Volume 2 Issue 2
May  2023
Turn off MathJax
Article Contents
Qiang Luo, Weiran Cui, Huaping Zhang, Liangliang Li, Liliang Shao, Mingjuan Cai, Zhengguo Zhang, Lin Xue, Jun Shen, Yu Gong, Xiaodong Li, Maozi Li, Baolong Shen. Polyamorphism mediated by nanoscale incipient concentration wave uncovering hidden amorphous intermediate state with ultrahigh modulus in nanostructured metallic glass[J]. Materials Futures, 2023, 2(2): 025001. doi: 10.1088/2752-5724/acbdb4
Citation: Qiang Luo, Weiran Cui, Huaping Zhang, Liangliang Li, Liliang Shao, Mingjuan Cai, Zhengguo Zhang, Lin Xue, Jun Shen, Yu Gong, Xiaodong Li, Maozi Li, Baolong Shen. Polyamorphism mediated by nanoscale incipient concentration wave uncovering hidden amorphous intermediate state with ultrahigh modulus in nanostructured metallic glass[J]. Materials Futures, 2023, 2(2): 025001. doi: 10.1088/2752-5724/acbdb4
Paper •
OPEN ACCESS

Polyamorphism mediated by nanoscale incipient concentration wave uncovering hidden amorphous intermediate state with ultrahigh modulus in nanostructured metallic glass

© 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 2, Number 2
  • Received Date: 2022-12-16
  • Accepted Date: 2023-02-21
  • Rev Recd Date: 2023-02-09
  • Publish Date: 2023-03-15
  • Comprehending the pressure-/temperature-induced structural transition in glasses, as one of the most fascinating issues in material science, is far from being well understood. Here, we report novel polyamorphic transitions in a Cu-based metallic glass (MG) with apparent nanoscale structural heterogeneity relating to proper Y addition. The low-density MG compresses continuously with increasing pressure, and then a compression plateau appears after 8.1 GPa, evolving into an intermediate state with an ultrahigh bulk modulus of 467 GPa. It then transforms to a high-density MG with significantly decreased structural heterogeneity above 14.1 GPa. Three-dimensional atom probe tomography reveals concentration waves of Cu/Zr elements with an average wavelength of 5-6 nm, which promote the formation of interconnected ringlike networks composed of Cu-rich and Zr-rich dual-glass domains at nanometer scale. Our experimental and simulation results indicate that steplike polyamorphism may stem from synergic effects of the abnormal compression of the Zr-Zr bond length at the atomic scale and the interplay between the applied pressure and incipient concentration waves (Cu and Zr) at several nanometer scales. The present work provides new insights into polyamorphism in glasses and contributes to the development of high-performance amorphous materials by high-pressure nanostructure engineering.
  • loading
  • Conflict of interest

    The authors declare that they have no conflicts of interest to disclose.

  • [1]
    Cheng Y Q, Ma E 2011 Atomic-level structure and structure-property relationship in metallic glasses Prog. Mater. Sci. 56 379-473 doi: 10.1016/j.pmatsci.2010.12.002
    [2]
    Wang W H, Dong C, Shek C H 2004 Bulk metallic glasses Mater. Sci. Eng. 44 45-89 doi: 10.1016/j.mser.2004.03.001
    [3]
    Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Atomic packing and short-to-medium range order in metallic glasses Nature 439 419-25 doi: 10.1038/nature04421
    [4]
    Miracle D B 2004 A structural model for metallic glasses Nat. Mater. 3 697-702 doi: 10.1038/nmat1219
    [5]
    Ma D, Stoica A D, Wang X L 2009 Power-law scaling and fractal nature of medium-range order in metallic glasses Nat. Mater. 8 30-34 doi: 10.1038/nmat2340
