Citation: | Bo Tong, Ziyu Song, Hao Wu, Xingxing Wang, Wenfang Feng, Zhibin Zhou, Heng Zhang. Ion transport and structural design of lithium-ion conductive solid polymer electrolytes: a perspective[J]. Materials Futures, 2022, 1(4): 042103. doi: 10.1088/2752-5724/ac9e6b |
[1] |
Armand M 1980 Materials for advanced batteries NATO Conf. Seriesvol 2Boston, MA p 145
|
[2] |
Armand M, et al 2020 Lithium-ion batteries-current state of the art and anticipated developments J. Power Sources 479 228708 doi: 10.1016/j.jpowsour.2020.228708
|
[3] |
Xu K 2004 Nonaqueous liquid electrolytes for lithium-based rechargeable batteries Chem. Rev. 104 4303-18 doi: 10.1021/cr030203g
|
[4] |
Xu K 2014 Electrolytes and interphases in Li-ion batteries and beyond Chem. Rev. 114 11503-618 doi: 10.1021/cr500003w
|
[5] |
Zheng L P, Zhang H, Cheng P F, Ma Q, Liu J J, Nie J, Feng W F, Zhou Z B 2016 Li[(FSO2)(n-C4F9SO2)N] versus LiPF6 for graphite/LiCoO2 lithium-ion cells at both room and elevated temperatures: a comprehensive understanding with chemical, electrochemical and XPS analysis Electrochim. Acta 196 169-88 doi: 10.1016/j.electacta.2016.02.152
|
[6] |
Song Z Y, et al 2022 Taming the chemical instability of lithium hexafluorophosphate-based electrolyte with lithium fluorosulfonimide salts J. Power Sources 526 231105 doi: 10.1016/j.jpowsour.2022.231105
|
[7] |
Manuel Stephan A 2006 Review on gel polymer electrolytes for lithium batteries Eur. Polym. J. 42 21-42 doi: 10.1016/j.eurpolymj.2005.09.017
|
[8] |
Billaud D, McRae E, Hrold A 1979 Synthesis and electrical resistivity of lithium-pyrographite intercalation compounds (stages I, II and III) Mater. Res. Bull. 14 857-64 doi: 10.1016/0025-5408(79)90149-1
|
[9] |
Judez X, Eshetu G G, Li C M, Rodriguez-Martinez L M, Zhang H, Armand M 2018 Opportunities for rechargeable solid-state batteries based on Li-intercalation cathodes Joule 2 2208-24 doi: 10.1016/j.joule.2018.09.008
|
[10] |
Tian Y, et al 2021 Promises and challenges of next-generation beyond Li-ion batteries for electric vehicles and grid decarbonization Chem. Rev. 121 1623-69 doi: 10.1021/acs.chemrev.0c00767
|
[11] |
Janek J, Zeier W G 2016 A solid future for battery development Nat. Energy 1 16141 doi: 10.1038/nenergy.2016.141
|
[12] |
Bresser D, Hosoi K, Howell D, Li H, Zeisel H, Amine K, Passerini S 2018 Perspectives of automotive battery R&D in China, Germany, Japan, and the USA J. Power Sources 382 176-8 doi: 10.1016/j.jpowsour.2018.02.039
|
[13] |
Fenton D E, Parker J M, Wright P V 1973 Complexes of alkali metal ions with poly(ethylene oxide) Polymer 14 589 doi: 10.1016/0032-3861(73)90146-8
|
[14] |
Armand M, Chabagno J M, Duclot M J 1978 2th Int. Meeting on Solid Electrolyte in Fast Ion Transport in Solids St(Andrews, Scotland) 651
|
[15] |
Hallinan D T, Balsara N P 2013 Polymer electrolytes Annu. Rev. Mater. Res. 43 503-25 doi: 10.1146/annurev-matsci-071312-121705
|
[16] |
Qiao L X, Judez X, Rojo T, Armand M, Zhang H 2020 Reviewpolymer electrolytes for sodium batteries J. Electrochem. Soc. 167 070534 doi: 10.1149/1945-7111/ab7aa0
|
[17] |
Lago N, Garcia-Calvo O, Lopez Del Amo J M, Rojo T, Armand M 2015 All-solid-state lithium-ion batteries with grafted ceramic nanoparticles dispersed in solid polymer electrolytes ChemSusChem 8 3039-43 doi: 10.1002/cssc.201500783
|
[18] |
Fan P, Liu H, Marosz V, Samuels N T, Suib S L, Sun L, Liao L 2021 High performance composite polymer electrolytes for lithiumion batteries Adv. Funct. Mater. 31 2101380 doi: 10.1002/adfm.202101380
|
[19] |
Yao P H, Yu H B, Ding Z Y, Liu Y C, Lu J, Lavorgna M, Wu J W, Liu X J 2019 Review on polymer-based composite electrolytes for lithium batteries Front. Chem. 7 522 doi: 10.3389/fchem.2019.00522
