L, Reyes E C, Rentsch D, odziana Z, Battaglia C 2017 A lithium amide-borohydride solid-state electrolyte with lithium-ion conductivities comparable to liquid electrolytes Adv. Energy Mater. 7 1700294 doi: 10.1002/aenm.201700294
    Yamauchi A, Sakuda A, Hayashi A, Tatsumisago M 2013 Preparation and ionic conductivities of (100-X)(0.75Li2S·0.25P2S5)· xLiBH4 glass electrolytes J. Power Sources 244 707-10 doi: 10.1016/j.jpowsour.2012.12.001
    Subramanian K, Alexander G V, Karthik K, Patra S, Indu M S, Sreejith O V, Viswanathan R, Narayanasamy J, Murugan R 2021 A brief review of recent advances in garnet structured solid electrolyte based lithium metal batteries J. Energy Storage 33 102157 doi: 10.1016/j.est.2020.102157
    Thokchom J S, Kumar B 2010 The effects of crystallization parameters on the ionic conductivity of a lithium aluminum germanium phosphate glass-ceramic J. Power Sources 195 2870-6 doi: 10.1016/j.jpowsour.2009.11.037
    Fincher C D, Athanasiou C E, Gilgenbach C, Wang M, Sheldon B W, Carter W C, Chiang Y-M 2022 Controlling dendrite propagation in solid-state batteries with engineered stress Joule 6 2794-809 doi: 10.1016/j.joule.2022.10.011
    Wu J, Shen L, Zhang Z, Liu G, Wang Z, Zhou D, Wan H, Xu X, Yao X 2021 All-solid-state lithium batteries with sulfide electrolytes and oxide cathodes Electrochem. Energy Rev. 4 101-35 doi: 10.1007/s41918-020-00081-4
    Yu T, Yang X, Yang R, Bai X, Xu G, Zhao S, Duan Y, Wu Y, Wang J 2021 Progress and perspectives on typical inorganic solid-state electrolytes J. Alloys Compd. 885 161013 doi: 10.1016/j.jallcom.2021.161013
    Liu H, He P, Wang G, Liang Y, Wang C, Fan L-Z 2022 Thin, flexible sulfide-based electrolyte film and its interface engineering for high performance solid-state lithium metal batteries J. Chem. Eng. 430 132991 doi: 10.1016/j.cej.2021.132991
    Keller M, Varzi A, Passerini S 2018 Hybrid electrolytes for lithium metal batteries J. Power Sources 392 206-25 doi: 10.1016/j.jpowsour.2018.04.099
    Boaretto N, Meabe L, Martinez-Ibaez M, Armand M, Zhang H 2020 Reviewpolymer electrolytes for rechargeable batteries: from nanocomposite to nanohybrid J. Electrochem. Soc. 167 070524 doi: 10.1149/1945-7111/ab7221
    Croce F, Settimi L, Scrosati B 2006 Superacid ZrO2-added, composite polymer electrolytes with improved transport properties Electrochem. Commun. 8 364-8 doi: 10.1016/j.elecom.2005.12.002
    Dissanayake M A K L, Jayathilaka P A R D, Bokalawala R S P, Albinsson I, Mellander B E 2003 Effect of concentration and grain size of alumina filler on the ionic conductivity enhancement of the (PEO)9LiCF3SO3: al2O3 composite polymer electrolyte J. Power Sources 119-121 409-14 doi: 10.1016/S0378-7753(03)00262-3
    Jiang G, Maeda S, Yang H, Saito Y, Tanase S, Sakai T 2005 All solid-state lithium-polymer battery using poly(urethane acrylate)/nano-SiO2 composite electrolytes J. Power Sources 141 143-8 doi: 10.1016/j.jpowsour.2004.09.004
    Chung S H, Wang Y, Persi L, Croce F, Greenbaum S G, Scrosati B, Plichta E 2001 Enhancement of ion transport in polymer electrolytes by addition of nanoscale inorganic oxides J. Power Sources 97-98 644-8 doi: 10.1016/S0378-7753(01)00748-0
    Croce F, Persi L, Scrosati B, Serraino-Fiory F, Plichta E, Hendrickson M A 2001 Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes Electrochim. Acta. 46 2457-61 doi: 10.1016/S0013-4686(01)00458-3
    Kalnaus S, Tenhaeff W E, Sakamoto J, Sabau A S, Daniel C, Dudney N J 2013 Analysis of composite electrolytes with sintered reinforcement structure for energy storage applications J. Power Sources 241 178-85 doi: 10.1016/j.jpowsour.2013.04.096