    [6]
    Chen D Z, Shi C Y, An Q, Zeng Q, Mao W L, Goddard W A, Greer J R 2015 Fractal atomic-level percolation in metallic glasses Science 349 1306-10 doi: 10.1126/science.aab1233
    [7]
    Wang W H 2007 Roles of minor additions in formation and properties of bulk metallic glasses Prog. Mater. Sci. 52 540-96 doi: 10.1016/j.pmatsci.2006.07.003
    [8]
    Yu B, Wang W H, Samwer K 2013 The beta relaxation in metallic glasses: an overview Mater. Today 16 183-91 doi: 10.1016/j.mattod.2013.05.002
    [9]
    Wang Q, Liu J J, Ye Y F, Liu T T, Wang S, Liu C T, Lu J, Yang Y 2017 Universal secondary relaxation and unusual brittle-to-ductile transition in metallic glasses Mater. Today 20 293-300 doi: 10.1016/j.mattod.2017.05.007
    [10]
    Zhang C Z, Hu L N, Yue Y Z, Mauro J C 2010 Fragile-to-strong transition in metallic glass-forming liquids J. Chem. Phys. 133 014508 doi: 10.1063/1.3457670
    [11]
    Zhou C, Hu L N, Sun Q J, Zheng H, Zhang C Z, Yue Y Z 2015 Structural evolution during fragile-to-strong transition in CuZr(Al) glass-forming liquids J. Chem. Phys. 142 064508 doi: 10.1063/1.4907374
    [12]
    Concustell A, Mar F O, Suriach S, Bar M D, Greer A L 2009 Structural relaxation and rejuvenation in a metallic glass induced by shot-peening Phil. Mag. Lett. 89 831-40 doi: 10.1080/09500830903337919
    [13]
    Liu Y H, Wang G, Wang R J, Zhao D Q, Pan M X, Wang W H 2007 Super plastic bulk metallic glasses at room temperature Science 315 1385-8 doi: 10.1126/science.1136726
    [14]
    Ye J C, Lu J, Liu C T, Wang Q, Yang Y 2010 Atomistic free-volume zones and inelastic deformation of metallic glasses Nat. Mater. 9 619-22 doi: 10.1038/nmat2802
    [15]
    Dmowski W, Yokoyama Y, Chuang A, Ren Y, Umemoto M, Tsuchiya K, Inoue A, Egami T 2010 Structural rejuvenation in a bulk metallic glass induced by severe plastic deformation Acta Mater. 58 429-38 doi: 10.1016/j.actamat.2009.09.021
    [16]
    Pan J, Wang Y X, Guo Q, Zhang D, Greer A L, Li Y 2018 Extreme rejuvenation and softening in a bulk metallic glass Nat. Commun. 9 560 doi: 10.1038/s41467-018-02943-4
    [17]
    Ketov S V, et al 2015 Rejuvenation of metallic glasses by non-affine thermal strain Nature 524 200-3 doi: 10.1038/nature14674
    [18]
    Xu W, Sandor M T, Yu Y, Ke H-B, Zhang H-P, Li M-Z, Wang W-H, Liu L, Wu Y 2015 Evidence of liquid-liquid transition in glass-forming La50Al35Ni15 melt above liquidus temperature Nat. Commun. 6 7696 doi: 10.1038/ncomms8696
    [19]
    Zhou C, Hu L N, Sun Q J, Qin J, Bian X F, Yue Y Z 2013 Indication of liquid-liquid phase transition in CuZr-based melts Appl. Phys. Lett. 103 171904 doi: 10.1063/1.4826487
    [20]
    Wei S, Yang F, Bednarcik J, Kaban I, Shuleshova O, Meyer A, Busch R 2013 Liquid-liquid transition in a strong bulk metallic glass-forming liquid Nat. Commun. 4 2083 doi: 10.1038/ncomms3083
    [21]
    Sheng H W, Liu H Z, Cheng Y Q, Wen J, Lee P L, Luo W K, Shastri S D, Ma E 2007 Polyamorphism in a metallic glass Nature 6 192-7 doi: 10.1038/nmat1839
    [22]
    Belhadi L, Decremps F, Pascarelli S, Cormier L, Le Godec Y, Gorsse S, Baudelet F, Marini C, Garbarino G 2013 Polyamorphism in cerium based bulk metallic glasses: electronic and structural properties under pressure and temperature by x-ray absorption techniques Appl. Phys. Lett. 103 111905 doi: 10.1063/1.4820434
    [23]