|
[20] |
Zhu M, Wu J, Wang Y, Song M, Long L, Siyal S H, Yang X, Sui G 2019 Recent advances in gel polymer electrolyte for high-performance lithium batteries J. Energy Chem. 37 126-42 doi: 10.1016/j.jechem.2018.12.013
|
[21] |
Berthier C, Gorecki W, Minier M, Armand M, Chabagno J M, Rigaud P 1983 Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts Solid State Ion. 11 91-95 doi: 10.1016/0167-2738(83)90068-1
|
[22] |
Gorecki W, Donoso P, Berthier C, Mali M, Roos J, Brinkmann D, Armand M 1988 NMR, DSC and conductivity study of the polymer solid electrolytes P(EO) (LiCp+1F2p+3SO3x Solid State Ion. 28-30 1018-22 doi: 10.1016/0167-2738(88)90323-2
|
[23] |
Wintersgill M C, Fontanella J J, Pak Y S, Greenbaum S G, Al-Mudaris A, Chadwick A V 1989 Electrical conductivity, differential scanning calorimetry and nuclear magnetic resonance studies of amorphous poly(ethylene oxide) complexed with sodium salts Polymer 30 1123-26 doi: 10.1016/0032-3861(89)90091-8
|
[24] |
Stoeva Z, Martin-Litas I, Staunton E, Andreev Y G, Bruce P G 2003 Ionic conductivity in the crystalline polymer electrolytes PEO6:LiXF6, X = P, As, Sb J. Am. Chem. Soc. 125 4619-26 doi: 10.1021/ja029326t
|
[25] |
Zhang C, Andreev Y G, Bruce P G 2007 Crystalline small-molecule electrolytes Angew. Chem. Int. Ed. 46 2848-50 doi: 10.1002/anie.200604934
|
[26] |
Zhang C, Gamble S, Ainsworth D, Slawin A M, Andreev Y G, Bruce P G 2009 Alkali metal crystalline polymer electrolytes Nat. Mater. 8 580-4 doi: 10.1038/nmat2474
|
[27] |
Angell C A, Fan J, Liu C, Lu Q, Sanchez E, Xu K 1994 Li-conducting ionic rubbers for lithium battery and other applications Solid State Ion. 69 343-53 doi: 10.1016/0167-2738(94)90422-7
|
[28] |
Forsyth M, Sun J, Macfarlane D R, Hill A J 2000 Compositional dependence of free volume in PAN/LiCF3SO3 polymerinsalt electrolytes and the effect on ionic conductivity J. Polym. Sci. B 38 341-50 doi: 10.1002/(SICI)1099-0488(20000115)38:2<341::AID-POLB6>3.0.CO;2-S
|
[29] |
McLin M G, Angell C A 1992 Frequency-dependent conductivity, relaxation times, and the conductivity/viscosity coupling problem, in polymer-electrolyte solutions: LiClO4 and NaCF3SO3 in PPO 4000 Solid State Ion. 53-56 1027-36 doi: 10.1016/0167-2738(92)90286-X
|
[30] |
Ratner M A, Shriver D F 1988 Ion transport in solvent-free polymers Chem. Rev. 88 109-24 doi: 10.1021/cr00083a006
|
[31] |
Angell C A, Liu C, Sanchez E 1993 Rubbery solid electrolytes with dominant cationic transport and high ambient conductivity Nature 362 137-9 doi: 10.1038/362137a0
|
[32] |
Wright P V 2002 Developments in polymer electrolytes for lithium batteries MRS Bull. 27 597-602 doi: 10.1557/mrs2002.194
|
[33] |
Gao H, Grundish N S, Zhao Y, Zhou A, Goodenough J B 2021 Formation of stable interphase of polymer-in-salt electrolyte in all-solid-state lithium batteries Energy Mater. Adv. 2021 1-10 doi: 10.34133/2021/1932952
|
[34] |
Feng L, Cui H 1996 A new solid-state electrolyte: rubbery polymer-in-salt’ containing LiN(CF3SO22 J. Power Sources 63 145-8 doi: 10.1016/S0378-7753(96)02454-8
|
[35] |
Li Y, Ding F, Xu Z, Sang L, Ren L, Ni W, Liu X 2018 Ambient temperature solid-state Li-battery based on high-salt-concentrated solid polymeric electrolyte J. Power Sources 397 95-101 doi: 10.1016/j.jpowsour.2018.05.050
|
[36] |
Zhao Y, Bai Y, Bai Y, An M, Chen G, Li W, Li C, Zhou Y 2018 A rational design of solid polymer electrolyte with high salt concentration for lithium battery J. Power Sources 407 23-30 doi: 10.1016/j.jpowsour.2018.10.045
|
[37] |
Wright P V 1976 An anomalous transition to a lower activation energy for dc electrical conduction above the glass-transition temperature J. Polym. Sci. B Polym. Phys. 14 955-7 doi: 10.1002/pol.1976.180140516
