Citation: | Lin Ye, Xinxin Peng, Zhenhai Wen, Haitao Huang. Solid-state Z-scheme assisted hydrated tungsten trioxide/ZnIn2S4 photocatalyst for efficient photocatalytic H2 production[J]. Materials Futures, 2022, 1(3): 035103. doi: 10.1088/2752-5724/ac7faf |
[1] |
Meng X, Liu L, Ouyang S, Xu H, Wang D, Zhao N Q, Ye J H 2016 Nanometals for solar-to-chemical energy conversion: from semiconductor-based photocatalysis to plasmon-mediated photocatalysis and photo-thermocatalysis Adv. Mater. 28 6781 doi: 10.1002/adma.201600305
|
[2] |
Bharatvaj J, Preethi V, Kanmani S 2018 Hydrogen production from sulphide waste water using Ce3+-TiO2 photocatalysis Int. J. Hydrog. Energy 43 3935 doi: 10.1016/j.ijhydene.2017.12.069
|
[3] |
Zhu Y, Wang T, Xu T, Li Y, Wang C 2019 Size effect of Pt co-catalyst on photocatalytic efficiency of g-C3N4 for hydrogen evolution Appl. Surf. Sci. 464 36 doi: 10.1016/j.apsusc.2018.09.061
|
[4] |
Shen R C, Ren D D, Ding Y N, Guan Y T, Ng Y H, Zhang P, Li X 2020 Nanostructured CdS for efficient photocatalytic H2 evolution: a review Sci. China Mater. 63 2153-88 doi: 10.1007/s40843-020-1456-x
|
[5] |
Zhang P, Lou X W D 2019 Design of heterostructured hollow photocatalysts for solar-to-chemical energy conversion Adv. Mater. 31 1900281 doi: 10.1002/adma.201900281
|
[6] |
Huang W, He Q, Hu Y, Li Y 2019 Molecular heterostructures of covalent triazine frameworks for enhanced photocatalytic hydrogen production Angew. Chem., Int. Ed. 58 8676 doi: 10.1002/anie.201900046
|
[7] |
Li D, Lao J, Jiang C, Shen Y, Luo C, Qi R, Lin H, Huang R, Waterhouse G I, Peng H 2020 Heterostructured MoS2@Bi2Se3 nanoflowers: a highly efficient electrocatalyst for hydrogen evolution J. Catal. 381 590 doi: 10.1016/j.jcat.2019.11.039
|
[8] |
Liu J, Liu Y, Liu N, Han Y, Zhang X, Huang H, Lifshitz Y, Lee S-T, Zhong J, Kang Z 2015 Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway Science 347 970 doi: 10.1126/science.aaa3145
|
[9] |
Dan M, Zhang Q, Yu S, Prakashb A, Lin Y, Zhou Y 2017 Noble-metal-free MnS/In2S3 composite as highly efficient visible light driven photocatalyst for H2 production from H2S Appl. Catal. B 217 530 doi: 10.1016/j.apcatb.2017.06.019
|
[10] |
Lu M F, Li Q Q, Zhang C L, Fan X X, Li L, Dong Y M, Chen G Q, Shi H F 2020 Remarkable photocatalytic activity enhancement of CO2 conversion over 2D/2D g-C3N4/BiVO4 Z-scheme heterojunction promoted by efficient interfacial charge transfer Carbon 160 342 doi: 10.1016/j.carbon.2020.01.038
|
[11] |
Liang Q, Cui S, Jin J, Liu C, Xu S, Yao C, Li Z 2018 Eosin Y bidentately bridged on UiO-66-NH2 by solvothermal treatment towards enhanced visible-light-driven photocatalytic H2 production Appl. Surf. Sci. 456 899 doi: 10.1016/j.apsusc.2018.06.173
|
[12] |
