Volume 1 Issue 4
December  2022
Turn off MathJax
Article Contents
Bo Tong, Ziyu Song, Hao Wu, Xingxing Wang, Wenfang Feng, Zhibin Zhou, Heng Zhang. Ion transport and structural design of lithium-ion conductive solid polymer electrolytes: a perspective[J]. Materials Futures, 2022, 1(4): 042103. doi: 10.1088/2752-5724/ac9e6b
Citation: Bo Tong, Ziyu Song, Hao Wu, Xingxing Wang, Wenfang Feng, Zhibin Zhou, Heng Zhang. Ion transport and structural design of lithium-ion conductive solid polymer electrolytes: a perspective[J]. Materials Futures, 2022, 1(4): 042103. doi: 10.1088/2752-5724/ac9e6b
Topical Review •

Ion transport and structural design of lithium-ion conductive solid polymer electrolytes: a perspective

© 2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 1, Number 4
  • Received Date: 2022-09-30
  • Accepted Date: 2022-10-27
  • Rev Recd Date: 2022-10-24
  • Publish Date: 2022-11-17
  • Solid polymer electrolytes (SPEs) possess several merits including no leakage, ease in process, and suppressing lithium dendrites growth. These features are beneficial for improving the cycle life and safety performance of rechargeable lithium metal batteries (LMBs), as compared to conventional non-aqueous liquid electrolytes. Particularly, the superior elasticity of polymeric material enables the employment of SPEs in building ultra-thin and flexible batteries, which could further expand the application scenarios of high-energy rechargeable LMBs. In this perspective, recent progresses on ion transport mechanism of SPEs and structural designs of electrolyte components (e.g. conductive lithium salts, polymer matrices) are scrutinized. In addition, key achievements in the field of single lithium-ion conductive SPEs are also outlined, aiming to provide the status quo in those SPEs with high selectivity in cationic transport. Finally, possible strategies for improving the performance of SPEs and their rechargeable LMBs are also discussed.
  • loading
  • [1]
    Armand M 1980 Materials for advanced batteries NATO Conf. Seriesvol 2Boston, MA p 145
    Armand M, et al 2020 Lithium-ion batteries-current state of the art and anticipated developments J. Power Sources 479 228708 doi: 10.1016/j.jpowsour.2020.228708
    Xu K 2004 Nonaqueous liquid electrolytes for lithium-based rechargeable batteries Chem. Rev. 104 4303-18 doi: 10.1021/cr030203g
    Xu K 2014 Electrolytes and interphases in Li-ion batteries and beyond Chem. Rev. 114 11503-618 doi: 10.1021/cr500003w
    Zheng L P, Zhang H, Cheng P F, Ma Q, Liu J J, Nie J, Feng W F, Zhou Z B 2016 Li[(FSO2)(n-C4F9SO2)N] versus LiPF6 for graphite/LiCoO2 lithium-ion cells at both room and elevated temperatures: a comprehensive understanding with chemical, electrochemical and XPS analysis Electrochim. Acta 196 169-88 doi: 10.1016/j.electacta.2016.02.152
    Song Z Y, et al 2022 Taming the chemical instability of lithium hexafluorophosphate-based electrolyte with lithium fluorosulfonimide salts J. Power Sources 526 231105 doi: 10.1016/j.jpowsour.2022.231105
    Manuel Stephan A 2006 Review on gel polymer electrolytes for lithium batteries Eur. Polym. J. 42 21-42 doi: 10.1016/j.eurpolymj.2005.09.017
    Billaud D, McRae E, Hrold A 1979 Synthesis and electrical resistivity of lithium-pyrographite intercalation compounds (stages I, II and III) Mater. Res. Bull. 14 857-64 doi: 10.1016/0025-5408(79)90149-1
    Judez X, Eshetu G G, Li C M, Rodriguez-Martinez L M, Zhang H, Armand M 2018 Opportunities for rechargeable solid-state batteries based on Li-intercalation cathodes Joule 2 2208-24 doi: 10.1016/j.joule.2018.09.008
    Tian Y, et al 2021 Promises and challenges of next-generation beyond Li-ion batteries for electric vehicles and grid decarbonization Chem. Rev. 121 1623-69 doi: 10.1021/acs.chemrev.0c00767
    Janek J, Zeier W G 2016 A solid future for battery development Nat. Energy 1 16141 doi: 10.1038/nenergy.2016.141