|
[38] |
Abraham K M, Jiang Z, Carroll B 1997 Highly conductive PEO-like polymer electrolytes Chem. Mater. 9 1978-88 doi: 10.1021/cm970075a
|
[39] |
Jacob M, Prabaharan S, Radhakrishna S 1997 Effect of PEO addition on the electrolytic and thermal properties of PVDF-LiClO4 polymer electrolytes Solid State Ion. 104 267-76 doi: 10.1016/S0167-2738(97)00422-0
|
[40] |
Bandara L R A K, Dissanayake M A K L, Mellander B-E 1998 Ionic conductivity of plasticized(PEO)‒LiCF3SO3 electrolytes Electrochim. Acta 43 1447-51 doi: 10.1016/S0013-4686(97)10082-2
|
[41] |
Frech R, Chintapalli S, Bruce P G, Vincent C A 1999 Crystalline and amorphous phases in the poly(ethylene oxide)‒LiCF3SO3 System Macromolecules 32 808-13 doi: 10.1021/ma9812682
|
[42] |
Jayathilaka P A R D, Dissanayake M A K L, Albinsson I, Mellander B E 2002 Effect of nano-porous Al2O3 on thermal, dielectric and transport properties of the (PEO)9LiTFSI polymer electrolyte system Electrochim. Acta 18 1-103 doi: 10.1016/S0013-4686(02)00243-8
|
[43] |
Appetecchi G B, Shin J H, Alessandrini F, Passerini S 2005 0.6Ah Li/V2O5 battery prototypes based on solvent-free PEO‒LiN(SO2CF2CF32 polymer electrolytes J. Power Sources 143 236-42 doi: 10.1016/j.jpowsour.2004.11.039
|
[44] |
Boaretto N, Meabe L, Martinez-Ibaez M, Armand M, Zhang H 2020 Reviewpolymer electrolytes for rechargeable batteries: from nanocomposite to nanohybrid J. Electrochem. Soc. 167 070524 doi: 10.1149/1945-7111/ab7221
|
[45] |
Zhang H, Armand M 2021 History of solid polymer electrolytebased solidstate lithium metal batteries: a personal account Isr. J. Chem. 61 94-100 doi: 10.1002/ijch.202000066
|
[46] |
Takahashi Y, Tadokoro H 1973 Structural studies of polyethers, (‒(CH2m‒O‒)n. X. crystal structure of poly(ethylene oxide) Macromolecules 6 672-5 doi: 10.1021/ma60035a005
|
[47] |
Johansson P 2001 First principles modelling of amorphous polymer electrolytes: Li+-PEO, Li+-PEI, and Li+-PES complexes Polymer 42 4367-73 doi: 10.1016/S0032-3861(00)00731-X
|
[48] |
Robitaille C D, Fauteux D 1986 Phase diagrams and conductivity characterization of some PEOLiX electrolytes J. Electrochem. Soc. 133 315-25 doi: 10.1149/1.2108569
|
[49] |
Ballard D G H, Cheshire P, Mann T S, Przeworski J E 1990 Ionic conductivity in organic solids derived from amorphous macromolecules Macromolecules 23 1256-64 doi: 10.1021/ma00207a006
|
[50] |
Oradd G, Edman L, Ferry A 2002 Diffusion: a comparison between liquid and solid polymer LiTFSI electrolytes Solid State Ion. 152-153 131-6 doi: 10.1016/S0167-2738(02)00364-8
|
[51] |
Zardalidis G, Ioannou E, Pispas S, Floudas G 2013 Relating structure, viscoelasticity, and local mobility to conductivity in PEO/LiTf electrolytes Macromolecules 46 2705-14 doi: 10.1021/ma400266w
|
[52] |
Zhang H, Liu C, Zheng L, Xu F, Feng W, Li H, Huang X, Armand M, Nie J, Zhou Z 2014 Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolyte Electrochim. Acta 133 529-38 doi: 10.1016/j.electacta.2014.04.099
|
[53] |
Xue Z, He D, Xie X 2015 Poly(ethylene oxide)-based electrolytes for lithium-ion batteries J. Mater. Chem. A 3 19218-53 doi: 10.1039/C5TA03471J
|
[54] |
Eshetu G G, Judez X, Li C, Martinez-Ibaez M, Gracia I, Bondarchuk O, Carrasco J, Rodriguez-Martinez L M, Zhang H, Armand M 2018 Ultrahigh performance all solid-state lithium sulfur batteries: salt anion’s chemistry-induced anomalous synergistic effect J. Am. Chem. Soc. 140 9921-33 doi: 10.1021/jacs.8b04612
|
[55] |
Armand M 1986 Polymer electrolytes Annu. Rev. Mater. Sci. 16 245-61 doi: 10.1146/annurev.ms.16.080186.001333
|
[56] |
Han H, et al 2011 Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: physicochemical and electrochemical properties J. Power Sources 196 3623-32 doi: 10.1016/j.jpowsour.2010.12.040
