Citation: | Emily Milan, Mauro Pasta. The role of grain boundaries in solid-state Li-metal batteries[J]. Materials Futures, 2023, 2(1): 013501. doi: 10.1088/2752-5724/aca703 |
[1] |
Cheng E J, Sharafi A, Sakamoto J 2017 Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte Electrochim. Acta 223 85-91 doi: 10.1016/j.electacta.2016.12.018
|
[2] |
Ohring M 2002 Interdiffusion, reactions and transformations in thin films Materials Science of Thin FilmsNew YorkAcademicch 11
|
[3] |
Mishin Y, Herzig C 1999 Grain boundary diffusion: recent progress and future research Mater. Sci. Eng. 260 55-71 doi: 10.1016/S0921-5093(98)00978-2
|
[4] |
Dawson J A, Canepa P, Famprikis T, Masquelier C, Islam M S 2018 Atomic-scale influence of grain boundaries on Li-ion conduction in solid electrolytes for all-solid-state batteries J. Am. Chem. Soc. 140 362-8 doi: 10.1021/jacs.7b10593
|
[5] |
L X, Howard J W, Chen A, Zhu J, Li S, Wu G, Dowden P, Xu H, Zhao Y, Jia Q 2016 Antiperovskite Li3OCl superionic conductor films for solid-state Li-ion batteries Adv. Sci. 3 3 doi: 10.1002/advs.201500359
|
[6] |
L X, Wu G, Howard J W, Chen A, Zhao Y, Daemen L L, Jia Q 2014 Li-rich anti-perovskite Li3OCl films with enhanced ionic conductivity Chem. Commun. 50 11520-2 doi: 10.1039/C4CC05372A
|
[7] |
Zhu J, Li S, Zhang Y, Howard J W, L X, Li Y, Wang Y, Kumar R S, Wang L, Zhao Y 2016 Enhanced ionic conductivity with Li7O2Br3 phase in Li3OBr anti-perovskite solid electrolyte Appl. Phys. Lett. 109 9 doi: 10.1063/1.4962437
|
[8] |
Ma C, Chen K, Liang C, Nan C W, Ishikawa R, More K, Chi M 2014 Atomic-scale origin of the large grain-boundary resistance in perovskite Li-ion-conducting solid electrolytes Energy Environ. Sci. 7 1638-42 doi: 10.1039/c4ee00382a
|
[9] |
Wu J F, Guo X 2017 Origin of the low grain boundary conductivity in lithium ion conducting perovskites: Li3xLa0.67−xTiO3 Phys. Chem. Chem. Phys. 19 5880-7 doi: 10.1039/c6cp07757a
|
[10] |
Tiku S K, Kroger F A 1980 Effects of space charge, grain-boundary segregation and mobility differences between grain boundary and bulk on the conductivity of polycrystalline Al2O3 J. Am. Ceram. Soc. 63 183-9 doi: 10.1111/j.1151-2916.1980.tb10688.x
|
[11] |
Tschope A 2001 Grain size-dependent electrical conductivity of polycrystalline cerium oxide II: space charge model Solid State Ion. 139 267-80 doi: 10.1016/S0167-2738(01)00677-4
|
[12] |
Guo X, Ding Y 2004 Grain boundary space charge effect in zirconia J. Electrochem. Soc. 151 J1 doi: 10.1149/1.1625948
|
[13] |
Dur O J, Lpez De La Torre M A, Vzquez L, Chaboy J, Boada R, Rivera-Calzada A, Santamaria J, Leon C 2010 Ionic conductivity of nanocrystalline yttria-stabilized zirconia: Grain boundary and size effects Phys. Rev. B 81 5 doi: 10.1103/PhysRevB.81.184301
|
[14] |
Kjlseth C, Fjeld H, Prytz , Dahl P I, Estourns C, Haugsrud R, Norby T 2010 Space-charge theory applied to the grain boundary impedance of proton conducting BaZr0.9Y0.1O3 -
|
[15] |
Yu S, Siegel D J 2017 Grain boundary contributions to Li-ion transport in the solid electrolyte Li7La3Zr2O12 (LLZO) Chem. Mater. 29 9639-47 doi: 10.1021/acs.chemmater.7b02805
|
[16] |
Dawson J A, Canepa P, Clarke M J, Famprikis T, Ghosh D, Islam M S 7 2019 Toward understanding the different influences of grain boundaries on ion transport in sulfide and oxide solid electrolytes Chem. Mater. 31 5296-304 doi: 10.1021/acs.chemmater.9b01794