    Bresser D, Hosoi K, Howell D, Li H, Zeisel H, Amine K, Passerini S 2018 Perspectives of automotive battery R&D in China, Germany, Japan, and the USA J. Power Sources 382 176-8 doi: 10.1016/j.jpowsour.2018.02.039
    Fenton D E, Parker J M, Wright P V 1973 Complexes of alkali metal ions with poly(ethylene oxide) Polymer 14 589 doi: 10.1016/0032-3861(73)90146-8
    Armand M, Chabagno J M, Duclot M J 1978 2th Int. Meeting on Solid Electrolyte in Fast Ion Transport in Solids St(Andrews, Scotland) 651
    Hallinan D T, Balsara N P 2013 Polymer electrolytes Annu. Rev. Mater. Res. 43 503-25 doi: 10.1146/annurev-matsci-071312-121705
    Qiao L X, Judez X, Rojo T, Armand M, Zhang H 2020 Reviewpolymer electrolytes for sodium batteries J. Electrochem. Soc. 167 070534 doi: 10.1149/1945-7111/ab7aa0
    Lago N, Garcia-Calvo O, Lopez Del Amo J M, Rojo T, Armand M 2015 All-solid-state lithium-ion batteries with grafted ceramic nanoparticles dispersed in solid polymer electrolytes ChemSusChem 8 3039-43 doi: 10.1002/cssc.201500783
    Fan P, Liu H, Marosz V, Samuels N T, Suib S L, Sun L, Liao L 2021 High performance composite polymer electrolytes for lithiumion batteries Adv. Funct. Mater. 31 2101380 doi: 10.1002/adfm.202101380
    Yao P H, Yu H B, Ding Z Y, Liu Y C, Lu J, Lavorgna M, Wu J W, Liu X J 2019 Review on polymer-based composite electrolytes for lithium batteries Front. Chem. 7 522 doi: 10.3389/fchem.2019.00522
    Zhu M, Wu J, Wang Y, Song M, Long L, Siyal S H, Yang X, Sui G 2019 Recent advances in gel polymer electrolyte for high-performance lithium batteries J. Energy Chem. 37 126-42 doi: 10.1016/j.jechem.2018.12.013
    Berthier C, Gorecki W, Minier M, Armand M, Chabagno J M, Rigaud P 1983 Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts Solid State Ion. 11 91-95 doi: 10.1016/0167-2738(83)90068-1
    Gorecki W, Donoso P, Berthier C, Mali M, Roos J, Brinkmann D, Armand M 1988 NMR, DSC and conductivity study of the polymer solid electrolytes P(EO) (LiCp+1F2p+3SO3x Solid State Ion. 28-30 1018-22 doi: 10.1016/0167-2738(88)90323-2
    Wintersgill M C, Fontanella J J, Pak Y S, Greenbaum S G, Al-Mudaris A, Chadwick A V 1989 Electrical conductivity, differential scanning calorimetry and nuclear magnetic resonance studies of amorphous poly(ethylene oxide) complexed with sodium salts Polymer 30 1123-26 doi: 10.1016/0032-3861(89)90091-8
    Stoeva Z, Martin-Litas I, Staunton E, Andreev Y G, Bruce P G 2003 Ionic conductivity in the crystalline polymer electrolytes PEO6:LiXF6, X = P, As, Sb J. Am. Chem. Soc. 125 4619-26 doi: 10.1021/ja029326t
    Zhang C, Andreev Y G, Bruce P G 2007 Crystalline small-molecule electrolytes Angew. Chem. Int. Ed. 46 2848-50 doi: 10.1002/anie.200604934
    Zhang C, Gamble S, Ainsworth D, Slawin A M, Andreev Y G, Bruce P G 2009 Alkali metal crystalline polymer electrolytes Nat. Mater. 8 580-4 doi: 10.1038/nmat2474
    Angell C A, Fan J, Liu C, Lu Q, Sanchez E, Xu K 1994 Li-conducting ionic rubbers for lithium battery and other applications Solid State Ion. 69 343-53 doi: 10.1016/0167-2738(94)90422-7
    Forsyth M, Sun J, Macfarlane D R, Hill A J 2000 Compositional dependence of free volume in PAN/LiCF3SO3 polymerinsalt electrolytes and the effect on ionic conductivity J. Polym. Sci. B 38 341-50 doi: 10.1002/(SICI)1099-0488(20000115)38:2<341::AID-POLB6>3.0.CO;2-S
    McLin M G, Angell C A 1992 Frequency-dependent conductivity, relaxation times, and the conductivity/viscosity coupling problem, in polymer-electrolyte solutions: LiClO4 and NaCF3SO3 in PPO 4000 Solid State Ion. 53-56 1027-36 doi: 10.1016/0167-2738(92)90286-X
    Ratner M A, Shriver D F 1988 Ion transport in solvent-free polymers Chem. Rev. 88 109-24 doi: 10.1021/cr00083a006
    Angell C A, Liu C, Sanchez E 1993 Rubbery solid electrolytes with dominant cationic transport and high ambient conductivity Nature 362 137-9 doi: 10.1038/362137a0
