Volume 1 Issue 2
June  2022
Turn off MathJax
Article Contents
Yonghai Feng, Funing Chen, Jessica M Rosenholm, Lei Liu, Hongbo Zhang. Efficient nanozyme engineering for antibacterial therapy[J]. Materials Futures, 2022, 1(2): 023502. doi: 10.1088/2752-5724/ac7068
Citation: Yonghai Feng, Funing Chen, Jessica M Rosenholm, Lei Liu, Hongbo Zhang. Efficient nanozyme engineering for antibacterial therapy[J]. Materials Futures, 2022, 1(2): 023502. doi: 10.1088/2752-5724/ac7068
Perspective •

Efficient nanozyme engineering for antibacterial therapy

© 2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Materials Futures, Volume 1, Number 2
  • Received Date: 2022-04-18
  • Accepted Date: 2022-05-16
  • Rev Recd Date: 2022-05-12
  • Publish Date: 2022-06-28
  • Antimicrobial resistance (AMR) poses a huge threat to human health. It is urgent to explore efficient ways to suppress the spread of AMR. Antibacterial nanozymes have become one of the powerful weapons to combat AMR due to their enzyme-like catalytic activity with a broad-spectrum antibacterial performance. However, the inherent low catalytic activity of nanozymes limits their expansion into antibacterial applications. In this regard, a variety of advanced chemical design strategies have been developed to improve the antimicrobial activity of nanozymes. In this review, we have summarized the recent progress of advanced strategies to engineer efficient nanozymes for fighting against AMR, which can be mainly classified as catalytic activity improvement, external stimuli, bacterial affinity enhancement, and multifunctional platform construction according to the basic principles of engineering efficient nanocatalysts and the mechanism of nanozyme catalysis. Moreover, the deep insights into the effects of these enhancing strategies on the nanozyme structures and properties are highlighted. Finally, current challenges and future perspectives of antibacterial nanozymes are discussed for their future clinical potential.
  • loading
  • [1]
    Antimicrobial Resistance Collaborators 2022 Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis Lancet 399 629-55 doi: 10.1016/S0140-6736(21)02724-0
    Tian R, et al 2022 Synergistic antibiosis with spatiotemporal controllability based on multiple-responsive hydrogel for infectious cutaneous wound healing Smart Mater. Med. 3 304-14 doi: 10.1016/j.smaim.2022.03.006
    Shang Z, Chan S Y, Song Q, Li P, Huang W 2020 The strategies of pathogen-oriented therapy on circumventing antimicrobial resistance Research 2020 2016201 doi: 10.34133/2020/2016201
    Baker S, Thomson N, Weill F-X, Holt K E 2018 Genomic insights into the emergence and spread of antimicrobial-resistant bacterial pathogens Science 360 733-8 doi: 10.1126/science.aar3777
    Wu P, Chen D, Yang H, Lai C, Xuan C, Chen Y, Shi X 2021 Antibacterial peptide-modified collagen nanosheet for infected wound repair Smart Mater. Med. 2 172-81 doi: 10.1016/j.smaim.2021.06.002
    en Karaman D, Ercan U K, Bakay E, Topalolu N, Rosenholm J M 2020 Evolving technologies and strategies for combating antibacterial resistance in the advent of the postantibiotic era Adv. Funct. Mater. 30 1908783 doi: 10.1002/adfm.201908783
    Gao F, Shao T, Yu Y, Xiong Y, Yang L 2021 Surface-bound reactive oxygen species generating nanozymes for selective antibacterial action Nat. Commun. 12 745 doi: 10.1038/s41467-021-20965-3
    Bi X, et al 2022 Boron doped graphdiyne: a metal-free peroxidase mimetic nanozyme for antibacterial application Nano Res. 15 1446-54 doi: 10.1007/s12274-021-3685-4
    Mei L, Zhu S, Liu Y, Yin W, Gu Z, Zhao Y 2021 An overview of the use of nanozymes in antibacterial applications Chem. Eng. J. 418 129431 doi: 10.1016/j.cej.2021.129431
    Gao L, et al 2007 Intrinsic peroxidase-like activity of ferromagnetic nanoparticles Nat. Nanotechnol. 2 577-83 doi: 10.1038/nnano.2007.260
    Wei H, Gao L, Fan K, Liu J, He J, Qu X, Dong S, Wang E, Yan X 2021 Nanozymes: a clear definition with fuzzy edges Nano Today 40 101269 doi: 10.1016/j.nantod.2021.101269
    Zhang R, Yan X, Fan K 2021 Nanozymes inspired by natural enzymes Acc. Mater. Res. 2 534-47 doi: 10.1021/accountsmr.1c00074
    Zhu D, Chen H, Huang C, Li G, Wang X, Jiang W, Fan K 2022 H2O2 self-producing single-atom nanozyme hydrogels as light-controlled oxidative stress amplifier for enhanced synergistic therapy by transforming cold tumors Adv. Funct. Mater. 32 2110268 doi: 10.1002/adfm.202110268
    Wang X, Zhong X, Liu Z, Cheng L 2020 Recent progress of chemodynamic therapy-induced combination cancer therapy Nano Today 35 100946 doi: 10.1016/j.nantod.2020.100946
    Hong C, Meng X, He J, Fan K, Yan X 2022 Nanozyme: a promising tool from clinical diagnosis and environmental monitoring to wastewater treatment Particuology 71 90-107 doi: 10.1016/j.partic.2022.02.001
    Wang Q, Jiang J, Gao L 2022 Catalytic antimicrobial therapy using nanozymes WIREs Nanomed. Nanobiotechnol. 14 e1769 doi: 10.1002/wnan.1769
    Tang G, He J, Liu J, Yan X, Fan K 2021 Nanozyme for tumor therapy: surface modification matters Exploration 1 75-89 doi: 10.1002/EXP.20210005
    Wang Z, Zhang R, Yan X, Fan K 2020 Structure and activity of nanozymes: inspirations for de novo design of nanozymes Mater. Today 41 81-119 doi: 10.1016/j.mattod.2020.08.020
    Mirhosseini M, