Citation: | Wangqi Dai, Yan Qiao, Ziqiang Ma, Tian Wang, Zhengwen Fu. All-solid-state thin-film batteries based on lithium phosphorus oxynitrides[J]. Materials Futures, 2022, 1(3): 032101. doi: 10.1088/2752-5724/ac7db2 |
[1] |
Notten P H L, Roozeboom F, Niessen R A H, Baggetto L 2007 3D integrated all-solid-state rechargeable batteries Adv. Mater. 19 4564-7 doi: 10.1002/adma.200702398
|
[2] |
Jetybayeva A, Uzakbaiuly B, Mukanova A, Myung S-T, Bakenov Z 2021 Recent advancements in solid electrolytes integrated into all-solid-state 2D and 3D lithium-ion microbatteries J. Mater. Chem. A 9 15140-78 doi: 10.1039/D1TA02652F
|
[3] |
Song J, Yang X, Zeng S-S, Cai M-Z, Zhang L-T, Dong Q-F, Zheng M-S, Wu S-T, Wu Q-H 2009 Solid-state microscale lithium batteries prepared with microfabrication processes J. Micromech. Microeng. 19 045004 doi: 10.1088/0960-1317/19/4/045004
|
[4] |
Kanehori K, Matsumoto K, Miyauchi K, Kudo T 1983 Thin film solid electrolyte and its application to secondary lithium cell Solid State Ion. 9-10 1445-8 doi: 10.1016/0167-2738(83)90192-3
|
[5] |
Lee H, Kim S, Kim K-B, Choi J-W 2018 Scalable fabrication of flexible thin-film batteries for smart lens applications Nano Energy 53 225-31 doi: 10.1016/j.nanoen.2018.08.054
|
[6] |
Vallone M, Alleri M, Bono F, Catania P 2020 A new wireless device for real-time mechanical impact evaluation in a citrus packing line Trans. ASABE 63 1-9 doi: 10.13031/trans.13194
|
[7] |
Lee H, Lim K Y, Kim K-B, Yu J-W, Choi W K, Choi J-W 2020 Hybrid thin-film encapsulation for all-solid-state thin-film batteries ACS Appl. Mater. Interfaces 12 11504-10 doi: 10.1021/acsami.9b20471
|
[8] |
Kutbee A T, et al 2017 Flexible and biocompatible high-performance solid-state micro-battery for implantable orthodontic system npj Flex. Electron. 1 7 doi: 10.1038/s41528-017-0008-7
|
[9] |
Kanehori K, Ito Y, Kirino F, Miyauchi K, Kudo T 1986 Titanium disulfide films fabricated by plasma CVD Solid State Ion. 18-19 818-22 doi: 10.1016/0167-2738(86)90269-9
|
[10] |
Kirino F, Ito Y, Miyauchi K, Kudo T 1986 Electrochemical behavior of amorphous thin films of sputtered V2O5-WO3 mixed conductors Nippon Kagaku Kaishi 1986 445-50 doi: 10.1246/nikkashi.1986.445
|
[11] |
Yamaki J 1996 Rechargeable lithium thin film cells with inorganic electrolytes Solid State Ion. 86-88 1279-84 doi: 10.1016/0167-2738(96)00301-3
|
[12] |
Ohtsuka H 1989 Electrical characteristics of Li2O_V2O5_SiO2 thin films Solid State Ion. 35 201-6 doi: 10.1016/0167-2738(89)90296-8
|
[13] |
Ohtsuka H, Okada S, Yamaki J 1990 Solid state battery with Li2O-V2O5-SiO2 solid electrolyte thin film Solid State Ion. 40-41 964-6 doi: 10.1016/0167-2738(90)90163-L
|
[14] |
Jones S D 1992 A thin film solid state microbattery Solid State Ion. 53 628-34 doi: 10.1016/0167-2738(92)90439-V
|
[15] |
Akridge J R, Vourlis H 1986 Solid state batteries using vitreous solid electrolytes Solid State Ion. 18-19 1082-7 doi: 10.1016/0167-2738(86)90313-9
|
[16] |
Akridge J R, Vourlis H 1988 Performance of Li/TiS2 solid state batteries using phosphorous chalcogenide network former glasses as solid electrolyte Solid State Ion. 28 841-6 doi: 10.1016/S0167-2738(88)80156-5
|
[17] |
Jones S D, Akridge J R, Shokoohi F K 1994 Thin film rechargeable Li batteries Solid State Ion. 69 357-68 doi: 10.1016/0167-2738(94)90423-5
|
[18] |