    Zeng Q, Ding Y, Mao W L, Yang W, Sinogeikin S V, Shu J, Mao H-K, Jiang J Z 2010 Origin of pressure-induced polyamorphism in Ce75Al25 metallic glass Phys. Rev. Lett. 104 105702 doi: 10.1103/PhysRevLett.104.105702
    [24]
    Duarte M, Bruna P, Pineda E, Crespo D, Garbarino G, Verbeni R, Zhao K, Wang W H, Romero A H, Serrano J 2011 Polyamorphic transitions in Ce-based metallic glasses by synchrotron radiation Phys. Rev. B 84 224116 doi: 10.1103/PhysRevB.84.224116
    [25]
    Zeng Q S, et al 2007 Anomalous compression behavior in lanthanum/cerium-based metallic glass under high pressure Proc. Natl Acad. Sci. USA 104 13 565 doi: 10.1073/pnas.0705999104
    [26]
    Zhao X, Wang C Z, Zheng H J, Tian Z A, Hu L N 2017 The role of liquid-liquid transition in glass formation of CuZr alloys Phys. Chem. Chem. Phys. 19 15962-72 doi: 10.1039/C7CP02111A
    [27]
    Lan S, Ren Y, Wei X Y, Wang B, Gilbert E P, Shibayama T, Watanabe S, Ohnuma M, Wang X L 2017 Hidden amorphous phase and reentrant supercooled liquid in Pd-Ni-P metallic glasses Nat. Commun. 8 14679 doi: 10.1038/ncomms14679
    [28]
    Ge J C, et al 2019 In-situ scattering study of a liquid-liquid phase transition in Fe-B-Nb-Y supercooled liquids and its correlation with glass-forming ability J. Alloys Compd. 787 831-9 doi: 10.1016/j.jallcom.2019.02.114
    [29]
    Li J J Z, Rhim W K, Kim C P, Samwer K, Johnson W L 2011 Evidence for a liquid-liquid phase transition in metallic fluids observed by electrostatic levitation Acta Mater. 59 2166-71 doi: 10.1016/j.actamat.2010.12.017
    [30]
    Kchemann S, Samwer K 2016 Ultrafast heating of metallic glasses reveals disordering of the amorphous structure Acta Mater. 104 119-24 doi: 10.1016/j.actamat.2015.11.039
    [31]
    Luo Q, Schwarz B, Swarbrick J C, Bednarik J, Zhu Y, Tang M, Zheng L, Li R, Shen J, Eckert J 2018 Local-structure change rendered by electronic localization delocalization transition in cerium-based metallic glasses Phys. Rev. B 97 064104 doi: 10.1103/PhysRevB.97.064104
    [32]
    Luo Q, et al 2015 Hierarchical densification and negative thermal expansion under high pressure in Ce-based metallic glass Nat. Commun. 6 5703-11 doi: 10.1038/ncomms6703
    [33]
    Li L, Luo Q, Li R, Zhao H, Chapman K W, Chupas P J, Wang L, Liu H 2017 Polyamorphism in Yb-based metallic glass induced by pressure Sci. Rep. 7 46762 doi: 10.1038/srep46762
    [34]
    Wang X Y, Wang W K, Zhan Z J, Xu F Y, Zhang N Y, Wang F X, Chen Y, Pang Y T, Zhao L P, Wang J 2007 Compression behaviour and micro-structure evaluation of Zr57Nb5Cu15.4Ni12.6Al10 bulk metallic glass under high pressure Mater. Lett. 61 2170-2 doi: 10.1016/j.matlet.2006.08.041
    [35]
    Sheng H W, Ma E, Liu H Z, Wen J 2006 Pressure tunes atomic packing in metallic glass Appl. Phys. Lett. 88 171906 doi: 10.1063/1.2197315
    [36]
    Li G, Xin-Yu Z, Yi-Nan S, Yu-Qing Q, Jing L, Ri-Ping L 2005 Compression behaviour of Ni77P23 amorphous alloy up to 30.5 GPa Chin. Phys. Lett. 22 2615 doi: 10.1088/0256-307X/22/10/044
    [37]
    Stemshorn A K, Vohra Y K 2009 Structural stability and compressibility of group IV transition metals-based bulk metallic glasses under high pressure J. Appl. Phys. 106 046101 doi: 10.1063/1.3204444
    [38]
    Li L L, Wang L, Li R, Zhao H, Qu D, Chapman K W, Chupas P J, Liu H 2016 Constant real-space fractal dimensionality and structure evolution in Ti62Cu38 metallic glass under high pressure Phys. Rev. B 94 184201 doi: 10.1103/PhysRevB.94.184201
    [39]
    Mattern N, Bednarcik J, Liermann H, Eckert J 2013 Structural behaviour of Pd40Cu30Ni10P20 metallic glass under high pressure Intermetallics 38 9-13 doi: 10.1016/j.intermet.2013.02.019
    [40]
    Tomizukat A, Iwasakit H, Fukamichi K, Kikegawa T 1984 High-pressure x-ray diffraction study of magnetoelastic properties of Fe-based amorphous alloys J. Phys. F: Met. Phys. 14 1507-14 doi: 10.1088/0305-4608/14/6/018
    [41]
    Lou H B, et al 2012 Pressure-induced amorphous-to-amorphous configuration change in Ca-Al metallic glasses Sci. Rep. 2 376 doi: 10.1038/srep00376
    [42]
    Du Q, Liu X-J, Zeng Q, Fan H, Wang H, Wu Y, Chen S-W, Lu Z-P 2019 Polyamorphic transition in a transition metal based metallic glass under high pressure Phys. Rev. B 99 014208 doi: 10.1103/PhysRevB.99.014208
    [43]
    Katayama Y, Mizutani T, Utsumi W, Shimomura O, Yamakata M, Funakoshi K-I 2000 A first-order liquid-liquid phase transition in phosphorus Nature 403 170-3 doi: 10.1038/35003143
    [44]
    Sen S, Gaudio S, Aitken B G, Lesher C E 2006 A pressure-induced first-order polyamorphic transition in a chalcogenide glass at ambient temperature Phys. Rev. Lett. 97 025504 doi: 10.1103/PhysRevLett.97.025504
    [45]
    Morishita T 2004 High density amorphous form and polyamorphic transformations of silicon Phys. Rev. Lett. 93 055503 doi: 10.1103/PhysRevLett.93.055503
    [46]
    Mishima O, Calvert L D, Whalley E 1985 An apparently first-order transition between two amorphous phases of ice induced by pressure Nature 314 76-78 doi: 10.1038/314076a0
    [47]
    Yavari A R, Moulec A L, Inoue A, Nishiyama N, Lupu N, Matsubara E, Botta W J, Vaughan G, Michiel M D, Kvick 2005 Excess free volume in metallic glasses measured by x-ray diffraction Acta Mater. 53 1611 doi: 10.1016/j.actamat.2004.12.011
    [48]
    Zeng Q, et al 2014 Universal fractional noncubic power law for density of metallic glasses Phys. Rev. Lett. 112 185502 doi: 10.1103/PhysRevLett.112.185502
    [49]
    Zeng Q, et al 2016 General 2.5 power law of metallic glasses Proc. Natl Acad. Sci. USA 113 1714-8 doi: 10.1073/pnas.1525390113
    [50]
    Li G, Wang Y Y, Liaw P K, Li Y C, Liu R P 2012 Electronic structure inheritance and pressure-induced polyamorphism in lanthanide-based metallic glasses Phys. Rev. Lett. 109 125501 doi: 10.1103/PhysRevLett.109.125501
    [51]
    Giintherodt H J, Beck H 1981 Glass metals: I Topics in Applied Physics vol 46BerlinSpringer
    [52]
    Wang Q, Liu C T, Yang Y, Liu J B, Dong Y D, Lu J 2014 The atomic-scale mechanism for the enhanced glass-forming-ability of a Cu-Zr based bulk metallic glass with minor element additions Sci. Rep. 4 4648 doi: 10.1038/srep04648
    [53]
    Wagner H, Bedorf D, Kchemann S, Schwabe M, Zhang B, Arnold W, Samwer K 2011 Local elastic properties of a metallic glass Nat. Mater. 10 439-42 doi: 10.1038/nmat3024
    [54]
    Zhu F, Hirata A, Liu P, Song S, Tian Y, Han J, Fujita T, Chen M 2017 Correlation between local structure order and spatial heterogeneity in a metallic glass Phys. Rev. Lett. 119 215501 doi: 10.1103/PhysRevLett.119.215501
    [55]
    Huang B, et al 2018 Density fluctuations with fractal order in metallic glasses detected by synchrotron X-raynano-computed tomography Acta Mater. 155 69-79 doi: 10.1016/j.actamat.2018.05.064
    [56]
    Li M Z, Wang C Z, Hao S G, Kramer M J, Ho K M 2009 Structural heterogeneity and medium-range order in ZrxCu100-x metallic glasses Phys. Rev. B 80 184201 doi: 10.1103/PhysRevB.80.184201
