Volume 1 Issue 4
December  2022
Turn off MathJax
Article Contents
Yichuan Rui, Zuoming Jin, Xinyi Fan, Weitao Li, Bin Li, Tianpeng Li, Yuanqiang Wang, Liang Wang, Jia Liang. Defect passivation and electrical conductivity enhancement in perovskite solar cells using functionalized graphene quantum dots[J]. Materials Futures, 2022, 1(4): 045101. doi: 10.1088/2752-5724/ac9707
Citation: Yichuan Rui, Zuoming Jin, Xinyi Fan, Weitao Li, Bin Li, Tianpeng Li, Yuanqiang Wang, Liang Wang, Jia Liang. Defect passivation and electrical conductivity enhancement in perovskite solar cells using functionalized graphene quantum dots[J]. Materials Futures, 2022, 1(4): 045101. doi: 10.1088/2752-5724/ac9707
Paper •
OPEN ACCESS

Defect passivation and electrical conductivity enhancement in perovskite solar cells using functionalized graphene quantum dots

© 2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 1, Number 4
  • Received Date: 2022-06-25
  • Accepted Date: 2022-10-03
  • Rev Recd Date: 2022-10-02
  • Publish Date: 2022-10-21
  • Organic-inorganic halide perovskites have been intensively investigated as potential photovoltaic materials due to their exceptional optoelectronic properties and their successful applications in perovskite solar cells (PSCs). However, a large number of defect states still exist in the PSCs so far and are detrimental to their power conversion efficiencies (PCEs) and stability. Here, an effective strategy of incorporating single-crystalline graphene quantum dots (GQDs) into the perovskite films is proposed to passivate the defect states. Intriguingly, the GQD-modified perovskite films exhibit purer phase structure, higher quality of morphology, and higher electrical conductivity when compared with the control perovskite films. All of the advantages caused by the incorporation of the GQDs lead to fast carrier separation and transport, long carrier lifetime, and low nonradiative recombination in the PSCs based on the GQD-modified perovskite films. As a result, this kind of PSC displays an increase in all photovoltaic parameters, and its PCE shows an enhancement of more than 20% when compared with the control PSC. Moreover, this novel PSC is demonstrated to have long-term stability and resistibility against heat and moisture. Our findings provide an insight into how to passivate the defect states and enhance the electrical conductivities in the perovskites and pave the way for their further exploration to achieve higher photovoltaic performances.
  • loading
  • [1]
    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber Science 342 341 doi: 10.1126/science.1243982
    [2]
    Jena A K, Kulkarni A, Miyasaka T 2019 Halide perovskite photovoltaics: background, status, and future prospects Chem. Rev. 119 3036 doi: 10.1021/acs.chemrev.8b00539
    [3]
    Jiang Q, Zhao Y, Zhang X W, Yang X L, Chen Y, Chu Z M, Ye Q F, Li X X, Yin Z G, You J B 2019 Surface passivation of perovskite film for efficient solar cells Nat. Photon. 13 460 doi: 10.1038/s41566-019-0398-2
    [4]
    Chen H, et al 2017 A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules Nature 550 92 doi: 10.1038/nature23877
    [5]
    Saliba M, et al 2016 Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency Energy Environ. Sci. 9 1989 doi: 10.1039/C5EE03874J
    [6]