|
[57] |
Tong B, Wang P, Ma Q, Wan H, Zhang H, Huang X, Armand M, Feng W, Nie J, Zhou Z 2020 Lithium fluorinated sulfonimide-based solid polymer electrolytes for Li||LiFePO4 cell: the impact of anionic structure Solid State Ion. 358 115519 doi: 10.1016/j.ssi.2020.115519
|
[58] |
Chiodelli G, Ferloni P, Magistris A, Sanesi M 1988 Ionic conduction and thermal properties of poly (ethylene oxide)-lithium tetrafluoroborate films Solid State Ion. 28-30 1009-13 doi: 10.1016/0167-2738(88)90321-9
|
[59] |
Sun H Y, Takeda Y, Imanishi N, Yamamoto O, Sohn H J 2000 Ferroelectric materials as a ceramic filler in solid composite polyethylene oxide-based electrolytes J. Electrochem. Soc. 147 2462-7 doi: 10.1149/1.1393554
|
[60] |
Appetecchi G B, Henderson W, Villano P, Berrettoni M, Passerini S 2001 PEO-LiN(SO2CF2CF32 polymer electrolytes: i. XRD, DSC, and ionic conductivity characterization J. Electrochem. Soc. 148 A1171-8 doi: 10.1149/1.1403728
|
[61] |
Karuppasamy K, Kim D, Kang Y H, Prasanna K, Rhee H W 2017 Improved electrochemical, mechanical and transport properties of novel lithium bisnonafluoro-1-butanesulfonimidate (LiBNFSI) based solid polymer electrolytes for rechargeable lithium ion batteries J. Ind. Eng. Chem. 52 224-34 doi: 10.1016/j.jiec.2017.03.051
|
[62] |
Ma Q, et al 2016 Novel Li[(CF3SO2)(n-C4F9SO2)N]-based polymer electrolytes for solid-state lithium batteries with superior electrochemical performance ACS Appl. Mater. Interfaces 8 29705-12 doi: 10.1021/acsami.6b10597
|
[63] |
Liu D F, Nie J, Guan W C, Duan H Q, Zhuo L M 2004 Characterizations of a branched ester-type lithium imide in poly(ethylene oxide)-based polymer electrolytes Solid State Ion. 167 131-6 doi: 10.1016/j.ssi.2004.01.003
|
[64] |
Zhang H, et al 2019 Enhanced lithium-ion conductivity of polymer electrolytes by selective introduction of hydrogen into the anion Angew. Chem., Int. Ed. Engl. 58 7829-34 doi: 10.1002/anie.201813700
|
[65] |
Qiao L, et al 2020 Trifluoromethyl-free anion for highly stable lithium metal polymer batteries Energy Storage Mater. 32 225-33 doi: 10.1016/j.ensm.2020.07.022
|
[66] |
Zhang H, Chen F, Lakuntza O, Oteo U, Qiao L, MartinezIbaez M, Zhu H, Carrasco J, Forsyth M, Armand M 2019 Suppressed mobility of negative charges in polymer electrolytes with an ether-functionalized anion Angew. Chem. Int. Ed. 58 12070-5 doi: 10.1002/anie.201905794
|
[67] |
Qiao L, et al 2022 Anion pi-pi stacking for improved lithium transport in polymer electrolytes J. Am. Chem. Soc. 144 9806-16 doi: 10.1021/jacs.2c02260
|
[68] |
Martinez-Ibaez M, Sanchez-Diez E, Oteo U, Gracia I, Aldalur I, Eitouni H B, Joost M, Armand M, Zhang H 2022 Anions with a dipole: toward high transport numbers in solid polymer electrolytes Chem. Mater. 34 3451-60 doi: 10.1021/acs.chemmater.2c00285
|
[69] |
Zhang H, Song Z Y, Yuan W M, Feng W F, Nie J, Armand M, Huang X J, Zhou Z B 2021 Impact of negative charge delocalization on the properties of solid polymer electrolytes ChemElectroChem 8 1322-8 doi: 10.1002/celc.202100045
|
[70] |
Polu A R, Kim D K, Rhee H-W 2015 Poly(ethylene oxide)-lithium difluoro(oxalato)borate new solid polymer electrolytes: ion-polymer interaction, structural, thermal, and ionic conductivity studies Ionics 21 2771-80 doi: 10.1007/s11581-015-1474-3
|
[71] |
Wu X, Xin S, Seo H-H, Kim J, Guo Y-G, Lee J-S 2011 Enhanced Li+ conductivity in PEO-LiBOB polymer electrolytes by using succinonitrile as a plasticizer Solid State Ion. 186 1-6 doi: 10.1016/j.ssi.2011.01.010
|
[72] |
Zhang H, Judez X, Santiago A, MartinezIbaez M, MuozMrquez M , Carrasco J, Li C, Eshetu G G, Armand M 2019 Fluorinefree noble salt anion for highperformance allsolidstate lithium-sulfur batteries Adv. Energy Mater. 9 1900763 doi: 10.1002/aenm.201900763