    Wright P V 2002 Developments in polymer electrolytes for lithium batteries MRS Bull. 27 597-602 doi: 10.1557/mrs2002.194
    Gao H, Grundish N S, Zhao Y, Zhou A, Goodenough J B 2021 Formation of stable interphase of polymer-in-salt electrolyte in all-solid-state lithium batteries Energy Mater. Adv. 2021 1-10 doi: 10.34133/2021/1932952
    Feng L, Cui H 1996 A new solid-state electrolyte: rubbery polymer-in-salt’ containing LiN(CF3SO22 J. Power Sources 63 145-8 doi: 10.1016/S0378-7753(96)02454-8
    Li Y, Ding F, Xu Z, Sang L, Ren L, Ni W, Liu X 2018 Ambient temperature solid-state Li-battery based on high-salt-concentrated solid polymeric electrolyte J. Power Sources 397 95-101 doi: 10.1016/j.jpowsour.2018.05.050
    Zhao Y, Bai Y, Bai Y, An M, Chen G, Li W, Li C, Zhou Y 2018 A rational design of solid polymer electrolyte with high salt concentration for lithium battery J. Power Sources 407 23-30 doi: 10.1016/j.jpowsour.2018.10.045
    Wright P V 1976 An anomalous transition to a lower activation energy for dc electrical conduction above the glass-transition temperature J. Polym. Sci. B Polym. Phys. 14 955-7 doi: 10.1002/pol.1976.180140516
    Abraham K M, Jiang Z, Carroll B 1997 Highly conductive PEO-like polymer electrolytes Chem. Mater. 9 1978-88 doi: 10.1021/cm970075a
    Jacob M, Prabaharan S, Radhakrishna S 1997 Effect of PEO addition on the electrolytic and thermal properties of PVDF-LiClO4 polymer electrolytes Solid State Ion. 104 267-76 doi: 10.1016/S0167-2738(97)00422-0
    Bandara L R A K, Dissanayake M A K L, Mellander B-E 1998 Ionic conductivity of plasticized(PEO)‒LiCF3SO3 electrolytes Electrochim. Acta 43 1447-51 doi: 10.1016/S0013-4686(97)10082-2
    Frech R, Chintapalli S, Bruce P G, Vincent C A 1999 Crystalline and amorphous phases in the poly(ethylene oxide)‒LiCF3SO3 System Macromolecules 32 808-13 doi: 10.1021/ma9812682
    Jayathilaka P A R D, Dissanayake M A K L, Albinsson I, Mellander B E 2002 Effect of nano-porous Al2O3 on thermal, dielectric and transport properties of the (PEO)9LiTFSI polymer electrolyte system Electrochim. Acta 18 1-103 doi: 10.1016/S0013-4686(02)00243-8
    Appetecchi G B, Shin J H, Alessandrini F, Passerini S 2005 0.6Ah Li/V2O5 battery prototypes based on solvent-free PEO‒LiN(SO2CF2CF32 polymer electrolytes J. Power Sources 143 236-42 doi: 10.1016/j.jpowsour.2004.11.039
    Boaretto N, Meabe L, Martinez-Ibaez M, Armand M, Zhang H 2020 Reviewpolymer electrolytes for rechargeable batteries: from nanocomposite to nanohybrid J. Electrochem. Soc. 167 070524 doi: 10.1149/1945-7111/ab7221
    Zhang H, Armand M 2021 History of solid polymer electrolytebased solidstate lithium metal batteries: a personal account Isr. J. Chem. 61 94-100 doi: 10.1002/ijch.202000066
    Takahashi Y, Tadokoro H 1973 Structural studies of polyethers, (‒(CH2m‒O‒)n. X. crystal structure of poly(ethylene oxide) Macromolecules 6 672-5 doi: 10.1021/ma60035a005
    Johansson P 2001 First principles modelling of amorphous polymer electrolytes: Li+-PEO, Li+-PEI, and Li+-PES complexes Polymer 42 4367-73 doi: 10.1016/S0032-3861(00)00731-X
    Robitaille C D, Fauteux D 1986 Phase diagrams and conductivity characterization of some PEOLiX electrolytes J. Electrochem. Soc. 133 315-25 doi: 10.1149/1.2108569
    Ballard D G H, Cheshire P, Mann T S, Przeworski J E 1990 Ionic conductivity in organic solids derived from amorphous macromolecules Macromolecules 23 1256-64 doi: 10.1021/ma00207a006
    Oradd G, Edman L, Ferry A 2002 Diffusion: a comparison between liquid and solid polymer LiTFSI electrolytes Solid State Ion. 152-153 131-6 doi: 10.1016/S0167-2738(02)00364-8
    Zardalidis G, Ioannou E, Pispas S, Floudas G 2013 Relating structure, viscoelasticity, and local mobility to conductivity in PEO/LiTf electrolytes Macromolecules 46 2705-14 doi: 10.1021/ma400266w