    Han X, Xiong H, Qi J, Rui Y, Zhang X, Hou C, Li Y, Wang H, Zhang Q 2019 Controlling the transformation of intermediate phase under near-room temperature for improving the performance of perovskite solar cells Sol. Energy 186 225 doi: 10.1016/j.solener.2019.04.094
    [7]
    Li T P, Rui Y C, Wang X J, Shi J S, Wang Y Q, Yang J X, Zhang Q H 2021 Grain size and interface modification via cesium carbonate post-treatment for efficient SnO2-based planar perovskite solar cells ACS Appl. Energy Mater. 4 7002 doi: 10.1021/acsaem.1c01055
    [8]
    Wang X, Zhao Y, Li B, Han X, Jin Z, Wang Y, Zhang Q, Rui Y 2022 Interfacial modification via a 1,4-butanediamine-based 2D capping layer for perovskite solar cells with enhanced stability and efficiency ACS Appl. Mater. Interfaces 14 22879 doi: 10.1021/acsami.1c21036
    [9]
    Chen Q, Zhou H P, Hong Z R, Luo S, Duan H S, Wang H H, Liu Y S, Li G, Yang Y 2014 Planar heterojunction perovskite solar cells via vapor-assisted solution process J. Am. Chem. Soc. 136 622 doi: 10.1021/ja411509g
    [10]
    Jung M, Ji S G, Kim G, Seok S I 2019 Perovskite precursor solution chemistry: from fundamentals to photovoltaic applications Chem. Soc. Rev. 48 2011 doi: 10.1039/C8CS00656C
    [11]
    Zhao P J, Kim B J, Jung H S 2018 Passivation in perovskite solar cells: a review Mater. Today Energy 7 267 doi: 10.1016/j.mtener.2018.01.004
    [12]
    Wang Y B, Wu T H, Barbaud J, Kong W Y, Cui D Y, Chen H, Yang X D, Han L Y 2019 Stabilizing heterostructures of soft perovskite semiconductors Science 365 687 doi: 10.1126/science.aax8018
    [13]
    Alberti A, Bongiorno C, Smecca E, Deretzis I, La Magna A, Spinella C 2019 Pb clustering and PbI2 nanofragmentation during methylammonium lead iodide perovskite degradation Nat. Commun. 10 2196 doi: 10.1038/s41467-019-09909-0
    [14]
    Shi J, Li B, Zhang Q, Rui Y 2021 Electrodeposited ternary AgCuO2 nanocrystalline films as hole transport layers for inverted perovskite solar cells J. Alloys Compd. 890 161879 doi: 10.1016/j.jallcom.2021.161879
    [15]
    Jiang Y, Juarez-Perez E J, Ge Q, Wang S, Leyden M R, Ono L K, Raga S R, Hu J, Qi Y 2016 Post-annealing of MAPbI3 perovskite films with methylamine for efficient perovskite solar cells Mater. Horiz. 3 548 doi: 10.1039/C6MH00160B
    [16]
    Jiang Y, Yang S-C, Jeangros Q, Pisoni S, Moser T, Buecheler S, Tiwari A N, Fu F 2020 Mitigation of vacuum and illumination-induced degradation in perovskite solar cells by structure engineering Joule 4 1087 doi: 10.1016/j.joule.2020.03.017
    [17]
    Chen B, Rudd P N, Yang S, Yuan Y B, Huang J S 2019 Imperfections and their passivation in halide perovskite solar cells Chem. Soc. Rev. 48 3842 doi: 10.1039/C8CS00853A
    [18]
    Yang J, Liu C, Cai C S, Hu X T, Huang Z Q, Duan X P, Meng X C, Yuan Z Y, Tan L C, Chen Y W 2019 High-performance perovskite solar cells with excellent humidity and thermo-stability via fluorinated perylenediimide Adv. Energy Mater. 9 1900198 doi: 10.1002/aenm.201900198
    [19]
    Ono L K, Liu S Z, Qi Y B 2020 Reducing detrimental defects for high-performance metal halide perovskite solar cells Angew. Chem., Int. Ed. 59 6676 doi: 10.1002/anie.201905521
    [20]
    Li H, Wu G H, Li W Y, Zhang Y H, Liu Z K, Wang D P, Liu S Z 2019 Additive engineering to grow micron-sized grains for stable high efficiency perovskite solar cells Adv. Sci. 6 190124 doi: 10.1002/advs.201901241