|
[73] |
Egashira M, Scrosati B, Armand M, Beranger S, Michot C 2003 Lithium dicyanotriazolate as a lithium salt for poly(ethylene oxide) based polymer electrolytes Electrochem. Solid-State Lett. 6 A71-3 doi: 10.1149/1.1558352
|
[74] |
Jankowski P, ukowska G Z, Dranka M, Marczewski M J, Ostrowski A, Korczak J, Niedzicki L, Zalewska A, Wieczorek W 2016 Understanding of lithium 4,5-dicyanoimidazolate-poly(ethylene oxide) system: influence of the architecture of the solid phase on the conductivity J. Phys. Chem. C 120 23358-67 doi: 10.1021/acs.jpcc.6b07058
|
[75] |
Linert W, Camard A, Armand M, Michot C 2002 Anions of low Lewis basicity for ionic solid state electrolytes Coord. Chem. Rev. 226 137-41 doi: 10.1016/S0010-8545(01)00416-7
|
[76] |
Johansson P 2007 Electronic structure calculations on lithium battery electrolyte salts Phys. Chem. Chem. Phys. 9 1493-8 doi: 10.1039/B612297C
|
[77] |
Meussdorffer J N N 1972 Bisperfluorakansulfonylimide (RfSO22NH Chem. Ztg. 96 582-3
|
[78] |
Lopes J N C, Shimizu K, Pdua A A H, Umebayashi Y, Fukuda S, Fujii K, Ishiguro S-I 2008 A tale of two ions: the conformational landscapes of bis(trifluoromethanesulfonyl)amide and N, N-dialkylpyrrolidinium J. Phys. Chem. B 112 1465-72 doi: 10.1021/jp076997a
|
[79] |
Appel R, Eisenhauer G 1962 Die synthese des imidobisschwefelsurefluorids, HN(SO2F)2 Chem. Ber. 95 246-8 doi: 10.1002/cber.19620950139
|
[80] |
Christophe M, et al 1995 Ionic conducting material having good anticorrosive propertiesWO9526056A1
|
[81] |
Zhang H, Feng W F, Zhou Z B, Nie J 2014 Composite electrolytes of lithium salt/polymeric ionic liquid with bis(fluorosulfonyl)imide Solid State Ion. 256 61-67 doi: 10.1016/j.ssi.2014.01.003
|
[82] |
Zhang H, Arcelus O, Carrasco J 2018 Role of asymmetry in the physiochemical and electrochemical behaviors of perfluorinated sulfonimide anions for lithium batteries: a DFT study Electrochim. Acta 280 290-9 doi: 10.1016/j.electacta.2018.05.109
|
[83] |
Zhang L, Chen Y H 2021 Electrolyte solvation structure as a stabilization mechanism for electrodes Energy Mater. 1 100004 doi: 10.20517/energymater.2021.04
|
[84] |
Doyle M, Fuller T F, Newman J 1994 The importance of the lithium ion transference number in lithium/polymer cells Electrochim. Acta 39 2073-81 doi: 10.1016/0013-4686(94)85091-7
|
[85] |
Brissot C, Rosso M, Chazalviel J-N, Baudryb P, Lascaud S 1998 In situ study of dendritic growth in lithium/PEO-salt/lithium cells Electrochim. Acta 43 1569-74 doi: 10.1016/S0013-4686(97)10055-X
|
[86] |
Oteo U, MartinezIbaez M, Aldalur I, SanchezDiez E, Carrasco J, Armand M, Zhang H 2019 Improvement of the cationic transport in polymer electrolytes with (difluoromethanesulfonyl)(trifluoromethanesulfonyl)imide salts ChemElectroChem 6 1019-22 doi: 10.1002/celc.201801472
|
[87] |
Zhang X, Daigle J C, Zaghib K 2020 Comprehensive review of polymer architecture for all-solid-state lithium rechargeable batteries Materials 13 2488 doi: 10.3390/ma13112488
|
[88] |
Qiu J, Yang L, Sun G, Yu X, Li H, Chen L 2020 A stabilized PEO-based solid electrolyte via a facile interfacial engineering method for a high voltage solid-state lithium metal battery Chem. Commun. 56 5633-6 doi: 10.1039/D0CC01829E
|
[89] |
Gray F M 1997 Polymer ElectrolytesLondon:Royal Society of Chemistry p 175
|
[90] |
Cui M, Li Z, Zhang J, Feng S 2008 Siloxane-based polymer electrolytes Prog. Chem. 20 1988-96 doi: 10.1016/j.ensm.2019.04.016
|
[91] |
Tu Q, Zhang Q, Wang Y, Jiao Y, Xiao J, Peng T, Wang J 2019 Antibacterial properties of poly(dimethylsiloxane) surfaces modified with graphene oxide-catechol composite Prog. Org. Coat. 129 247-53 doi: 10.1016/j.porgcoat.2019.01.011