    Zagrski J, Lpez Del Amo J M, Cordill M J, Aguesse F, Buannic L, Llords A 2019 Garnet-polymer composite electrolytes: new insights on local li-ion dynamics and electrodeposition stability with Li metal anodes ACS Appl. Energy Mater. 2 1734-46 doi: 10.1021/acsaem.8b01850
    Keller M, Appetecchi G B, Kim G-T, Sharova V, Schneider M, Schuhmacher J, Roters A, Passerini S 2017 Electrochemical performance of a solvent-free hybrid ceramic-polymer electrolyte based on Li7La3Zr2O12 in P(EO)15LiTFSI J. Power Sources 353 287-97 doi: 10.1016/j.jpowsour.2017.04.014
    Chen R, Qu W, Guo X, Li L, Wu F 2016 The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons Mater. Horiz. 3 487-516 doi: 10.1039/C6MH00218H
    Jung Y C, Lee S M, Choi J H, Jang S S, Kim D W 2015 All solid-state lithium batteries assembled with hybrid solid electrolytes J. Electrochem. Soc. 162 A1236-45 doi: 10.1149/2.0481507jes
    Lpez-Aranguren P, Judez X, Chakir M, Armand M, Buannic L 2020 High voltage solid state batteries: targeting high energy density with polymer composite electrolytes J. Electrochem. Soc. 167 020548 doi: 10.1149/1945-7111/ab6dd7
    Wang C, Yang Y, Liu X, Zhong H, Xu H, Xu Z, Shao H, Ding F 2017 Suppression of lithium dendrite formation by using LAGP-PEO (LiTFSI) composite solid electrolyte and lithium metal anode modified by PEO (LiTFSI) in all-solid-state lithium batteries ACS Appl. Mater. Interfaces 9 13694-702 doi: 10.1021/acsami.7b00336
    Wang X, et al 2019 Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanoparticle/polymer composite electrolyte Nano Energy 60 205-12 doi: 10.1016/j.nanoen.2019.03.051
    Yu G, Wang Y, Li K, Sun S, Sun S, Chen J, Pan L, Sun Z M 2022 Plasma optimized Li7La3Zr2O12 with vertically aligned ion diffusion pathways in composite polymer electrolyte for stable solid-state lithium metal batteries J. Chem. Eng. 430 132874 doi: 10.1016/j.cej.2021.132874
    Zhang X, Xie J, Shi F, Lin D, Liu Y, Liu W, Xiang Y, Cui Y 2018 Vertically aligned and continuous nanoscale ceramic-polymer interfaces in composite solid polymer electrolytes for enhanced ionic conductivity Nano Lett. 18 3829-38 doi: 10.1021/acs.nanolett.8b01111
    Li Y, Zhai Y, Xu S, Tang M, Zhang S, Zou Z 2022 Using LLTO with vertically aligned and oriented structures to improve the ion conductivity of composite solid-state electrolytes Mater. Today Commun. 33 104243 doi: 10.1016/j.mtcomm.2022.104243
    Zhai H, Xu P, Ning M, Cheng Q, Mandal J, Yang Y 2017 Composite electrolyte with vertically aligned and connected ion-conducting nanoparticles for lithium batteries Nano Lett. 17 3182-7 doi: 10.1021/acs.nanolett.7b00715
    Li Y, Tang M, Xu S, Zhang S, Zhai Y, Yin J, Zou Z 2022 Enhanced ionic conductivity of composite solid electrolyte by directionally ordered structures of linear Li1.3Al0.3Ti1.7(PO43 J. Ind. Eng. Chem. 114 126-33 doi: 10.1016/j.jiec.2022.06.039
    Zha W, Li W, Ruan Y, Wang J, Wen Z 2021 In situ fabricated ceramic/polymer hybrid electrolyte with vertically aligned structure for solid-state lithium batteries Energy Storage Mater. 36 171-8 doi: 10.1016/j.ensm.2020.12.028
    Liu W, Liu N, Sun J, Hsu P-C, Li Y, Lee H-W, Cui Y 2015 Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers Nano Lett. 15 2740-5 doi: 10.1021/acs.nanolett.5b00600
    Liu W, Lee S W, Lin D, Shi F, Wang S, Sendek A D, Cui Y 2017 Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires Nat. Energy 2 17035 doi: 10.1038/nenergy.2017.35
    Tan D H S, Meng Y S, Jang J 2022 Scaling up high-energy-density sulfidic solid-state batteries: a lab-to-pilot perspective Joule 6 1755-69 doi: 10.1016/j.joule.2022.07.002
  • mfacdd86supp1.pdf
  • 加载中


    Figures(10)  / Tables(2)

    Article Metrics

    Article Views(523) PDF downloads(106)
    Article Statistics
    Related articles from


    DownLoad:  Full-Size Img  PowerPoint