    [21]
    Son D Y, et al 2016 Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells Nat. Energy 1 16081 doi: 10.1038/nenergy.2016.81
    [22]
    Jiang Q, Chu Z N, Wang P Y, Yang X L, Liu H, Wang Y, Yin Z G, Wu J L, Zhang X W, You J B 2017 Planar-structure perovskite solar cells with efficiency beyond 21% Adv. Mater. 29 1703852 doi: 10.1002/adma.201703852
    [23]
    Niu T Q, et al 2018 Stable high-performance perovskite solar cells via grain boundary passivation Adv. Mater. 30 1706576 doi: 10.1002/adma.201706576
    [24]
    Wang R, et al 2019 Caffeine improves the performance and thermal stability of perovskite solar cells Joule 3 1464 doi: 10.1016/j.joule.2019.04.005
    [25]
    Bi D Q, et al 2018 Multifunctional molecular modulators for perovskite solar cells with over 20% efficiency and high operational stability Nat. Commun. 9 4482 doi: 10.1038/s41467-018-06709-w
    [26]
    Ali J, et al 2020 Interfacial and structural modifications in perovskite solar cells Nanoscale 12 5719 doi: 10.1039/C9NR10788F
    [27]
    Chen W, et al 2019 Conjugated polymer-assisted grain boundary passivation for efficient inverted planar perovskite solar cells Adv. Funct. Mater. 29 1808855 doi: 10.1002/adfm.201808855
    [28]
    Peng J, et al 2012 Graphene quantum dots derived from carbon fibers Nano Lett. 12 844 doi: 10.1021/nl2038979
    [29]
    Zhang S, Sui L N, Dong H Z, He W B, Dong L F, Yu L Y 2018 High-performance supercapacitor of graphene quantum dots with uniform sizes ACS Appl. Mater. Interfaces 10 12983 doi: 10.1021/acsami.8b00323
    [30]
    Wang L, Li W T, Li M, Su Q Q, Li Z, Pan D Y, Wu M H 2018 Ultrastable amine, sulfo cofunctionalized graphene quantum dots with high two-photon fluorescence for cellular imaging ACS Sustain. Chem. Eng. 6 4711 doi: 10.1021/acssuschemeng.7b03797
    [31]
    Wang L, et al 2020 Full-color fluorescent carbon quantum dots Sci. Adv. 6 eabb6772 doi: 10.1126/sciadv.abb6772
    [32]
    Ma Y H, et al 2019 Enhancing the performance of inverted perovskite solar cells via grain boundary passivation with carbon quantum dots ACS Appl. Mater. Interfaces 11 3044 doi: 10.1021/acsami.8b18867
    [33]
    Hsu H L, Hsiao H T, Juang T Y, Jiang B H, Chen S C, Jeng R J, Chen C P 2018 Carbon nanodot additives realize high-performance air-stable p-i-n perovskite solar cells providing efficiencies of up to 20.2% Adv. Energy Mater. 8 1802323 doi: 10.1002/aenm.201802323
    [34]
    Li H, et al 2018 Graphdiyne-based bulk heterojunction for efficient and moisture-stable planar perovskite solar cells Adv. Energy Mater. 8 1802012 doi: 10.1002/aenm.201802012
    [35]
    Liu K, Chen S, Wu J, Zhang H, Qin M, Lu X, Tu Y, Meng Q, Zhan X 2018 Fullerene derivative anchored SnO2 for high-performance perovskite solar cells Energy Environ. Sci. 11 3463 doi: 10.1039/C8EE02172D
    [36]
    Wang L, et al 2014 Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties Nat. Commun. 5 5357 doi: 10.1038/ncomms6357
    [37]
    Rui Y, Li T, Li B, Wang Y, Mller-Buschbaum P 2022 Two-dimensional SnS2 nanosheets as electron transport and interfacial layers enable efficient perovskite solar cells J. Mater. Chem. C 10 12392-401 doi: 10.1039/d2tc02452g
    [38]