Bates J B, Gruzalski G R, Dudney N J, Luck C F, Yu X H 1994 Rechargeable thin-film lithium batteries Solid State Ion. 70 619-28 doi: 10.1016/0167-2738(94)90383-2
|
[19] |
Bates J B 2000 Thin-film lithium and lithium-ion batteries Solid State Ion. 135 33-45 doi: 10.1016/S0167-2738(00)00327-1
|
[20] |
Yu X H, Bates J B, Jellison G E, Hart F X 1997 A stable thin-film lithium electrolyte: lithium phosphorus oxynitride J. Electrochem. Soc. 144 524-32 doi: 10.1149/1.1837443
|
[21] |
Neudecker B J, Dudney N J, Bates J B 2000 Lithium-free thin-film battery with in situ plated Li anode J. Electrochem. Soc. 147 517-23 doi: 10.1149/1.1393226
|
[22] |
Whitacre J F, West W C, Ratnakumar B V 2003 A combinatorial study of Liy Mnx Ni2-x O4 cathode materials using microfabricated solid-state electrochemical cells J. Electrochem. Soc. 150 A1676-83 doi: 10.1149/1.1622957
|
[23] |
West W C, Whitacre J F, Ratnakumar B V 2003 Radio frequency magnetron-sputtered LiCoPO4 Cathodes for 4.8 V thin-film batteries J. Electrochem. Soc. 150 A1660-66 doi: 10.1149/1.1619987
|
[24] |
Park Y-S, Lee S-H, Lee B-I, Joo S-K 1999 All-solid-state lithium thin-film rechargeable battery with lithium manganese oxide Electrochem. Solid-State Lett. 2 58-59 doi: 10.1149/1.1390733
|
[25] |
Jeon E J, Shin Y W, Nam S C, Cho W I, Yoon Y S 2001 Characterization of all-solid-state thin-film batteries with V2 O5 thin-film cathodes using ex situ and in situ processes J. Electrochem. Soc. 148 A318-22 doi: 10.1149/1.1354609
|
[26] |
Baba M 1999 Fabrication and electrochemical characteristics of all-solid-state lithium-ion batteries using V2 O5 thin films for both electrodes Electrochem. Solid-State Lett. 2 320-2 doi: 10.1149/1.1390823
|
[27] |
Baba M, Kumagai N, Fujita N, Ohta K, Nishidate K, Komaba S, Groult H, Devilliers D, Kaplan B 2001 Fabrication and electrochemical characteristics of all-solid-state lithium-ion rechargeable batteries composed of LiMn2O4 positive and V2O5 negative electrodes J. Power Sources 97-98 798-800 doi: 10.1016/S0378-7753(01)00733-9
|
[28] |
Baba M, Kumagai N, Fujita H, Ohta K, Nishidate K, Komaba S, Kaplan B, Groult H, Devilliers D 2003 Multi-layered Li-ion rechargeable batteries for a high-voltage and high-current solid-state power source J. Power Sources 119 914-7 doi: 10.1016/S0378-7753(03)00223-4
|
[29] |
Creus R 1992 Thin films of ionic and mixed conductive glasses: their use in microdevices Solid State Ion. 53 641-6 doi: 10.1016/0167-2738(92)90441-Q
|
[30] |
Menetrier M, Levasseur V, Delmas C, Audebert J F, Hagenmuller P 1984 New secondary batteries for room temperature applications using a vitreous electrolyte Solid State Ion. 14 257-61 doi: 10.1016/0167-2738(84)90108-5
|
[31] |
Balkanski M, Julien C, Emery J Y 1989 Integrable lithium solid-state microbatteries J. Power Sources 26 615-22 doi: 10.1016/0378-7753(89)80189-2
|
[32] |
Creus R, Sarradin J, Astier R, Pradel A, Ribes M 1989 The use of ionic and mixed conductive glasses in microbatteries Mater. Sci. Eng. B 3 109-12 doi: 10.1016/0921-5107(89)90187-6
|
[33] |
Jourdaine L 1988 Lithium solid state glass-based microgenerators Solid State Ion. 28 1490-4 doi: 10.1016/0167-2738(88)90410-9
|
[34] |
Kuwata N, Kawamura J, Toribami K, Hattori T, Sata N 2004 Thin-film lithium-ion battery with amorphous solid electrolyte fabricated by pulsed laser deposition Electrochem. Commun. 6 417-21 doi: 10.1016/j.elecom.2004.02.010