|
[17] |
Lu Z, Chen C, Baiyee Z M, Chen X, Niu C, Ciucci F 2015 Defect chemistry and lithium transport in Li3OCl anti-perovskite superionic conductors Phys. Chem. Chem. Phys. 17 32547-55 doi: 10.1039/c5cp05722a
|
[18] |
Deng Z, Radhakrishnan B, Ong S P 2015 Rational composition optimization of the lithium-rich Li3OCl1−xBrx anti-perovskite superionic conductors Chem. Mater. 27 3749-55 doi: 10.1021/acs.chemmater.5b00988
|
[19] |
Emly A, Kioupakis E, Van Der Ven A 2013 Phase stability and transport mechanisms in antiperovskite Li3OCl and Li3OBr superionic conductors Chem. Mater. 25 4663-70 doi: 10.1021/cm4016222
|
[20] |
Mouta R, Melo M A B, Diniz E M, Paschoal C W A 2014 Concentration of charge carriers, migration and stability in Li3OCl solid electrolytes Chem. Mater. 26 7137-44 doi: 10.1021/cm503717e
|
[21] |
Quirk J A, Dawson J A 2022 Design principles for grain boundaries in solid-state lithium-ion conductors ChemRxiv Preprint10.26434/chemrxiv-2022-0jghq
|
[22] |
Kuhn A, Duppel V, Lotsch B V 2013 Tetragonal Li10GeP2S12 and Li7GePS8 - exploring the Li ion dynamics in LGPS Li electrolytes Energy Environ. Sci. 6 3548-52 doi: 10.1039/c3ee41728j
|
[23] |
Bron P, Dehnen S, Roling B 2016 Li10Si0.3Sn0.7P2S12 - a low-cost and low-grain-boundary-resistance lithium superionic conductor J. Power Sources 329 530-5 doi: 10.1016/j.jpowsour.2016.08.115
|
[24] |
Duchardt M, Ruschewitz U, Adams S, Dehnen S, Roling B 2018 Vacancy-controlled Na+ superion conduction in Na11Sn2PS12 Angew. Chem., Int. Ed. 57 1351-5 doi: 10.1002/anie.201712769
|
[25] |
Krauskopf T, Culver S P, Zeier W G 2018 Local tetragonal structure of the cubic superionic conductor Na3PS4 Inorg. Chem. 57 4739-44 doi: 10.1021/acs.inorgchem.8b00458
|
[26] |
Monroe C, Newman J 2005 The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces J. Electrochem. Soc. 152 396 doi: 10.1149/1.1850854
|
[27] |
Albertus P, Babinec S, Litzelman S, Newman A 2018 Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries Nat. Energy 3 16-21 doi: 10.1038/s41560-017-0047-2
|
[28] |
Famprikis T, Canepa P, Dawson J A, Islam M S, Masquelier C 2019 Fundamentals of inorganic solid-state electrolytes for batteries Nat. Mater. 18 1278-91 doi: 10.1038/s41563-019-0431-3
|
[29] |
Hao S, Bailey J J, Iacoviello F, Bu J, Grant P S, Brett D J L, Shearing P R 2021 3D imaging of lithium protrusions in solid-state lithium batteries using x-ray computed tomography Adv. Funct. Mater. 31 2007564 doi: 10.1002/adfm.202007564
|
[30] |
Fu K, et al 2017 Toward garnet electrolyte-based Li metal batteries: an ultrathin, highly effective artificial solid-state electrolyte/metallic Li interface Sci. Adv. 3 e1601659 doi: 10.1126/sciadv.1601659
|
[31] |
Thangadurai V, Narayanan S, Pinzaru D 7 2014 Garnet-type solid-state fast Li ion conductors for Li batteries: critical review Chem. Soc. Rev. 43 4714-27 doi: 10.1039/c4cs00020j
|
[32] |
Yu S, Siegel D J 2018 Grain boundary softening: a potential mechanism for lithium metal penetration through stiff solid electrolytes ACS Appl. Mater. Interfaces 10 38151-8 doi: 10.1021/acsami.8b17223
|
[33] |
Liu X, et al 2021 Local electronic structure variation resulting in Li filament’ formation within solid electrolytes Nat. Mater. 20 1485-90 doi: 10.1038/s41563-021-01019-x
|
[34] |