    Zhang H, Liu C, Zheng L, Xu F, Feng W, Li H, Huang X, Armand M, Nie J, Zhou Z 2014 Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolyte Electrochim. Acta 133 529-38 doi: 10.1016/j.electacta.2014.04.099
    Xue Z, He D, Xie X 2015 Poly(ethylene oxide)-based electrolytes for lithium-ion batteries J. Mater. Chem. A 3 19218-53 doi: 10.1039/C5TA03471J
    Eshetu G G, Judez X, Li C, Martinez-Ibaez M, Gracia I, Bondarchuk O, Carrasco J, Rodriguez-Martinez L M, Zhang H, Armand M 2018 Ultrahigh performance all solid-state lithium sulfur batteries: salt anion’s chemistry-induced anomalous synergistic effect J. Am. Chem. Soc. 140 9921-33 doi: 10.1021/jacs.8b04612
    Armand M 1986 Polymer electrolytes Annu. Rev. Mater. Sci. 16 245-61 doi: 10.1146/annurev.ms.16.080186.001333
    Han H, et al 2011 Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: physicochemical and electrochemical properties J. Power Sources 196 3623-32 doi: 10.1016/j.jpowsour.2010.12.040
    Tong B, Wang P, Ma Q, Wan H, Zhang H, Huang X, Armand M, Feng W, Nie J, Zhou Z 2020 Lithium fluorinated sulfonimide-based solid polymer electrolytes for Li||LiFePO4 cell: the impact of anionic structure Solid State Ion. 358 115519 doi: 10.1016/j.ssi.2020.115519
    Chiodelli G, Ferloni P, Magistris A, Sanesi M 1988 Ionic conduction and thermal properties of poly (ethylene oxide)-lithium tetrafluoroborate films Solid State Ion. 28-30 1009-13 doi: 10.1016/0167-2738(88)90321-9
    Sun H Y, Takeda Y, Imanishi N, Yamamoto O, Sohn H J 2000 Ferroelectric materials as a ceramic filler in solid composite polyethylene oxide-based electrolytes J. Electrochem. Soc. 147 2462-7 doi: 10.1149/1.1393554
    Appetecchi G B, Henderson W, Villano P, Berrettoni M, Passerini S 2001 PEO-LiN(SO2CF2CF32 polymer electrolytes: i. XRD, DSC, and ionic conductivity characterization J. Electrochem. Soc. 148 A1171-8 doi: 10.1149/1.1403728
    Karuppasamy K, Kim D, Kang Y H, Prasanna K, Rhee H W 2017 Improved electrochemical, mechanical and transport properties of novel lithium bisnonafluoro-1-butanesulfonimidate (LiBNFSI) based solid polymer electrolytes for rechargeable lithium ion batteries J. Ind. Eng. Chem. 52 224-34 doi: 10.1016/j.jiec.2017.03.051
    Ma Q, et al 2016 Novel Li[(CF3SO2)(n-C4F9SO2)N]-based polymer electrolytes for solid-state lithium batteries with superior electrochemical performance ACS Appl. Mater. Interfaces 8 29705-12 doi: 10.1021/acsami.6b10597
    Liu D F, Nie J, Guan W C, Duan H Q, Zhuo L M 2004 Characterizations of a branched ester-type lithium imide in poly(ethylene oxide)-based polymer electrolytes Solid State Ion. 167 131-6 doi: 10.1016/j.ssi.2004.01.003
    Zhang H, et al 2019 Enhanced lithium-ion conductivity of polymer electrolytes by selective introduction of hydrogen into the anion Angew. Chem., Int. Ed. Engl. 58 7829-34 doi: 10.1002/anie.201813700
    Qiao L, et al 2020 Trifluoromethyl-free anion for highly stable lithium metal polymer batteries Energy Storage Mater. 32 225-33 doi: 10.1016/j.ensm.2020.07.022
    Zhang H, Chen F, Lakuntza O, Oteo U, Qiao L, MartinezIbaez M, Zhu H, Carrasco J, Forsyth M, Armand M 2019 Suppressed mobility of negative charges in polymer electrolytes with an ether-functionalized anion Angew. Chem. Int. Ed. 58 12070-5 doi: 10.1002/anie.201905794
    Qiao L, et al 2022 Anion pi-pi stacking for improved lithium transport in polymer electrolytes J. Am. Chem. Soc. 144 9806-16 doi: 10.1021/jacs.2c02260
    Martinez-Ibaez M, Sanchez-Diez E, Oteo U, Gracia I, Aldalur I, Eitouni H B, Joost M, Armand M, Zhang H 2022 Anions with a dipole: toward high transport numbers in solid polymer electrolytes Chem. Mater. 34 3451-60 doi: 10.1021/acs.chemmater.2c00285