|
[35] |
Zheng S, Shi X, Das P, Wu Z-S, Bao X 2019 The road towards planar microbatteries and micro-supercapacitors: from 2D to 3D device geometries Adv. Mater. 31 1900583 doi: 10.1002/adma.201900583
|
[36] |
Koo M, Park K-I, Lee S H, Suh M, Jeon D Y, Choi J W, Kang K, Lee K J 2012 Bendable inorganic thin-film battery for fully flexible electronic systems Nano Lett. 12 4810-6 doi: 10.1021/nl302254v
|
[37] |
Hallot M, Demortiere A, Roussel P, Lethien C 2018 Sputtered LiMn1.5Ni0.5O4 thin films for Li-ion micro-batteries with high energy and rate capabilities Energy Storage Mater. 15 396-406 doi: 10.1016/j.ensm.2018.08.012
|
[38] |
Trask J, Anapolsky A, Cardozo B, Januar E, Kumar K, Miller M, Brown R, Bhardwaj R 2017 Optimization of 10-
|
[39] |
Yamamoto T, Iwasaki H, Suzuki Y, Sakakura M, Fujii Y, Motoyama M, Iriyama Y 2019 A Li-free inverted-stack all-solid-state thin film battery using crystalline cathode material Electrochem. Commun. 105 106494 doi: 10.1016/j.elecom.2019.106494
|
[40] |
Xia Q Y, et al 2021 Tunnel intergrowth LixMnO2 nanosheet arrays as 3D cathode for high-performance all-solid-state thin film lithium microbatteries Adv. Mater. 33 2003524 doi: 10.1002/adma.202003524
|
[41] |
Sun S, Xia Q Y, Liu J Z, Xu J, Zan F, Yue J L, Savilov S V, Lunin V V, Xia H 2019 Self-standing oxygen-deficient
|
[42] |
Chen X B, Sastre J, Rumpel M, Flegler A, Singhania A, Bonner J B, Hoffmann P, Romanyuk Y E 2021 Photonic methods for rapid crystallization of LiMn2O4 cathodes for solid-state thin-film batteries J. Power Sources 495 229424 doi: 10.1016/j.jpowsour.2020.229424
|
[43] |
Chen X B, Sastre J, Aribia A, Gilshtein E, Romanyuk Y E 2021 Flash lamp annealing enables thin-film solid-state batteries on aluminum foil ACS Appl. Energy Mater. 4 5408-14 doi: 10.1021/acsaem.1c01283
|
[44] |
Wang C L, Dai X Y, Guan X, Jia W S, Bai Y, Li J Z 2020 LiCoO2 thin film cathode sputtered onto 500 C substrate Electrochim. Acta 354 136668 doi: 10.1016/j.electacta.2020.136668
|
[45] |
Zhang Y M, Marschilok A C, Takeuchi K J, Kercher A K, Takeuchi E S, Dudney N J 2019 Understanding how structure and crystallinity affect performance in solid-state batteries using a glass ceramic LiV3O8 cathode Chem. Mater. 31 6135-44 doi: 10.1021/acs.chemmater.9b01571
|
[46] |
Yim H, Yu S-H, Baek S H, Sung Y-E, Choi J-W 2020 Directly integrated all-solid-state flexible lithium batteries on polymer substrate J. Power Sources 455 227978 doi: 10.1016/j.jpowsour.2020.227978
|
[47] |
Gockeln M, Glenneberg J, Busse M, Pokhrel S, Madler L, Kun R 2018 Flame aerosol deposited Li4Ti5O12 layers for flexible, thin film all-solid-state Li-ion batteries Nano Energy 49 564-73 doi: 10.1016/j.nanoen.2018.05.007
|
[48] |
Nishio K, Horiba K, Nakamura N, Kitamura M, Kumigashira H, Shimizu R, Hitosugi T 2019 Bottom-current-collector-free thin-film batteries using LiNi0.8Co0.2O2 epitaxial thin films J. Power Sources 416 56-61 doi: 10.1016/j.jpowsour.2019.01.067
|
[49] |
Nishio K, Nakamura N, Horiba K, Kitamura M, Kumigashira H, Shimizu R, Hitosugi T 2020 Low resistance at LiNi1/3Mn1/3Co1/3O2 and Li3PO4 interfaces Appl. Phys. Lett. 116 053901 doi: 10.1063/1.5133879
|
[50] |
Fu Z-W 1999 Pulsed laser deposited Ta2O5 thin films as an electrochromic material Electrochem. Solid-State Lett. 2 600-1 doi: 10.1149/1.1390919