Anwer H, Mahmood A, Lee J, Kim K, Park J, Yip A C K 2019 Photocatalysts for degradation of dyes in industrial effluents: opportunities and challenges Nano Res. 12 955 doi: 10.1007/s12274-019-2287-0
|
[13] |
Naya S I, Kume T, Akashi R, Fujishima M, Tada H 2018 Red-light-driven water splitting by Au(Core)-CdS(Shell) half-cut nanoegg with heteroepitaxial junction J. Am. Chem. Soc. 140 1251 doi: 10.1021/jacs.7b12972
|
[14] |
Lv M, Sun X, Wei S, Shen C, Mi Y, Xu X 2017 Ultrathin lanthanum tantalate perovskite nanosheets modified by nitrogen doping for efficient photocatalytic water splitting ACS Nano 11 11441 doi: 10.1021/acsnano.7b06131
|
[15] |
Pan B, Qin J N, Wang X X, Su W Y 2020 Efficient self-assembly synthesis of LaPO4/CdS hierarchical heterostructure with enhanced visible-light photocatalytic CO2 reduction Appl. Surf. Sci. 504 144379 doi: 10.1016/j.apsusc.2019.144379
|
[16] |
Majhi D, Das K, Bariki R, Padhan S, Mishra A, Dhiman R, Dash P, Nayakc B, Mishra B G 2020 A facile reflux method for in situ fabrication of a non-cytotoxic Bi2S3/b-Bi2O3/ZnIn2S4 ternary photocatalyst: a novel dual Z-scheme system with enhanced multifunctional photocatalytic activity J. Mater. Chem. A 8 21729 doi: 10.1039/D0TA06129H
|
[17] |
Zong X, Yan H, Wu G, Ma G, Wen F, Wang L, Li C 2008 Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation J. Am. Chem. Soc. 130 7176 doi: 10.1021/ja8007825
|
[18] |
Formal F, Pendlebury S R, Cornuz M, Tilley S D, Gra M, Durrant J R 2014 Back electron-hole recombination in hematite photoanodes for water splitting J. Am. Chem. Soc. 136 2564 doi: 10.1021/ja412058x
|
[19] |
Wang H, Zhang L, Chen Z, Hu J, Li S, Wang Z, Liu J, Wang X 2014 Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances Chem. Soc. Rev. 43 5234 doi: 10.1039/C4CS00126E
|
[20] |
Gholipour M R, Dinh C T, Bland F, Do T O 2015 Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting Nanoscale 7 8187 doi: 10.1039/C4NR07224C
|
[21] |
Shen R C, Lu X Y, Zheng Q Q, Chen Q, Ng Y H, Zhang P, Li X 2021 Tracking s-scheme charge transfer pathways in Mo2C/CdS H2-evolution photocatalysts Sol. RRL 5 2100177 doi: 10.1002/solr.202100177
|
[22] |
Bai J X, Shen R C, Jiang Z M, Zhang P, Li Y J, Li X 2022 Integration of 2D layered CdS/WO3 S-scheme heterojunctions and metallic Ti3C2 Mxene-based Ohmic junctions for effective photocatalytic H2 generation Chin. J. Catal. 43 359 doi: 10.1016/S1872-2067(21)63883-4
|
[23] |
Zhou P, Yu J, Jaroniec M 2014 All-solid-state Z-scheme photocatalytic systems Adv. Mater. 26 4920 doi: 10.1002/adma.201400288
|
[24] |
Chen Z M, Deng Y C, Tang L, Feng C Y, Wang J J, Yu J J, Liu Z F, Zhou H 2020 Theoretical and experimental study of full spectrum response Z-scheme 0D/2D Ag6Si2O7/CN photocatalyst with enhanced photocatalytic activities Appl. Surf. Sci. 514 145963 doi: 10.1016/j.apsusc.2020.145963
|
[25] |