    Zhang H, Song Z Y, Yuan W M, Feng W F, Nie J, Armand M, Huang X J, Zhou Z B 2021 Impact of negative charge delocalization on the properties of solid polymer electrolytes ChemElectroChem 8 1322-8 doi: 10.1002/celc.202100045
    Polu A R, Kim D K, Rhee H-W 2015 Poly(ethylene oxide)-lithium difluoro(oxalato)borate new solid polymer electrolytes: ion-polymer interaction, structural, thermal, and ionic conductivity studies Ionics 21 2771-80 doi: 10.1007/s11581-015-1474-3
    Wu X, Xin S, Seo H-H, Kim J, Guo Y-G, Lee J-S 2011 Enhanced Li+ conductivity in PEO-LiBOB polymer electrolytes by using succinonitrile as a plasticizer Solid State Ion. 186 1-6 doi: 10.1016/j.ssi.2011.01.010
    Zhang H, Judez X, Santiago A, MartinezIbaez M, MuozMrquez M , Carrasco J, Li C, Eshetu G G, Armand M 2019 Fluorinefree noble salt anion for highperformance allsolidstate lithium-sulfur batteries Adv. Energy Mater. 9 1900763 doi: 10.1002/aenm.201900763
    Egashira M, Scrosati B, Armand M, Beranger S, Michot C 2003 Lithium dicyanotriazolate as a lithium salt for poly(ethylene oxide) based polymer electrolytes Electrochem. Solid-State Lett. 6 A71-3 doi: 10.1149/1.1558352
    Jankowski P, ukowska G Z, Dranka M, Marczewski M J, Ostrowski A, Korczak J, Niedzicki L, Zalewska A, Wieczorek W 2016 Understanding of lithium 4,5-dicyanoimidazolate-poly(ethylene oxide) system: influence of the architecture of the solid phase on the conductivity J. Phys. Chem. C 120 23358-67 doi: 10.1021/acs.jpcc.6b07058
    Linert W, Camard A, Armand M, Michot C 2002 Anions of low Lewis basicity for ionic solid state electrolytes Coord. Chem. Rev. 226 137-41 doi: 10.1016/S0010-8545(01)00416-7
    Johansson P 2007 Electronic structure calculations on lithium battery electrolyte salts Phys. Chem. Chem. Phys. 9 1493-8 doi: 10.1039/B612297C
    Meussdorffer J N N 1972 Bisperfluorakansulfonylimide (RfSO22NH Chem. Ztg. 96 582-3
    Lopes J N C, Shimizu K, Pdua A A H, Umebayashi Y, Fukuda S, Fujii K, Ishiguro S-I 2008 A tale of two ions: the conformational landscapes of bis(trifluoromethanesulfonyl)amide and N, N-dialkylpyrrolidinium J. Phys. Chem. B 112 1465-72 doi: 10.1021/jp076997a
    Appel R, Eisenhauer G 1962 Die synthese des imidobisschwefelsurefluorids, HN(SO2F)2 Chem. Ber. 95 246-8 doi: 10.1002/cber.19620950139
    Christophe M, et al 1995 Ionic conducting material having good anticorrosive propertiesWO9526056A1
    Zhang H, Feng W F, Zhou Z B, Nie J 2014 Composite electrolytes of lithium salt/polymeric ionic liquid with bis(fluorosulfonyl)imide Solid State Ion. 256 61-67 doi: 10.1016/j.ssi.2014.01.003
    Zhang H, Arcelus O, Carrasco J 2018 Role of asymmetry in the physiochemical and electrochemical behaviors of perfluorinated sulfonimide anions for lithium batteries: a DFT study Electrochim. Acta 280 290-9 doi: 10.1016/j.electacta.2018.05.109
    Zhang L, Chen Y H 2021 Electrolyte solvation structure as a stabilization mechanism for electrodes Energy Mater. 1 100004 doi: 10.20517/energymater.2021.04
    Doyle M, Fuller T F, Newman J 1994 The importance of the lithium ion transference number in lithium/polymer cells Electrochim. Acta 39 2073-81 doi: 10.1016/0013-4686(94)85091-7
    Brissot C, Rosso M, Chazalviel J-N, Baudryb P, Lascaud S 1998 In situ study of dendritic growth in lithium/PEO-salt/lithium cells Electrochim. Acta 43 1569-74 doi: 10.1016/S0013-4686(97)10055-X
    Oteo U, MartinezIbaez M, Aldalur I, SanchezDiez E, Carrasco J, Armand M, Zhang H 2019 Improvement of the cationic transport in polymer electrolytes with (difluoromethanesulfonyl)(trifluoromethanesulfonyl)imide salts ChemElectroChem 6 1019-22 doi: 10.1002/celc.201801472
    Zhang X, Daigle J C, Zaghib K 2020 Comprehensive review of polymer architecture for all-solid-state lithium rechargeable batteries Materials 13 2488 doi: 10.3390/ma13112488
    Qiu J, Yang L, Sun G, Yu X, Li H, Chen L 2020 A stabilized PEO-based solid electrolyte via a facile interfacial engineering method for a high voltage solid-state lithium metal battery Chem. Commun. 56 5633-6 doi: 10.1039/D0CC01829E