|
[51] |
Ding F 1999 Electrochromic properties of ZnO thin films prepared by pulsed laser deposition Electrochem. Solid-State Lett. 2 418-9 doi: 10.1149/1.1390857
|
[52] |
Fu Z-W, Chen L-Y, Qin Q-Z 1999 Electrical characterization of Ta2O5 films deposited by laser reactive ablation of metallic Ta Thin Solid Films 340 164-8 doi: 10.1016/S0040-6090(98)01444-8
|
[53] |
Ding F, Fu Z W, Zhou M F, Qin Q Z 1999 Tin-based composite oxide thin-film electrodes prepared by pulsed laser deposition J. Electrochem. Soc. 146 3554-9 doi: 10.1149/1.1392513
|
[54] |
Chu Y-Q, Qin Q-Z 2002 Fabrication and characterization of silver-V2O5 composite thin films as lithium-ion insertion materials Chem. Mater. 14 3152-7 doi: 10.1021/cm020166u
|
[55] |
Wang Y, Qin Q-Z 2002 A nanocrystalline NiO thin-film electrode prepared by pulsed laser ablation for Li-Ion batteries J. Electrochem. Soc. 149 A873-78 doi: 10.1149/1.1481715
|
[56] |
Wang Y, Fu Z-W, Yue X-L, Qin Q-Z 2004 Electrochemical reactivity mechanism of Ni3N with lithium J. Electrochem. Soc. 151 E162-67 doi: 10.1149/1.1649983
|
[57] |
Fu Z-W, Li C-L, Liu W-Y, Ma J, Wang Y, Qin Q-Z 2005 Electrochemical reaction of lithium with cobalt fluoride thin film electrode J. Electrochem. Soc. 152 E50-55 doi: 10.1149/1.1839512
|
[58] |
Zhao S L, Fu Z W, Qin Q Z 2002 A solid-state electrolyte lithium phosphorus oxynitride film prepared by pulsed laser deposition Thin Solid Films 415 108-13 doi: 10.1016/S0040-6090(02)00543-6
|
[59] |
Zhao S L, Qin Q Z 2003 Li V Si O thin film electrolyte for all-solid-state Li-ion battery J. Power Sources 122 174-80 doi: 10.1016/S0378-7753(03)00400-2
|
[60] |
Liu W-Y, Fu Z-W, Li C-L, Qin Q-Z 2004 Lithium phosphorus oxynitride thin film fabricated by a nitrogen plasma-assisted deposition of e-beam reaction evaporation Electrochem. Solid-State Lett. 7 J36-J40 doi: 10.1149/1.1778934
|
[61] |
Li C-L, Fu Z-W 2007 All-solid-state rechargeable thin film lithium batteries with LixMn2O4 and LixMn2O4-0.5ZrO2 cathodes Electrochim. Acta 52 6155-64 doi: 10.1016/j.electacta.2007.04.012
|
[62] |
Liu W-Y, Fu Z-W, Qin Z 2008 A lithium-free thin-film battery with an unexpected cathode layer J. Electrochem. Soc. 155 A8-A13 doi: 10.1149/1.2798985
|
[63] |
Shi D-R, Fu J, Shadike Z, Cao M-H, Wang W-W, Fu Z-W 2018 All-solid-state rechargeable lithium metal battery with a Prussian blue cathode prepared by a nonvacuum coating technology ACS Omega 3 7648-54 doi: 10.1021/acsomega.8b01102
|
[64] |
Bates J B, Dudney N J, Gruzalski G R, Zuhr R A, Choudhury A, Luck C F, Robertson J D 1993 Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries J. Power Sources 43 103-10 doi: 10.1016/0378-7753(93)80106-Y
|
[65] |
Lacivita V, Westover A S, Kercher A, Phillip N D, Yang G, Veith G, Ceder G, Dudney N J 2018 Resolving the amorphous structure of lithium phosphorus oxynitride (Lipon) J. Am. Chem. Soc. 140 11029-38 doi: 10.1021/jacs.8b05192
|
[66] |
Lee S-J, Bae J-H, Lee H-W, Baik H-K, Lee S-M 2003 Electrical conductivity in Li-Si-P-O-N oxynitride thin-films J. Power Sources 123 61-64 doi: 10.1016/S0378-7753(03)00457-9
|
[67] |
Lee S-J, Baik H-K, Lee S-M 2003 An all-solid-state thin film battery using LISIPON electrolyte and Si-V negative electrode films Electrochem. Commun. 5 32-35 doi: 10.1016/S1388-2481(02)00528-3