|
[92] |
Gupta A K, Paliwal D K, Bajaj P 1998 Melting behavior of acrylonitrile polymers J. Appl. Polym. Sci. 70 2703-9 doi: 10.1002/(SICI)1097-4628(19981226)70:13<2703::AID-APP15>3.0.CO;2-2
|
[93] |
Brito C A R, Fleming R R, Pardini L C, Alves N P 2013 Poliacrilonitrila: processos de fiao empregados na indstria Polmeros 23 764-70 doi: 10.4322/polimeros.2013.006
|
[94] |
Zhang H, Armand M, Rojo T 2019 Editors’ choicereviewinnovative polymeric materials for better rechargeable batteries: strategies from CIC energigune J. Electrochem. Soc. 166 A679-86 doi: 10.1149/2.0811904jes
|
[95] |
Wang X, Song Z, Wu H, Nie J, Feng W, Yu H, Huang X, Armand M, Zhou Z, Zhang H 2022 Unprecedented impact of main chain on comb polymer electrolytes performances ChemElectroChem 9 e202101590 doi: 10.1002/celc.202101590
|
[96] |
Chen J X, Wang C, Wang G X, Zhou D, Fan L Z 2022 An interpenetrating network polycarbonate-based composite electrolyte for high-voltage all-solid-state lithium-metal batteries Energy Mater. 2 200023 doi: 10.20517/energymater.2022.25
|
[97] |
Zhang H, Chen Y H, Li C M, Armand M 2021 Electrolyte and anode-electrolyte interphase in solid-state lithium metal polymer batteries: a perspective SusMat 1 24-37 doi: 10.1002/sus2.6
|
[98] |
Zhang H, Zhou Z B, Nie J 2013 Recent advances of polymeric ionic liquids Prog. Chem. 25 762-74 doi: 10.7536/PC121043
|
[99] |
Zhang H, Li L, Feng W F, Zhou Z B, Nie J 2014 Polymeric ionic liquids based on ether functionalized ammoniums and perfluorinated sulfonimides Polymer 55 3339-48 doi: 10.1016/j.polymer.2014.03.041
|
[100] |
Zhang H, Liu C Y, Zheng L P, Feng W F, Zhou Z B, Nie J 2015 Solid polymer electrolyte comprised of lithium salt/ether functionalized ammonium-based polymeric ionic liquid with bis(fluorosulfonyl)imide Electrochim. Acta 159 93-101 doi: 10.1016/j.electacta.2015.01.213
|
[101] |
Eshetu G G, Mecerreyes D, Forsyth M, Zhang H, Armand M 2019 Polymeric ionic liquids for lithium-based rechargeable batteries Mol. Syst. Des. Eng. 4 294-309 doi: 10.1039/C8ME00103K
|
[102] |
Aldalur I, Armand M, Zhang H 2020 Jeffaminebased polymers for rechargeable batteries Batteries Supercaps 3 30-46 doi: 10.1002/batt.201900133
|
[103] |
Benrabah D, Sanchez J Y, Armand M 1992 New polyamide-ether electrolytes Electrochim. Acta 37 1737-41 doi: 10.1016/0013-4686(92)80150-K
|
[104] |
Aldalur I, Zhang H, Piszcz M, Oteo U, Rodriguez-Martinez L M, Shanmukaraj D, Rojo T, Armand M 2017 Jeffamine based polymers as highly conductive polymer electrolytes and cathode binder materials for battery application J. Power Sources 347 37-46 doi: 10.1016/j.jpowsour.2017.02.047
|
[105] |
Aldalur I, Martinez-Ibaez M, Piszcz M, Rodriguez-Martinez L M, Zhang H, Armand M 2018 Lowering the operational temperature of all-solid-state lithium polymer cell with highly conductive and interfacially robust solid polymer electrolytes J. Power Sources 383 144-9 doi: 10.1016/j.jpowsour.2018.02.066
|
[106] |
Aldalur I, Martinez-Ibaez M, Krzto-Maziopa A, Piszcz M, Armand M, Zhang H 2019 Flowable polymer electrolytes for lithium metal batteries J. Power Sources 423 218-26 doi: 10.1016/j.jpowsour.2019.03.057
|
[107] |
Aldalur I, MartinezIbaez M, Piszcz M, Zhang H, Armand M 2018 Selfstanding highly conductive solid electrolytes based on block copolymers for rechargeable allsolidstate lithiummetal batteries Batteries Supercaps 1 149-59 doi: 10.1002/batt.201800048
|
[108] |
Tan S, Perre E, Gustafsson T, Brandell D 2012 A solid state 3D microbattery based on Cu2Sb nanopillar anodes Solid State Ion. 225 510-2 doi: 10.1016/j.ssi.2011.11.005
|
[109] |
Tan S, Walus S, Gustafsson T, Brandell D 2011 3D microbattery electrolyte by self-assembly of oligomers Solid State Ion. 198 26-31 doi: 10.1016/j.ssi.2011.07.005