    Gray F M 1997 Polymer ElectrolytesLondon:Royal Society of Chemistry p 175
    Cui M, Li Z, Zhang J, Feng S 2008 Siloxane-based polymer electrolytes Prog. Chem. 20 1988-96 doi: 10.1016/j.ensm.2019.04.016
    Tu Q, Zhang Q, Wang Y, Jiao Y, Xiao J, Peng T, Wang J 2019 Antibacterial properties of poly(dimethylsiloxane) surfaces modified with graphene oxide-catechol composite Prog. Org. Coat. 129 247-53 doi: 10.1016/j.porgcoat.2019.01.011
    Gupta A K, Paliwal D K, Bajaj P 1998 Melting behavior of acrylonitrile polymers J. Appl. Polym. Sci. 70 2703-9 doi: 10.1002/(SICI)1097-4628(19981226)70:13<2703::AID-APP15>3.0.CO;2-2
    Brito C A R, Fleming R R, Pardini L C, Alves N P 2013 Poliacrilonitrila: processos de fiao empregados na indstria Polmeros 23 764-70 doi: 10.4322/polimeros.2013.006
    Zhang H, Armand M, Rojo T 2019 Editors’ choicereviewinnovative polymeric materials for better rechargeable batteries: strategies from CIC energigune J. Electrochem. Soc. 166 A679-86 doi: 10.1149/2.0811904jes
    Wang X, Song Z, Wu H, Nie J, Feng W, Yu H, Huang X, Armand M, Zhou Z, Zhang H 2022 Unprecedented impact of main chain on comb polymer electrolytes performances ChemElectroChem 9 e202101590 doi: 10.1002/celc.202101590
    Chen J X, Wang C, Wang G X, Zhou D, Fan L Z 2022 An interpenetrating network polycarbonate-based composite electrolyte for high-voltage all-solid-state lithium-metal batteries Energy Mater. 2 200023 doi: 10.20517/energymater.2022.25
    Zhang H, Chen Y H, Li C M, Armand M 2021 Electrolyte and anode-electrolyte interphase in solid-state lithium metal polymer batteries: a perspective SusMat 1 24-37 doi: 10.1002/sus2.6
    Zhang H, Zhou Z B, Nie J 2013 Recent advances of polymeric ionic liquids Prog. Chem. 25 762-74 doi: 10.7536/PC121043
    Zhang H, Li L, Feng W F, Zhou Z B, Nie J 2014 Polymeric ionic liquids based on ether functionalized ammoniums and perfluorinated sulfonimides Polymer 55 3339-48 doi: 10.1016/j.polymer.2014.03.041
    Zhang H, Liu C Y, Zheng L P, Feng W F, Zhou Z B, Nie J 2015 Solid polymer electrolyte comprised of lithium salt/ether functionalized ammonium-based polymeric ionic liquid with bis(fluorosulfonyl)imide Electrochim. Acta 159 93-101 doi: 10.1016/j.electacta.2015.01.213
    Eshetu G G, Mecerreyes D, Forsyth M, Zhang H, Armand M 2019 Polymeric ionic liquids for lithium-based rechargeable batteries Mol. Syst. Des. Eng. 4 294-309 doi: 10.1039/C8ME00103K
    Aldalur I, Armand M, Zhang H 2020 Jeffaminebased polymers for rechargeable batteries Batteries Supercaps 3 30-46 doi: 10.1002/batt.201900133
    Benrabah D, Sanchez J Y, Armand M 1992 New polyamide-ether electrolytes Electrochim. Acta 37 1737-41 doi: 10.1016/0013-4686(92)80150-K
    Aldalur I, Zhang H, Piszcz M, Oteo U, Rodriguez-Martinez L M, Shanmukaraj D, Rojo T, Armand M 2017 Jeffamine based polymers as highly conductive polymer electrolytes and cathode binder materials for battery application J. Power Sources 347 37-46 doi: 10.1016/j.jpowsour.2017.02.047
    Aldalur I, Martinez-Ibaez M, Piszcz M, Rodriguez-Martinez L M, Zhang H, Armand M 2018 Lowering the operational temperature of all-solid-state lithium polymer cell with highly conductive and interfacially robust solid polymer electrolytes J. Power Sources 383 144-9 doi: 10.1016/j.jpowsour.2018.02.066
    Aldalur I, Martinez-Ibaez M, Krzto-Maziopa A, Piszcz M, Armand M, Zhang H 2019 Flowable polymer electrolytes for lithium metal batteries J. Power Sources 423 218-26 doi: 10.1016/j.jpowsour.2019.03.057
    Aldalur I, MartinezIbaez M, Piszcz M, Zhang H, Armand M 2018 Selfstanding highly conductive solid electrolytes based on block copolymers for rechargeable allsolidstate lithiummetal batteries Batteries Supercaps 1 149-59 doi: 10.1002/batt.201800048