|
[68] |
Su Y R, et al 2017 Electrochemical properties and optical transmission of high Li+ conducting LiSiPON electrolyte films Phys. Status Solidi b 254 1600088 doi: 10.1002/pssb.201600088
|
[69] |
Famprikis T, Galipaud J, Clemens O, Pecquenard B, Le Cras F 2019 Composition dependence of ionic conductivity in LiSiPO(N) thin-film electrolytes for solid-state batteries ACS Appl. Energy Mater. 2 4782-91 doi: 10.1021/acsaem.9b00415
|
[70] |
Temeche E, Zhang X, Laine R M 2020 Solid electrolytes for Li-S batteries: solid solutions of poly(ethylene oxide) with LixPON- and LixSiPON-based polymers ACS Appl. Mater. Interfaces 12 30353-64 doi: 10.1021/acsami.0c06196
|
[71] |
Temeche E, Zhang X, Laine R M 2020 Polymer precursor derived LixPON electrolytes: toward Li-S batteries ACS Appl. Mater. Interfaces 12 20548-62 doi: 10.1021/acsami.0c03341
|
[72] |
Zhang X, Temeche E, Laine R M 2020 Lix SiON x = 2, 4, 6): a novel solid electrolyte system derived from agricultural waste Green Chem. 22 7491-505 doi: 10.1039/D0GC02580A
|
[73] |
Zhang X, Temeche E, Laine R M 2020 Design, synthesis, and characterization of polymer precursors to LixPON and LixSiPON glasses: materials that enable all-solid-state batteries (ASBs) Macromolecules 53 2702-12 doi: 10.1021/acs.macromol.0c00254
|
[74] |
Wu F, Liu Y, Chen R, Chen S, Wang G 2009 Preparation and performance of novel Li-Ti-Si-P-O-N thin-film electrolyte for thin-film lithium batteries J. Power Sources 189 467-70 doi: 10.1016/j.jpowsour.2008.12.042
|
[75] |
Joo K-H, Sohn H-J, Vinatier P, Pecquenard B, Levasseur A 2004 Lithium ion conducting lithium sulfur oxynitride thin film Electrochem. Solid-State Lett. 7 A256-58 doi: 10.1149/1.1769317
|
[76] |
Joo K H 2003 Thin film lithium ion conducting LiBSO solid electrolyte Solid State Ion. 160 51-59 doi: 10.1016/S0167-2738(03)00163-2
|
[77] |
Mller C R, Johansson P, Karlsson M, Maass P, Matic A 2008 Structure of glassy lithium sulfate films sputtered in nitrogen: insight from Raman spectroscopy and ab initio calculations Phys. Rev. B 77 094116 doi: 10.1103/PhysRevB.77.094116
|
[78] |
Kurzman J A, Jouan G, Courty M, Rosa Palacin M, Armand M, Recham N 2013 Brnsted acid-base reactions with anhydrous sulfamates as a pathway to [SO3N]3--containing compounds: preparation of Li3SO3N Solid State Sci. 25 28-32 doi: 10.1016/j.solidstatesciences.2013.08.004
|
[79] |
Mascaraque N, Takebe H, Tricot G, Fierro J L G, Durn A, Muoz F 2014 Structure and electrical properties of a new thio-phosphorus oxynitride glass electrolyte J. Non-Cryst. Solids 405 159-62 doi: 10.1016/j.jnoncrysol.2014.09.011
|
[80] |
Mascaraque N, Fierro J L G, Muoz F, Durn A, Ito Y, Hibi Y, Harada R, Kato A, Hayashi A, Tatsumisago M 2015 Thio-oxynitride phosphate glass electrolytes prepared by mechanical milling J. Mater. Res. 30 2940-8 doi: 10.1557/jmr.2015.128
|
[81] |
Michel F, Kuhl F, Becker M, Janek J, Polity A 2019 Electrochemical and optical properties of lithium ion conducting LiPSON solid electrolyte films Phys. Status Solidi b 256 1900047 doi: 10.1002/pssb.201900047
|
[82] |
Michel F, Becker M, Janek J, Polity A 2020 Investigations of the solid electrolyte interphase using x-ray photoelectron spectroscopy in situ experiment on the lithium-based solid electrolyte LiPSON Phys. Status Solidi b 257 1900336 doi: 10.1002/pssb.201900336