Wang S, Zhu B, Liu M, Zhang L, Yu J, Zhou M 2019 Direct Z-scheme ZnO/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity Appl. Catal. B 243 19 doi: 10.1016/j.apcatb.2018.10.019
|
[26] |
Jin J, Yu J G, Guo D P, Cui C, Ho W K 2015 A hierarchical Z-scheme CdS-WO3 photocatalyst with enhanced CO2 reduction activity Small 11 5262 doi: 10.1002/smll.201500926
|
[27] |
Sasaki Y, Iwase A, Kato H, Kudo A 2008 The effect of co-catalyst for Z-scheme photocatalysis systems with an Fe3+/Fe2+ electron mediator on overall water splitting under visible light irradiation J. Catal. 259 133 doi: 10.1016/j.jcat.2008.07.017
|
[28] |
Ma D, Wu J, Gao M, Xin Y, Chai C 2017 Enhanced debromination and degradation of 2, 4-dibromophenol by an Z-scheme Bi2MoO6/CNTs/g-C3N4 visible light photo- catalyst Chem. Eng. J. 316 461 doi: 10.1016/j.cej.2017.01.124
|
[29] |
Tada H, Mitsui T, Kiyonaga T, Akita T, Tanaka K 2006 All-solid-state Z-scheme in CdS-Au-P25 three-component nanojunction system Nat. Mater. 5 782 doi: 10.1038/nmat1734
|
[30] |
Ye L, Wen Z H 2019 ZnIn2S4 nanosheets decorating WO3 nanorods core-shell hybrids for boosting visible-light photocatalysis hydrogen generation Int. J. Hydrog. Energy 4 3751 doi: 10.1016/j.ijhydene.2018.12.093
|
[31] |
Wu X, Zhao J, Wang L, Han M, Zhang M, Wang H, Huang H, Liu Y, Kang Z 2017 Carbon dots as solid-state electron mediator for BiVO4/CDs/CdS Z-scheme photocatalyst working under visible light Appl. Catal. B 206 501 doi: 10.1016/j.apcatb.2017.01.049
|
[32] |
Zeng C, Hu Y, Zhang T, Dong F, Zhang Y, Huang H 2018 A core-satellite structured Z-scheme catalyst Cd0.5Zn0.5S/BiVO4 for highly efficient and stable photocatalytic water splitting J. Mater. Chem. A 6 16932 doi: 10.1039/C8TA04258F
|
[33] |
Wang Y, Suzuki H, Xie J, Tomita O, Martin D J, Higashi M, Kong D, Abe R, Tang J 2018 Mimicking natural photosynthesis: solar to renewable H2 fuel synthesis by Z-scheme water splitting systems Chem. Rev. 118 5201 doi: 10.1021/acs.chemrev.7b00286
|
[34] |
Chen S, Hu Y, Meng S, Fu X 2014 Study on the separation mechanisms of photogenerated electrons and holes for composite photocatalysts g-C3N4-WO3 Appl. Catal. B 150-151 564 doi: 10.1016/j.apcatb.2013.12.053
|
[35] |
Zheng H D, Ou J Z, Strano M S, Kaner R B, Mitchell A, Kalantar-zadeh K 2011 Nanostructured tungsten oxide-properties, synthesis, and applications Adv. Funct. Mater. 21 2175-96 doi: 10.1002/adfm.201002477
|
[36] |
Liu B, Wang J, Wu J, Li H, Li Z, Zhou M, Zuo T 2014 Controlled fabrication of hierarchical WO3 hydrates with excellent adsorption performance J. Mater. Chem. A 2 1947 doi: 10.1039/C3TA13897F
|
[37] |
Sun S M, Watanabe M, Wu J, An Q, Ishihara T 2018 Ultrathin WO3·0.33H2O nanotubes for CO2 photoreduction to acetate with high selectivity J. Am. Chem. Soc. 140 6474 doi: 10.1021/jacs.8b03316
|
[38] |