    Zhang X, Rui Y, Yang J, Wang L, Wang Y, Xu J 2019 Monodispersed SnO2 microspheres aggregated by tunable building units as effective photoelectrodes in solar cells Appl. Surf. Sci. 463 679 doi: 10.1016/j.apsusc.2018.09.002
    [39]
    Fan X Y, Rui Y C, Han X F, Yang J X, Wang Y Q, Zhang Q H 2020 Spray-coated monodispersed SnO2 microsphere films as scaffold layers for efficient mesoscopic perovskite solar cells J. Power Sources 448 227405 doi: 10.1016/j.jpowsour.2019.227405
    [40]
    Xu Q F, Zhou Q, Hua Z, Xue Q, Zhang C F, Wang X Y, Pan D Y, Xiao M 2013 Single-particle spectroscopic measurements of fluorescent graphene quantum dots ACS Nano 7 10654 doi: 10.1021/nn4053342
    [41]
    Liu W W, Feng Y Q, Yan X B, Chen J T, Xue Q J 2013 Superior micro-supercapacitors based on graphene quantum dots Adv. Funct. Mater. 23 4111 doi: 10.1002/adfm.201203771
    [42]
    Wang Y, Zhou Y Y, Zhang T Y, Ju M-G, Zhang L, Kan M, Li Y H, Zeng X C, Padture N P, Zhao Y X 2018 Integration of a functionalized graphene nano-network into a planar perovskite absorber for high-efficiency large-area solar cells Mater. Horiz. 5 868 doi: 10.1039/C8MH00511G
    [43]
    Xu G Q, et al 2020 Low optical dosage heating-reduced viscosity for fast and large-scale cleanup of spilled crude oil by reduced graphene oxide melamine nanocomposite adsorbents Nanotechnology 31 225402 doi: 10.1088/1361-6528/ab76eb
    [44]
    Lee J W, Bae S H, Hsieh Y T, De Marco N, Wang M K, Sun P Y, Yang Y 2017 A bifunctional lewis base additive for microscopic homogeneity in perovskite solar cells Chem 3 290 doi: 10.1016/j.chempr.2017.05.020
    [45]
    Zhang W, Xiong J, Li J, Daoud W A 2021 Organic dye passivation for high-performance all-inorganic CsPbI1.5Br1.5 perovskite solar cells with efficiency over 14% Adv. Energy Mater. 11 2003585 doi: 10.1002/aenm.202003585
    [46]
    Zheng X P, et al 2018 Dual functions of crystallization control and defect passivation enabled by sulfonic zwitterions for stable and efficient perovskite solar cells Adv. Mater. 30 1803428 doi: 10.1002/adma.201803428
    [47]
    Lee J W, Kim H S, Park N G 2016 Lewis acid-base adduct approach for high efficiency perovskite solar cells Acc. Chem. Res. 49 311 doi: 10.1021/acs.accounts.5b00440
    [48]
    Gong X, Li M, Shi X B, Ma H, Wang Z K, Liao L S 2015 Controllable perovskite crystallization by water additive for high-performance solar cells Adv. Funct. Mater. 25 6671 doi: 10.1016/j.solmat.2018.11.041
    [49]
    Deng Y H, Peng E, Shao Y C, Xiao Z G, Dong Q F, Huang J S 2015 Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers Energy Environ. Sci. 8 1544 doi: 10.1039/C4EE03907F
    [50]
    He T W, Liu Z Y, Zhou Y, Ma H 2018 The stable perovskite solar cell prepared by rapidly annealing perovskite film with water additive in ambient air Sol. Energy Mater. Sol. Cells 176 280 doi: 10.1016/j.solmat.2017.12.015
    [51]
    Li T, Rui Y, Zhang X, Shi J, Wang X, Wang Y, Yang J, Zhang Q 2020 Anatase TiO2 nanorod arrays as high-performance electron transport layers for perovskite solar cells J. Alloys Compd. 849 156629 doi: 10.1016/j.jallcom.2020.156629
    [52]
    Zheng X P, Chen B, Dai J, Fang Y J, Bai Y, Lin Y Z, Wei H T, Zeng X C, Huang J S 2017 Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations Nat. Energy 2 17102 doi: 10.1038/nenergy.2017.102