Han F, Westover A S, Yue J, Fan X, Wang F, Chi M, Leonard D N, Dudney N J, Wang H, Wang C 2019 High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes Nat. Energy 4 187-96 doi: 10.1038/s41560-018-0312-z
|
[35] |
Chen Y T, Jena A, Pang W K, Peterson V K, Sheu H S, Chang H, Liu R S 2017 Voltammetric enhancement of Li-ion conduction in al-doped Li7−xLa3Zr2O12 solid electrolyte J. Phys. Chem C 121 15565-73 doi: 10.1021/acs.jpcc.7b04004
|
[36] |
Minami K, Mizuno F, Hayashi A, Tatsumisago M 2007 Lithium ion conductivity of the Li2S-P2S5 glass-based electrolytes prepared by the melt quenching method Solid State Ion. 178 837-41 doi: 10.1016/j.ssi.2007.03.001
|
[37] |
Rangasamy E, Wolfenstine J, Sakamoto J 2012 The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12 Solid State Ion. 206 28-32 doi: 10.1016/j.ssi.2011.10.022
|
[38] |
Li G, Monroe C W 2019 Dendrite nucleation in lithium-conductive ceramics Phys. Chem. Chem. Phys. 21 20354-9 doi: 10.1039/C9CP03884A
|
[39] |
Cheng L, et al 2015 Interrelationships among grain size, surface composition, air stability and interfacial resistance of al-substituted Li7La3Zr2O12 solid electrolytes ACS Appl. Mater. Interfaces 7 17649-55 doi: 10.1021/acsami.5b02528
|
[40] |
Cheng L, Chen W, Kunz M, Persson K, Tamura N, Chen G, Doeff M 2015 Effect of surface microstructure on electrochemical performance of garnet solid electrolytes ACS Appl. Mater. Interfaces 7 2073-81 doi: 10.1021/am508111r
|
[41] |
Singh D K, Henss A, Mogwitz B, Gautam A, Horn J, Krauskopf T, Burkhardt S, Sann J, Richter F H, Janek J 2022 Li6PS5Cl microstructure and influence on dendrite growth in solid-state batteries with lithium metal anode Cell Rep. Phys. Sci. 3 101043 doi: 10.1016/j.xcrp.2022.101043
|
[42] |
Tsai C L, Roddatis V, Chandran C V, Ma Q, Uhlenbruck S, Bram M, Heitjans P, Guillon O 2016 Li7La3Zr2O12 interface modification for Li dendrite prevention ACS Appl. Mater. Interfaces 8 10617-26 doi: 10.1021/acsami.6b00831
|
[43] |
Wu B, Wang S, Lochala J, Desrochers D, Liu B, Zhang W, Yang J, Xiao J 2018 The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries Energy Environ. Sci. 11 1803-10 doi: 10.1039/C8EE00540K
|
[44] |
Sharafi A, Haslam C G, Kerns R D, Wolfenstine J, Sakamoto J 2017 Controlling and correlating the effect of grain size with the mechanical and electrochemical properties of Li7La3Zr2O12 solid-state electrolyte J. Mater. Chem. A 5 21491-504 doi: 10.1039/C7TA06790A
|
[45] |
Lee H J, Darminto B, Narayanan S, Diaz-Lopez M, Xiao A W, Chart Y, Lee J H, Dawson J A, Pasta M 2022 Li-ion conductivity in Li2OHCl(1−x)Brx solid electrolytes: grains, grain boundaries and interfaces J. Mater. Chem. A 10 11574 doi: 10.1039/D2TA01462A
|
[46] |
Huang Z, Chen L, Huang B, Xu B, Shao G, Wang H, Li Y, Wang C A 2020 Enhanced performance of Li6.4La3Zr1.4Ta0.6O12 solid electrolyte by the regulation of grain and grain boundary phases ACS Appl. Mater. Interfaces 12 56118-25 doi: 10.1021/acsami.0c18674
|
[47] |
Kim Y, Jo H, Allen J L, Choe H, Wolfenstine J, Sakamoto J, Pharr G 2016 The effect of relative density on the mechanical properties of hot-pressed cubic Li7La3Zr2O12 J. Am. Ceram. Soc. 99 1367-74 doi: 10.1111/jace.14084
|
[48] |
Abdelouas A, et al 2019 Springer Handbook of Glass1st ednChamSpringer
|
[49] |
Viallet V, Seznec V, Hayashi A, Tatsumisago M, Pradel A 2019 Glasses and glass-ceramics for solid-state battery applications Springer Handbook of GlassChamSpringer