    Tan S, Perre E, Gustafsson T, Brandell D 2012 A solid state 3D microbattery based on Cu2Sb nanopillar anodes Solid State Ion. 225 510-2 doi: 10.1016/j.ssi.2011.11.005
    Tan S, Walus S, Gustafsson T, Brandell D 2011 3D microbattery electrolyte by self-assembly of oligomers Solid State Ion. 198 26-31 doi: 10.1016/j.ssi.2011.07.005
    Aldalur I, et al 2020 Nanofiber-reinforced polymer electrolytes toward room temperature solid-state lithium batteries J. Power Sources 448 227424 doi: 10.1016/j.jpowsour.2019.227424
    Xu H, Xie J, Liu Z, Wang J, Deng Y 2020 Carbonyl-coordinating polymers for high-voltage solid-state lithium batteries: solid polymer electrolytes MRS Energy Sustain. 7 1 doi: 10.1557/mre.2020.3
    Dukhanin G P, Dumler S A, Sablin A N, Novakov I A 2009 Solid polymeric electrolyte based on poly(ethylene carbonate)-lithium perchlorate system Russ. J. Appl. Chem. 82 243-6 doi: 10.1134/S1070427209020153
    Ebadi M, Eriksson T, Mandal P, Costa L T, Araujo C M, Mindemark J, Brandell D 2020 Restricted ion transport by plasticizing side chains in polycarbonate-based solid electrolytes Macromolecules 53 764-74 doi: 10.1021/acs.macromol.9b01912
    Meabe L, Pea S R, Martinez-Ibaez M, Zhang Y, Lobato E, Manzano H, Armand M, Carrasco J, Zhang H 2020 Insight into the ionic transport of solid polymer electrolytes in polyether and polyester blends J. Phys. Chem. C 124 17981-91 doi: 10.1021/acs.jpcc.0c04987
    Zhang J, et al 2015 Safety-reinforced poly(propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries Adv. Energy Mater. 5 1501082 doi: 10.1002/aenm.201501082
    Kimura K, Yajima M, Tominaga Y 2016 A highly-concentrated poly(ethylene carbonate)-based electrolyte for all-solid-state Li battery working at room temperature Electrochem. Commun. 66 46-48 doi: 10.1016/j.elecom.2016.02.022
    Tominaga Y 2017 Ion-conductive polymer electrolytes based on poly(ethylene carbonate) and its derivatives Polym. J. 49 291-9 doi: 10.1038/pj.2016.115
    Commarieu B, Paolella A, Collin-Martin S, Gagnon C, Vijh A, Guerfi A, Zaghib K 2019 Solid-to-liquid transition of polycarbonate solid electrolytes in Li-metal batteries J. Power Sources 436 226852 doi: 10.1016/j.jpowsour.2019.226852
    Buchheit A, Grnebaum M, Temer B, Winter M, Wiemhfer H-D 2021 Polycarbonate-based lithium salt-containing electrolytes: new insights into thermal stability J. Phys. Chem. C 125 4371-8 doi: 10.1021/acs.jpcc.0c09968
    Wang C, Zhang H, Li J, Chai J, Dong S, Cui G 2018 The interfacial evolution between polycarbonate-based polymer electrolyte and Li-metal anode J. Power Sources 397 157-61 doi: 10.1016/j.jpowsour.2018.07.008
    Thomas K E, Sloop S E, Kerr J B, Newman J 2000 Comparison of lithium-polymer cell performance with unity and nonunity transference numbers J. Power Sources 89 132-8 doi: 10.1016/S0378-7753(00)00420-1
    Feng S W, Shi D Y, Liu F, Zheng L P, Nie J, Feng W F, Huang X J, Armand M, Zhou Z B 2013 Single lithium-ion conducting polymer electrolytes based on poly[(4-styrenesulfonyl)(trifluoromethanesulfonyl)imide] anions Electrochim. Acta 93 254-63 doi: 10.1016/j.electacta.2013.01.119
    Ma Q, et al 2016 Single lithium-ion conducting polymer electrolytes based on a super-delocalized polyanion Angew. Chem. Int. Ed. 55 2521-5 doi: 10.1002/anie.201509299
    Zhang H, Li C M, Piszcz M, Coya E, Rojo T, Rodriguez-Martinez L M, Armand M, Zhou Z B 2017 Single lithium-ion conducting solid polymer electrolytes: advances and perspectives Chem. Soc. Rev. 46 797-815 doi: 10.1039/C6CS00491A
    Stephan A M, Prem Kumar T, Angulakshmi N, Salini P S, Sabarinathan R, Srinivasan A, Thomas S 2011 Influence of calix[2]-p-benzo[4]pyrrole on the electrochemical properties of poly(ethylene oxide)-based electrolytes for lithium batteries J. Appl. Polym. Sci. 120 2215-21 doi: 10.1002/app.33462