    [53]
    Mali S S, Shim C S, Kim H, Hong C K 2016 Reduced graphene oxide (RGO) grafted zinc stannate (Zn2SnO4 nanofiber scaffolds for highly efficient mixed-halide perovskite solar cells J. Mater. Chem. A 4 12158 doi: 10.1039/C6TA04726B
    [54]
    Zhang X, Rui Y, Wang Y, Xu J, Wang H, Zhang Q, Mller-Buschbaum P 2018 SnO2 nanorod arrays with tailored area density as efficient electron transport layers for perovskite solar cells J. Power Sources 402 460 doi: 10.1016/j.jpowsour.2018.09.072
    [55]
    Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T W, Wojciechowski K, Zhang W 2014 Anomalous hysteresis in perovskite solar cells J. Phys. Chem. Lett. 5 1511 doi: 10.1021/jz500113x
    [56]
    Zheng X L, Wei Z H, Chen H N, Zhang Q P, He H X, Xiao S, Fan Z Y, Wong K S, Yang S H 2016 Designing nanobowl arrays of mesoporous TiO2 as an alternative electron transporting layer for carbon cathode-based perovskite solar cells Nanoscale 8 6393 doi: 10.1039/C5NR06715D
    [57]
    Ogunniran K O, Murugadoss G, Thangamuthu R, Karthikeyan J, Murugan P 2019 Integration of phenylammoniumiodide (PAI) as a surface coating molecule towards ambient stable MAPbI3 perovskite for solar cell application Sol. Energy Mater. Sol. Cells 191 316 doi: 10.1016/j.solmat.2018.11.041
    [58]
    Mahmud M A, Elumalai N K, Upama M B, Wang D, Zarei L, Goncales V R, Wright M, Xu C, Haque F, Uddin A 2018 Adsorbed carbon nanomaterials for surface and interface-engineered stable rubidium multi-cation perovskite solar cells Nanoscale 10 773 doi: 10.1039/C7NR06812C
    [59]
    Li B, Rui Y C, Xu J L, Wang Y Q, Yang J X, Zhang Q H, Mller-Buschbaum P 2020 Solution-processed p-type nanocrystalline CoO films for inverted mixed perovskite solar cells J. Colloid Interface Sci. 573 78 doi: 10.1016/j.jcis.2020.03.119
    [60]
    Huang J, Yuan Y, Shao Y, Yan Y 2017 Understanding the physical properties of hybrid perovskites for photovoltaic applications Nat. Rev. Mater. 2 17042 doi: 10.1038/natrevmats.2017.42
    [61]
    Ball J M, Petrozza A 2016 Defects in perovskite-halides and their effects in solar cells Nat. Energy 1 16149 doi: 10.1038/nenergy.2016.149
    [62]
    Pan D Y, Jiao J K, Li Z, Guo Y T, Feng C Q, Liu Y, Wang L, Wu M H 2015 Efficient separation of electron-hole pairs in graphene quantum dots by TiO2 heterojunctions for dye degradation ACS Sustain. Chem. Eng. 3 2405 doi: 10.1021/acssuschemeng.5b00771
    [63]
    Yang D, Yang R, Wang K, Wu C, Zhu X, Feng J, Ren X, Fang G, Priya S, Liu S 2018 High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2 Nat. Commun. 9 3239 doi: 10.1038/s41467-018-05760-x
    [64]
    Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J 2015 Electron-hole diffusion lengths >175 m in solution-grown CH3NH3PbI3 single crystals Science 347 967 doi: 10.1126/science.aaa5760
    [65]
    Berhe T A, Su W N, Chen C H, Pan C J, Cheng J H, Chen H M, Tsai M C, Chen L Y, Dubale A A, Hwang B J 2016 Organometal halide perovskite solar cells: degradation and stability Energy Environ. Sci. 9 323 doi: 10.1039/C5EE02733K
  • mfac9707supp1.docx
  • 加载中

Catalog

    Figures(8)  / Tables(1)

    Article Metrics

    Article Views(834) PDF downloads(121)
    Article Statistics
    Related articles from

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return