|
[83] |
Lupo C, Michel F, Kuhl F, Su Y R, Becker M, Polity A, Schlettwein D 2021 Investigation of sputter-deposited thin films of lithium phosphorous sulfuric oxynitride (LiPSON) as solid electrolyte for electrochromic devices Phys. Status Solidi b 258 2100032 doi: 10.1002/pssb.202100032
|
[84] |
Kim J M, Park G B, Lee K C, Park H Y, Nam S C, Song S W 2009 Li-B-O-N electrolytes for all-solid-state thin film batteries J. Power Sources 189 211-6 doi: 10.1016/j.jpowsour.2008.09.089
|
[85] |
Dussauze M, Kamitsos E I, Johansson P, Matic A, Varsamis C P E, Cavagnat D, Vinatier P, Hamon Y 2013 Lithium ion conducting boron-oxynitride amorphous thin films: synthesis and molecular structure by infrared spectroscopy and density functional theory modeling J. Phys. Chem. C 117 7202-13 doi: 10.1021/jp401527x
|
[86] |
Birke P, Weppner W 1997 Electrochemical analysis of thin film electrolytes and electrodes for application in rechargeable all solid state lithium microbatteries Electrochim. Acta 42 3375-84 doi: 10.1016/S0013-4686(97)00190-4
|
[87] |
Li S, Yunchao X, Zhuangqi H 2018 Dislocation structure in a single crystal nickel base superalloy during high cycle fatigue at 870 C Rare Metal. Mater. Eng. 47 3835-8 doi: 10.1016/S1875-5372(18)30119-X
|
[88] |
Song S-W, Lee K-C, Park H-Y 2016 High-performance flexible all-solid-state microbatteries based on solid electrolyte of lithium boron oxynitride J. Power Sources 328 311-7 doi: 10.1016/j.jpowsour.2016.07.114
|
[89] |
Wu F, Zheng Y, Li L, Tan G, Chen R, Chen S 2013 Novel micronano thin film based on Li-B-P-O target incorporating nitrogen as electrolyte: how does local structure influence chemical and electrochemical performances? J. Phys. Chem. C 117 19280-7 doi: 10.1021/jp401964f
|
[90] |
Yoon Y, Park C, Kim J, Shin D 2013 The mixed former effect in lithium borophosphate oxynitride thin film electrolytes for all-solid-state micro-batteries Electrochim. Acta 111 144-51 doi: 10.1016/j.electacta.2013.08.053
|
[91] |
Mascaraque N, Tricot G, Revel B, Durn A, Muoz F 2014 Nitrogen and fluorine anionic substitution in lithium phosphate glasses Solid State Ion. 254 40-47 doi: 10.1016/j.ssi.2013.10.061
|
[92] |
Xia H-Y, et al 2021 A new carbon-incorporated lithium phosphate solid electrolyte J. Power Sources 514 230603 doi: 10.1016/j.jpowsour.2021.230603
|
[93] |
Jee S H, Lee M-J, Ahn H S, Kim D-J, Choi J W, Yoon S J, Nam S C, Kim S H, Yoon Y S 2010 Characteristics of a new type of solid-state electrolyte with a LiPON interlayer for Li-ion thin film batteries Solid State Ion. 181 902-6 doi: 10.1016/j.ssi.2010.04.017
|
[94] |
Chen H, Tao H, Zhao X, Wu Q 2011 Fabrication and ionic conductivity of amorphous Li-Al-Ti-P-O thin film J. Non-Cryst. Solids 357 3267-71 doi: 10.1016/j.jnoncrysol.2011.05.023
|
[95] |
Tan G, Wu F, Li L, Liu Y, Chen R 2012 Magnetron sputtering preparation of nitrogen-incorporated lithium-aluminum-titanium phosphate based thin film electrolytes for all-solid-state lithium ion batteries J. Phys. Chem. C 116 3817-26 doi: 10.1021/jp207120s
|
[96] |
Luo Z, Lu A, Liu T, Song J, Han G 2016 La2O3 substitution in Li-Al-P-O-N glasses for potential solid electrolytes applications Solid State Ion. 295 104-10 doi: 10.1016/j.ssi.2016.08.010
|
[97] |