|
[110] |
Aldalur I, et al 2020 Nanofiber-reinforced polymer electrolytes toward room temperature solid-state lithium batteries J. Power Sources 448 227424 doi: 10.1016/j.jpowsour.2019.227424
|
[111] |
Xu H, Xie J, Liu Z, Wang J, Deng Y 2020 Carbonyl-coordinating polymers for high-voltage solid-state lithium batteries: solid polymer electrolytes MRS Energy Sustain. 7 1 doi: 10.1557/mre.2020.3
|
[112] |
Dukhanin G P, Dumler S A, Sablin A N, Novakov I A 2009 Solid polymeric electrolyte based on poly(ethylene carbonate)-lithium perchlorate system Russ. J. Appl. Chem. 82 243-6 doi: 10.1134/S1070427209020153
|
[113] |
Ebadi M, Eriksson T, Mandal P, Costa L T, Araujo C M, Mindemark J, Brandell D 2020 Restricted ion transport by plasticizing side chains in polycarbonate-based solid electrolytes Macromolecules 53 764-74 doi: 10.1021/acs.macromol.9b01912
|
[114] |
Meabe L, Pea S R, Martinez-Ibaez M, Zhang Y, Lobato E, Manzano H, Armand M, Carrasco J, Zhang H 2020 Insight into the ionic transport of solid polymer electrolytes in polyether and polyester blends J. Phys. Chem. C 124 17981-91 doi: 10.1021/acs.jpcc.0c04987
|
[115] |
Zhang J, et al 2015 Safety-reinforced poly(propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries Adv. Energy Mater. 5 1501082 doi: 10.1002/aenm.201501082
|
[116] |
Kimura K, Yajima M, Tominaga Y 2016 A highly-concentrated poly(ethylene carbonate)-based electrolyte for all-solid-state Li battery working at room temperature Electrochem. Commun. 66 46-48 doi: 10.1016/j.elecom.2016.02.022
|
[117] |
Tominaga Y 2017 Ion-conductive polymer electrolytes based on poly(ethylene carbonate) and its derivatives Polym. J. 49 291-9 doi: 10.1038/pj.2016.115
|
[118] |
Commarieu B, Paolella A, Collin-Martin S, Gagnon C, Vijh A, Guerfi A, Zaghib K 2019 Solid-to-liquid transition of polycarbonate solid electrolytes in Li-metal batteries J. Power Sources 436 226852 doi: 10.1016/j.jpowsour.2019.226852
|
[119] |
Buchheit A, Grnebaum M, Temer B, Winter M, Wiemhfer H-D 2021 Polycarbonate-based lithium salt-containing electrolytes: new insights into thermal stability J. Phys. Chem. C 125 4371-8 doi: 10.1021/acs.jpcc.0c09968
|
[120] |
Wang C, Zhang H, Li J, Chai J, Dong S, Cui G 2018 The interfacial evolution between polycarbonate-based polymer electrolyte and Li-metal anode J. Power Sources 397 157-61 doi: 10.1016/j.jpowsour.2018.07.008
|
[121] |
Thomas K E, Sloop S E, Kerr J B, Newman J 2000 Comparison of lithium-polymer cell performance with unity and nonunity transference numbers J. Power Sources 89 132-8 doi: 10.1016/S0378-7753(00)00420-1
|
[122] |
Feng S W, Shi D Y, Liu F, Zheng L P, Nie J, Feng W F, Huang X J, Armand M, Zhou Z B 2013 Single lithium-ion conducting polymer electrolytes based on poly[(4-styrenesulfonyl)(trifluoromethanesulfonyl)imide] anions Electrochim. Acta 93 254-63 doi: 10.1016/j.electacta.2013.01.119
|
[123] |
Ma Q, et al 2016 Single lithium-ion conducting polymer electrolytes based on a super-delocalized polyanion Angew. Chem. Int. Ed. 55 2521-5 doi: 10.1002/anie.201509299
|
[124] |
Zhang H, Li C M, Piszcz M, Coya E, Rojo T, Rodriguez-Martinez L M, Armand M, Zhou Z B 2017 Single lithium-ion conducting solid polymer electrolytes: advances and perspectives Chem. Soc. Rev. 46 797-815 doi: 10.1039/C6CS00491A
|
[125] |
Stephan A M, Prem Kumar T, Angulakshmi N, Salini P S, Sabarinathan R, Srinivasan A, Thomas S 2011 Influence of calix[2]-p-benzo[4]pyrrole on the electrochemical properties of poly(ethylene oxide)-based electrolytes for lithium batteries J. Appl. Polym. Sci. 120 2215-21 doi: 10.1002/app.33462
|
[126] |