    Li S, Zhang S Q, Shen L, Liu Q, Ma J B, Lv W, He Y B, Yang Q H 2020 Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries Adv. Sci. 7 1903088 doi: 10.1002/advs.201903088
    Zhang D, Xu X, Qin Y, Ji S, Huo Y, Wang Z, Liu Z, Shen J, Liu J 2020 Recent progress in organic-inorganic composite solid electrolytes for all-solid-state lithium batteries Chemistry 26 1720-36 doi: 10.1002/chem.201904461
    Tsuchida E, Ohno H, Kobayashi N 1988 Single-ion conduction in poly[(oligo(oxyethylene)methacrylate)-co-(alkali-metal methacrylates)] Macromolecules 21 96-100 doi: 10.1021/ma00179a020
    Bannister D J, Davies G R, Ward I M, McIntyre J E 1984 Ionic conductivities for poly(ethylene oxide) complexes with lithium salts of monobasic and dibasic acids and blends of poly(ethylene oxide) with lithium salts of anionic polymers Polymer 25 1291-6 doi: 10.1016/0032-3861(84)90378-1
    Kobayashi N, Uchiyama M, Tsuchida E 1985 Poly[lithium methacrylate-co-oligo(oxyethylene)methacrylate] as a solid electrolyte with high ionic conductivity Solid State Ion. 17 307-11 doi: 10.1016/0167-2738(85)90075-X
    Kim H-T, Park J-K 1997 Effects of cations on ionic states of poly(oligo-oxyethylene methacrylate-co-alkali metal acrylamidocaproate) single-ion conductor Solid State Ion. 98 237-44 doi: 10.1016/S0167-2738(97)00099-4
    Zhang S, Deng Z, Wan G 1991 Cationic conductivity of blend complexes composed of poly[oligo(oxyethylene) methacrylate] and the alkali metal salts of poly(sulfoalkyl methacrylate) Polym. J. 23 73-78 doi: 10.1295/polymj.23.73
    Park C H, Sun Y-K, Kim D-W 2004 Blended polymer electrolytes based on poly(lithium 4-styrene sulfonate) for the rechargeable lithium polymer batteries Electrochim. Acta 50 375-8 doi: 10.1016/j.electacta.2004.01.110
    Doyle R P, Chen X R, Macrae M, Srungavarapu A, Smith L J, Gopinadhan M, Osuji C O, Granados-Focil S 2014 Poly(ethylenimine)-based polymer blends as single-ion lithium conductors Macromolecules 47 3401-8 doi: 10.1021/ma402325a
    Sun X G, Hou J, Kerr J B 2005 Comb-shaped single ion conductors based on polyacrylate ethers and lithium alkyl sulfonate Electrochim. Acta 50 1139-47 doi: 10.1016/j.electacta.2004.08.011
    Cowie J, Spence G 1999 Novel single ion, comb-branched polymer electrolytes Solid State Ion. 123 233-42 doi: 10.1016/S0167-2738(99)00080-6
    Bouchet R, et al 2013 Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries Nat. Mater. 12 452-7 doi: 10.1038/nmat3602
    Meziane R, Bonnet J P, Courty M, Djellab K, Armand M 2011 Single-ion polymer electrolytes based on a delocalized polyanion for lithium batteries Electrochim. Acta 57 14-19 doi: 10.1016/j.electacta.2011.03.074
    Ma Q, Xia Y, Feng W, Nie J, Hu Y-S, Li H, Huang X, Chen L, Armand M, Zhou Z 2016 Impact of the functional group in the polyanion of single lithium-ion conducting polymer electrolytes on the stability of lithium metal electrodes RSC Adv. 6 32454-61 doi: 10.1039/C6RA01387B
    Tsuchida E, Ohno H, Kobayashi N, Ishizaka H 1989 Poly[(-carboxy)oligo(oxyethylene) methacrylate] as a new type of polymeric solid electrolyte for alkali-metal ion transport Macromolecules 22 1771-5 doi: 10.1021/ma00194a046
    Tong B, Wang J W, Liu Z J, Ma L P, Zhou Z B, Peng Z Q 2018 Identifying compatibility of lithium salts with LiFePO4 cathode using a symmetric cell J. Power Sources 384 80-85 doi: 10.1016/j.jpowsour.2018.02.076
    Porcarelli L, Sutton P, Bocharova V, Aguirresarobe R H, Zhu H, Goujon N, Leiza J R, Sokolov A, Forsyth M, Mecerreyes D 2021 Single-ion conducting polymer nanoparticles as functional fillers for solid electrolytes in lithium metal batteries ACS Appl. Mater. Interfaces 13 54354-62 doi: 10.1021/acsami.1c15771
  • 加载中


    Figures(12)  / Tables(4)

    Article Metrics

    Article Views(484) PDF downloads(161)
    Article Statistics
    Related articles from


    DownLoad:  Full-Size Img  PowerPoint