Mousavi T, Slattery I, Jagger B, Liu J, Speller S, Grovenor C 2021 Development of sputtered nitrogen-doped Li1+xAlxGe2-x(PO43 thin films for solid state batteries Solid State Ion. 364 115613 doi: 10.1016/j.ssi.2021.115613
|
[98] |
Jeong E, Hong C, Tak Y, Nam S C, Cho S 2006 Investigation of interfacial resistance between LiCoO2 cathode and LiPON electrolyte in the thin film battery J. Power Sources 159 223-6 doi: 10.1016/j.jpowsour.2006.04.042
|
[99] |
Wang Z, Lee J Z, Xin H L, Han L, Grillon N, Guy-Bouyssou D, Bouyssou E, Proust M, Meng Y S 2016 Effects of cathode electrolyte interfacial (CEI) layer on long term cycling of all-solid-state thin-film batteries J. Power Sources 324 342-8 doi: 10.1016/j.jpowsour.2016.05.098
|
[100] |
Iriyama Y, Kako T, Yada C, Abe T, Ogumi Z 2005 Charge transfer reaction at the lithium phosphorus oxynitride glass electrolyte/lithium cobalt oxide thin film interface Solid State Ion. 176 2371-6 doi: 10.1016/j.ssi.2005.02.025
|
[101] |
Choi K-H, Jeon J-H, Park H-K, Lee S-M 2010 Electrochemical performance and thermal stability of LiCoO2 cathodes surface-modified with a sputtered thin film of lithium phosphorus oxynitride J. Power Sources 195 8317-21 doi: 10.1016/j.jpowsour.2010.06.102
|
[102] |
Jacke S, Song J, Cherkashinin G, Dimesso L, Jaegermann W 2010 Investigation of the solid-state electrolyte/cathode LiPON/LiCoO2 interface by photoelectron spectroscopy Ionics 16 769-75 doi: 10.1007/s11581-010-0479-1
|
[103] |
Zhou Y-F, Yang M-Z, She F-Q, Gong L, Zhang X-Q, Chen J, Song S-Q, Xie F-Y 2021 Application of x-ray photoelectron spectroscopy to study interfaces for solid-state lithium ion battery Acta Phys. Sin. 70 178801 doi: 10.7498/aps.70.20210180
|
[104] |
Schwbel A, Jaegermann W, Hausbrand R 2016 Interfacial energy level alignment and energy level diagrams for all-solid Li-ion cells: impact of Li-ion transfer and double layer formation Solid State Ion. 288 224-8 doi: 10.1016/j.ssi.2015.12.029
|
[105] |
Fingerle M, Buchheit R, Sicolo S, Albe K, Hausbrand R 2017 Reaction and space charge layer formation at the LiCoO2LiPON Interface: insights on defect formation and ion energy level alignment by a combined surface science-simulation approach Chem. Mater. 29 7675-85 doi: 10.1021/acs.chemmater.7b00890
|
[106] |
Lv S, Li M, Luo X, Cheng J, Li Z 2020 High-voltage LiNi0.5Mn1.5O4 thin film cathodes stabilized by LiPON solid electrolyte coating to enhance cyclic stability and rate capability J. Alloys Compd. 815 151636 doi: 10.1016/j.jallcom.2019.07.348
|
[107] |
Yada C, Ohmori A, Ide K, Yamasaki H, Kato T, Saito T, Sagane F, Iriyama Y 2014 Dielectric modification of 5V-Class cathodes for high-voltage all-solid-state lithium batteries Adv. Energy Mater. 4 1301416 doi: 10.1002/aenm.201301416
|
[108] |
West W C, Hood Z D, Adhikari S P, Liang C, Lachgar A, Motoyama M, Iriyama Y 2016 Reduction of charge-transfer resistance at the solid electrolyteelectrode interface by pulsed laser deposition of films from a crystalline Li2PO2N source J. Power Sources 312 116-22 doi: 10.1016/j.jpowsour.2016.02.034
|
[109] |
Cherkashinin G, Yu Z, Eilhardt R, Alff L, Jaegermann W 2020 The effect of interfacial charge distribution on chemical compatibility and stability of the high voltage electrodes (LiCoPO4, LiNiPO4/solid electrolyte (LiPON) interface Adv. Mater. Interfaces 7 2000276 doi: 10.1002/admi.202000276
|