    [57]
    Soklaski R, Nussinov Z, Markow Z, Kelton K F, Yang L 2013 Connectivity of the icosahedral network and a dramatically growing static length scale in Cu-Zr binary metallic glasses Phys. Rev. B 87 184203 doi: 10.1103/PhysRevB.87.184203
    [58]
    Hu Y C, Li F X, Li M Z, Bai H Y, Wang W H 2015 Five-fold symmetry as indicator of dynamic arrest in metallic glass-forming liquids Nat. Commun. 6 8310 doi: 10.1038/ncomms9310
    [59]
    Xu D, Duan G, Johnson W L 2004 Unusual glass-forming ability of bulk amorphous alloys based on ordinary metal copper Phys. Rev. Lett. 92 245504 doi: 10.1103/PhysRevLett.92.245504
    [60]
    Mei Q, Sinogeikin S, Shen G, Amin S, Benmore C J, Ding K 2010 High-pressure x-ray diffraction measurements on vitreous GeO2 under hydrostatic conditions Phys. Rev. B 81 174113 doi: 10.1103/PhysRevB.81.174113
    [61]
    Hong X, Shen G, Prakapenka V B, Newville M, Rivers M L, Sutton S R 2007 Intermediate states of GeO2 glass under pressures up to 35 GPa Phys. Rev. B 75 104201 doi: 10.1103/PhysRevB.75.104201
    [62]
    Hong X, Ehm L, Duffy T S 2014 Polyhedral units and network connectivity in GeO2 glass at high pressure: an x-ray total scattering investigation Appl. Phys. Lett. 105 081904 doi: 10.1063/1.4894103
    [63]
    Kono Y, Kenney-Benson C, Ikuta D, Shibazaki Y, Wang Y, Shen G 2016 Ultrahigh-pressure polyamorphism in GeO2 glass with coordination number > 6 Proc. Natl Acad. Sci. USA 113 3436-41 doi: 10.1073/pnas.1524304113
    [64]
    Park E S, Kim D H 2006 Phase separation and enhancement of plasticity in Cu-Zr-Al-Y bulk metallic glasses Acta Mater. 54 2597-604 doi: 10.1016/j.actamat.2005.12.020
    [65]
    Sohn S W, Yook W, Kim W T, Kim D H 2012 Phase separation in bulk-type Gd-Zr-Al-Ni metallic glass Intermetallics 23 57-62 doi: 10.1016/j.intermet.2011.12.021
    [66]
    Witte R, Feng T, Fang J X, Fischer A, Ghafari M, Kruk R, Brand R A, Wang D, Hahn H, Gleiter H 2013 Evidence for enhanced ferromagnetism in an iron-based nanoglass Appl. Phys. Lett. 103 073106 doi: 10.1063/1.4818493
    [67]
    Wang J Q, Chen N, Liu P, Wang Z, Louzguine-Luzgin D V, Chen M W, Perepezko J H 2014 The ultrastable kinetic behavior of an Au-based nanoglass Acta Mater. 79 30-36 doi: 10.1016/j.actamat.2014.07.015
    [68]
    Yang W, Li J, Li H, Liu H, Mo J, Lan S, Li M, Wang X L, Eckert J, Huo J 2022 Inheritance factor on the physical properties in metallic glasses Mater. Futures 1 035601 doi: 10.1088/2752-5724/ac7fad
    [69]
    Yuan C C, Lv Z W, Pang C M, Li X, Liu R, Yang C, Ma J, Ke H B, Wang W H, Shen B L 2021 Ultrasonic-assisted plastic flow in a Zr-based metallic glass Sci. China Mater. 64 448-59 doi: 10.1007/s40843-020-1411-2
    [70]
    Qiao J C, Wang Q, Pelletier J M, Kato H, Casalini R, Crespo D, Pineda E, Yao Y, Yang Y 2019 Structural heterogeneities and mechanical behavior of amorphous alloys Prog. Mater. Sci. 104 250-329 doi: 10.1016/j.pmatsci.2019.04.005
    [71]
    Zhang J Y, Zhou Z Q, Zhang Z B, Park M H, Yu Q, Li Z, Ma J, Wang A D, Huang H G, Song M 2022 Recent development of chemically complex metallic glasses: from accelerated compositional design, additive manufacturing to novel applications Mater. Futures 1 012001 doi: 10.1088/2752-5724/ac4558
  • 加载中

Catalog

    Figures(8)

    Article Metrics

    Article Views(274) PDF downloads(53)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return