Wang H X, Ren X B, Liu Z, Jiang D, Lv B L 2019 Bubble-template synthesis of WO3·0.5H2O hollow spheres as a high-activity catalyst for catalytic oxidation of benzyl alcohol to benzaldehyde CrystEngComm 21 1026 doi: 10.1039/C8CE01999A
|
[39] |
Ye L, Fu J L, Xu Z, Yuan R S, Li Z H 2014 Facile one-pot solvothermal method to synthesize sheet-on-sheet reduced graphene oxide (RGO)/ZnIn2S4 nanocomposites with superior photocatalytic performance ACS Appl. Mater. Interfaces 6 3483 doi: 10.1021/am5004415
|
[40] |
Ye L, Li Z H 2014 ZnIn2S4: a photocatalyst for the selective aerobic oxidation of amines to imines under visible light ChemCatChem 6 2540 doi: 10.1002/cctc.201402360
|
[41] |
Lei Z B, You W S, Liu M Y, Zhou G H, Takata T, Hara M, Domen K, Li C 2013 Photocatalytic water reduction under visible light on a novel ZnIn2S4 catalyst synthesized by hydrothermal method Chem. Commun. 17 2142 doi: 10.1039/B306813G
|
[42] |
He Y Q, Rao H, Song K P, Li J X, Yu Y, Lou Y, Li C G, Han Y, Shi Z, Feng S H 2019 3D Hierarchical ZnIn2S4 nanosheets with Rich Zn vacancies boosting photocatalytic CO2 reduction Adv. Funct. Mater. 29 1905153 doi: 10.1002/adfm.201905153
|
[43] |
Zhou J, Tian G, Chen Y, Meng X, Shi Y, Cao X, Pan K, Fu H 2013 In situ controlled growth of ZnIn2S4 nanosheets on reduced graphene oxide for enhanced photocatalytic hydrogen production performance Chem. Commun. 49 2237 doi: 10.1039/c3cc38999e
|
[44] |
Lin R, Wan J W, Xiong Y, Wu K L, Cheong W, Zhou G, Wang D S, Peng Q, Chen C, Li Y D 2018 Quantitative study of charge carrier dynamics in well-defined WO3 nanowires and nanosheets: insight into the crystal facet effect in photocatalysis J. Am. Chem. Soc. 140 9078 doi: 10.1021/jacs.8b05293
|
[45] |
He J, Liu H L, Xu B, Wang X 2015 Highly Flexible Sub-1 nm tungsten oxide nanobelts as efficient desulfurization catalysts Small 11 1144 doi: 10.1002/smll.201401273
|
[46] |
Xu B, He P, Liu H, Wang P, Zhou G, Wang X 2014 A 1D/2D helical CdS/ZnIn2S4 nano-heterostructure Angew. Chem., Int. Ed. 53 2339 doi: 10.1002/anie.201310513
|
[47] |
Du C, Yan B, Yang G W 2020 Self-integrated effects of 2D ZnIn2S4 and amorphous Mo2C nanoparticles composite for promoting solar hydrogen generation Nano Energy 76 105031 doi: 10.1016/j.nanoen.2020.105031
|
[48] |
Yang M-Q, Xu Y-J, Lu W H, Zeng K Y, Zhu H, Xu Q-H, Ho G W 2017 Self-surface charge exfoliation and electrostatically coordinated 2D hetero-layered hybrids Nat. Commun. 8 14224 doi: 10.1038/ncomms14224
|
[49] |
Wang H P, Zhang L, Wang K F, Sun X, Wang W Z 2019 Enhanced photocatalytic CO2 reduction to methane over WO3·0.33H2O via Mo doping Appl. Catal. B 243 771 doi: 10.1016/j.apcatb.2018.11.021
|
[50] |
Zheng Y, Chen G, Yu Y G, Wang Y, Sun J X, Xu H M, Zhou Y S 2014 Solvothermal synthesis of pyrochlore-type cubic tungsten trioxide hemihydrate and high photocatalytic activity New J. Chem. 38 3071 doi: 10.1039/C3NJ01401K
|
mfac8170supp1.docx |