|
[50] |
Grady Z A, Wilkinson C J, Randall C A, Mauro J C 2020 Emerging role of non-crystalline electrolytes in solid-state battery research Front. Energy Res. 8 1-23 doi: 10.3389/fenrg.2020.00218
|
[51] |
Das A, Sahu S, Mohapatra M, Verma S, Bhattacharyya A J, Basu S 2022 Lithium-ion conductive glass-ceramic electrolytes enable safe and practical Li batteries Mater. Today Energy 29 101118 doi: 10.1016/j.mtener.2022.101118
|
[52] |
Hamon Y, Douard A, Sabary F, Marcel C, Vinatier P, Pecquenard B, Levasseur A 2006 Influence of sputtering conditions on ionic conductivity of lipon thin films Solid State Ion. 177 257-61 doi: 10.1016/j.ssi.2005.10.021
|
[53] |
Bates J B, Dudney N J, Gruzalski G R, Zuhr R A, Choudhury A, Luck C F, Robertson J D 1993 Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries J. Power Sources 43 103 doi: 10.1016/0378-7753(93)80106-Y
|
[54] |
Wang Z, Santhanagopalan D, Zhang W, Wang F, Xin H L, He K, Li J, Dudney N, Meng Y S 2016 In situ stem-eels observation of nanoscale interfacial phenomena in all-solid-state batteries Nano Lett. 16 3760-7 doi: 10.1021/acs.nanolett.6b01119
|
[55] |
Westover A S, Dudney N J, Sacci R L, Kalnaus S 2019 Deposition and confinement of Li metal along an artificial Lipon-Lipon interface ACS Energy Lett. 4 651-5 doi: 10.1021/acsenergylett.8b02542
|
[56] |
Bates J B, Dudney N J, Neudecker B, Ueda A, Evans C D 2000 Thin-film lithium and lithium-ion batteries Solid State Ion. 135 33-45 doi: 10.1016/S0167-2738(00)00327-1
|
[57] |
Neudecker B J, Dudney N J, Bates J B 2000 Lithium-free thin-film battery with in situ plated Li anode J. Electrochem. Soc. 147 517-23 doi: 10.1149/1.1393226
|
[58] |
Kalnaus S, Westover A S, Kornbluth M, Herbert E, Dudney N J 2021 Resistance to fracture in the glassy solid electrolyte LiPON J. Mater. Res. 36 787-96 doi: 10.1557/s43578-020-00098-x
|
[59] |
Jackman S D, Cutler R A 2012 Effect of microcracking on ionic conductivity in LATP J. Power Sources 218 65-72 doi: 10.1016/j.jpowsour.2012.06.081
|
[60] |
Wolfenstine J, Allen J L, Sakamoto J, Siegel D J, Choe H 2018 Mechanical behavior of Li-ion-conducting crystalline oxide-based solid electrolytes: a brief review Ionics 24 1271-6 doi: 10.1007/s11581-017-2314-4
|
[61] |
Nonemacher J F, Naqash S, Tietz F, Malzbender J 2019 Micromechanical assessment of AL/Y-substituted nasicon solid electrolytes Ceram. Int. 45 21308-14 doi: 10.1016/j.ceramint.2019.07.114
|
[62] |
Porz L, Swamy T, Sheldon B W, Rettenwander D, Frmling T, Thaman H L, Berendts S, Uecker R, Carter W C, Chiang Y M 2017 Mechanism of lithium metal penetration through inorganic solid electrolytes Adv. Energy Mater. 7 1701003 doi: 10.1002/aenm.201701003
|
[63] |
Cheng D, et al 2022 Freestanding LiPON: from fundamental study to uniformly dense Li metal deposition under zero external pressure (arXiv:2208.04402)
|
[64] |
Su J, Pasta M, Ning Z, Gao X, Bruce P G, Grovenor C R M 2022 Interfacial modification between argyrodite-type solid-state electrolytes and Li metal anodes using LiPON interlayers Energy Environ. Sci. 15 3805 doi: 10.1039/d2ee01390h
|
[65] |
Mercier R, Malugani J, Fahys B, Robert G 1981 Superionic conduction in Li2S - P2S5 - LiI - glasses Solid State Ion. 5 663-6 doi: 10.1016/0167-2738(81)90341-6
|
[66] |