Li S, Zhang S Q, Shen L, Liu Q, Ma J B, Lv W, He Y B, Yang Q H 2020 Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries Adv. Sci. 7 1903088 doi: 10.1002/advs.201903088
|
[127] |
Zhang D, Xu X, Qin Y, Ji S, Huo Y, Wang Z, Liu Z, Shen J, Liu J 2020 Recent progress in organic-inorganic composite solid electrolytes for all-solid-state lithium batteries Chemistry 26 1720-36 doi: 10.1002/chem.201904461
|
[128] |
Tsuchida E, Ohno H, Kobayashi N 1988 Single-ion conduction in poly[(oligo(oxyethylene)methacrylate)-co-(alkali-metal methacrylates)] Macromolecules 21 96-100 doi: 10.1021/ma00179a020
|
[129] |
Bannister D J, Davies G R, Ward I M, McIntyre J E 1984 Ionic conductivities for poly(ethylene oxide) complexes with lithium salts of monobasic and dibasic acids and blends of poly(ethylene oxide) with lithium salts of anionic polymers Polymer 25 1291-6 doi: 10.1016/0032-3861(84)90378-1
|
[130] |
Kobayashi N, Uchiyama M, Tsuchida E 1985 Poly[lithium methacrylate-co-oligo(oxyethylene)methacrylate] as a solid electrolyte with high ionic conductivity Solid State Ion. 17 307-11 doi: 10.1016/0167-2738(85)90075-X
|
[131] |
Kim H-T, Park J-K 1997 Effects of cations on ionic states of poly(oligo-oxyethylene methacrylate-co-alkali metal acrylamidocaproate) single-ion conductor Solid State Ion. 98 237-44 doi: 10.1016/S0167-2738(97)00099-4
|
[132] |
Zhang S, Deng Z, Wan G 1991 Cationic conductivity of blend complexes composed of poly[oligo(oxyethylene) methacrylate] and the alkali metal salts of poly(sulfoalkyl methacrylate) Polym. J. 23 73-78 doi: 10.1295/polymj.23.73
|
[133] |
Park C H, Sun Y-K, Kim D-W 2004 Blended polymer electrolytes based on poly(lithium 4-styrene sulfonate) for the rechargeable lithium polymer batteries Electrochim. Acta 50 375-8 doi: 10.1016/j.electacta.2004.01.110
|
[134] |
Doyle R P, Chen X R, Macrae M, Srungavarapu A, Smith L J, Gopinadhan M, Osuji C O, Granados-Focil S 2014 Poly(ethylenimine)-based polymer blends as single-ion lithium conductors Macromolecules 47 3401-8 doi: 10.1021/ma402325a
|
[135] |
Sun X G, Hou J, Kerr J B 2005 Comb-shaped single ion conductors based on polyacrylate ethers and lithium alkyl sulfonate Electrochim. Acta 50 1139-47 doi: 10.1016/j.electacta.2004.08.011
|
[136] |
Cowie J, Spence G 1999 Novel single ion, comb-branched polymer electrolytes Solid State Ion. 123 233-42 doi: 10.1016/S0167-2738(99)00080-6
|
[137] |
Bouchet R, et al 2013 Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries Nat. Mater. 12 452-7 doi: 10.1038/nmat3602
|
[138] |
Meziane R, Bonnet J P, Courty M, Djellab K, Armand M 2011 Single-ion polymer electrolytes based on a delocalized polyanion for lithium batteries Electrochim. Acta 57 14-19 doi: 10.1016/j.electacta.2011.03.074
|
[139] |
Ma Q, Xia Y, Feng W, Nie J, Hu Y-S, Li H, Huang X, Chen L, Armand M, Zhou Z 2016 Impact of the functional group in the polyanion of single lithium-ion conducting polymer electrolytes on the stability of lithium metal electrodes RSC Adv. 6 32454-61 doi: 10.1039/C6RA01387B
|
[140] |
Tsuchida E, Ohno H, Kobayashi N, Ishizaka H 1989 Poly[(-carboxy)oligo(oxyethylene) methacrylate] as a new type of polymeric solid electrolyte for alkali-metal ion transport Macromolecules 22 1771-5 doi: 10.1021/ma00194a046
|
[141] |
Tong B, Wang J W, Liu Z J, Ma L P, Zhou Z B, Peng Z Q 2018 Identifying compatibility of lithium salts with LiFePO4 cathode using a symmetric cell J. Power Sources 384 80-85 doi: 10.1016/j.jpowsour.2018.02.076
|
[142] |
Porcarelli L, Sutton P, Bocharova V, Aguirresarobe R H, Zhu H, Goujon N, Leiza J R, Sokolov A, Forsyth M, Mecerreyes D 2021 Single-ion conducting polymer nanoparticles as functional fillers for solid electrolytes in lithium metal batteries ACS Appl. Mater. Interfaces 13 54354-62 doi: 10.1021/acsami.1c15771
|