[110] |
Zhang X-Q, Cheng X-B, Zhang Q 2018 Advances in interfaces between li metal anode and electrolyte Adv. Mater. Interfaces 5 1701097 doi: 10.1002/admi.201701097
|
[111] |
Schwbel A, Hausbrand R, Jaegermann W 2015 Interface reactions between LiPON and lithium studied by in-situ x-ray photoemission Solid State Ion. 273 51-54 doi: 10.1016/j.ssi.2014.10.017
|
[112] |
Hood Z D, Chen X, Sacci R L, Liu X, Veith G M, Mo Y, Niu J, Dudney N J, Chi M 2021 Elucidating interfacial stability between lithium metal anode and li phosphorus oxynitride via in situ electron microscopy Nano Lett. 21 151-7 doi: 10.1021/acs.nanolett.0c03438
|
[113] |
Xiao C-F, Kim J H, Cho S-H, Park Y C, Kim M J, Chung K-B, Yoon S-G, Jung J-W, Kim I-D, Kim H-S 2021 Ensemble design of electrode-electrolyte interfaces: toward high-performance thin-film all-solid-state li-metal batteries ACS Nano 15 4561-75 doi: 10.1021/acsnano.0c08691
|
[114] |
Sicolo S, Fingerle M, Hausbrand R, Albe K 2017 Interfacial instability of amorphous LiPON against lithium: a combined Density Functional Theory and spectroscopic study J. Power Sources 354 124-33 doi: 10.1016/j.jpowsour.2017.04.005
|
[115] |
You Y-W, Cui J-W, Zhang X-F, Zheng F, Wu S-Q, Zhu Z-Z 2021 Properties of lithium phosphorus oxynitride (LiPON) solid electrolyteLi anode interfaces Acta Phys. Sin. 70 136801 doi: 10.7498/aps.70.20202214
|
[116] |
Nowak S, Berkemeier F, Schmitz G 2015 Ultra-thin LiPON filmsFundamental properties and application in solid state thin film model batteries J. Power Sources 275 144-50 doi: 10.1016/j.jpowsour.2014.10.202
|
[117] |
Belous A G, V’yunov O I, Kovalenko L L, Bohnke O, Bohnke C 2014 Synthesis of thin-film electrodes based on LiPON and LiPON-LLTO-LiPON Russ. J. Electrochem. 50 523-30 doi: 10.1134/S1023193514060020
|
[118] |
Fujibayashi T, Kubota Y, Iwabuchi K, Yoshii N 2017 Highly conformal and high-ionic conductivity thin-film electrolyte for 3D-structured micro batteries: characterization of LiPON film deposited by MOCVD method AIP Adv. 7 085110 doi: 10.1063/1.4999915
|
[119] |
Li G, Li M, Dong L, Li X, Li D 2014 Low energy ion beam assisted deposition of controllable solid state electrolyte LiPON with increased mechanical properties and ionic conductivity Int. J. Hydrog. Energy 39 17466-72 doi: 10.1016/j.ijhydene.2014.01.012
|
[120] |
Xie J, Oudenhoven J F M, Harks P-P R M L, Li D, Notten P H L 2015 Chemical vapor deposition of lithium phosphate thin-films for 3D all-solid-state li-ion batteries J. Electrochem. Soc. 162 A249-54 doi: 10.1149/2.0091503jes
|
[121] |
Kozen A C, et al 2015 Atomic layer deposition of the solid electrolyte LiPON Chem. Mater. 27 5324-31 doi: 10.1021/acs.chemmater.5b01654
|
[122] |
Nisula M, Shindo Y, Koga H, Karppinen M 2015 Atomic layer deposition of lithium phosphorus oxynitride Chem. Mater. 27 6987-93 doi: 10.1021/acs.chemmater.5b02199
|
[123] |
Kim H T, Mun T, Park C, Jin S W, Park H Y 2013 Characteristics of lithium phosphorous oxynitride thin films deposited by metal-organic chemical vapor deposition technique J. Power Sources 244 641-5 doi: 10.1016/j.jpowsour.2012.12.109
|
[124] |
Senevirathne K, Day C S, Gross M D, Lachgar A, Holzwarth N A W 2013 A new crystalline LiPON electrolyte: synthesis, properties, and electronic structure Solid State Ion. 233 95-101 doi: 10.1016/j.ssi.2012.12.013
|