Menetrier M, Levasseur V, Delmas C, Audebert J, Hagenmuller P 1984 New secondary batteries for room temperature applications using a vitreous electrolyte Solid State Ion. 14 257-61 doi: 10.1016/0167-2738(84)90108-5
|
[67] |
Kennedy J H, Yang Y 1987 Glass-forming region and structure in SiS2-Li-2S-LiX (X = Br, I) J. Solid State Chem. 257 252-7 doi: 10.1016/0022-4596(87)90081-8
|
[68] |
Kondo S, Takada K, Yamamura Y 1992 New lithium ion conductors based on Li2S-SiS2 system Solid State Ion. 56 1183-6 doi: 10.1016/0167-2738(92)90310-L
|
[69] |
Pradel A, Ribes M 1986 Electrical properties of lithium conductive silicon sulfide glasses prepared by twin roller quenching Solid State Ion. 19 351-5 doi: 10.1016/0167-2738(86)90139-6
|
[70] |
Aotani N, Iwamoto K, Takada K, Kondo S 1994 Synthesis and electrochemical properties of lithium ion conductive glass, Li3PO4-Li2S-SiS2 Solid State Ion. 68 35-39 doi: 10.1016/0167-2738(94)90232-1
|
[71] |
Hayashi A, Tatsumisago M, Minami T 1999 Electrochemical properties for the lithium ion conductive (100-x) (0.6Li2 S · 0.4SiS2) · xLi4SiO4 oxysulfide glasses J. Electrochem. Soc. 146 3472 doi: 10.1149/1.1392498
|
[72] |
Tatsumisago M, Yamashita H, Hayashi A, Morimoto H, Minami T 2000 Preparation and structure of amorphous solid electrolytes based on lithium sulfide J. Non-Cryst. Solids 274 30-38 doi: 10.1016/S0022-3093(00)00180-0
|
[73] |
Hayashi A, Hama S, Morimoto H, Tatsumisago M, Minami T 2001 Preparation of Li2S-P2S5 amorphous solid electrolytes by mechanical milling J. Am. Ceram. Soc. 84 477-9 doi: 10.1111/j.1151-2916.2001.tb00685.x
|
[74] |
Ujiie S, Hayashi A, Tatsumisago M 2013 Preparation and ionic conductivity of (100−x)(0.8Li2S·0.2P2S5⋅xLiI glass-ceramic electrolytes J. Solid State Electrochem. 17 675-80 doi: 10.1007/s10008-012-1900-7
|
[75] |
Seino Y, Ota T, Takada K, Hayashi A, Tatsumisago M 2014 A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries Energy Environ. Sci. 7 627-31 doi: 10.1039/C3EE41655K
|
[76] |
Mizuno F, Hayashi A, Tadanaga K, Tatsumisago M 2005 New lithium-ion conducting crystal obtained by crystallization of the Li2S-P2S5 glasses Electrochem. Solid-State Lett. 8 A603 doi: 10.1149/1.2056487
|
[77] |
Wang S, et al 2021 Influence of crystallinity of lithium thiophosphate solid electrolytes on the performance of solid-state batteries Adv. Energy Mater. 11 1-11 doi: 10.1002/aenm.202100654
|
[78] |
Biesuz M, Sglavo V M 2019 Flash sintering of ceramics J. Eur. Ceram. Soc. 39 115-43 doi: 10.1016/j.jeurceramsoc.2018.08.048
|
[79] |
Campos J V, Lavagnini I R, Zallocco V M, Ferreira E B, Pallone M J A, Rodrigues A C M Flash sintering with concurrent crystallization of Li1.5Al0.5Ge1.5(PO43 glass Preprinthttps://doi.org/10.2139/ssrn.4130828(posted online 8 Jun 2022)
|
[80] |
Ning Z, et al 2021 Visualizing plating-induced cracking in lithium-anode solid-electrolyte cells Nat. Mater. 20 1121-9 doi: 10.1038/s41563-021-00967-8
|
[81] |
Lee C H, Joo K H, Kim J H, Woo S G, Sohn H J, Kang T, Park Y, Oh J Y 2002 Characterizations of a new lithium ion conducting Li2O-SeO2-B2O3 glass electrolyte Solid State Ion. 149 59-65 doi: 10.1016/S0167-2738(02)00137-6
|
[82] |
Kataoka K, Nagata H, Akimoto J 2018 Lithium-ion conducting oxide single crystal as solid electrolyte for advanced lithium battery application Sci. Rep. 8 9965 doi: 10.1038/s41598-018-27851-x
|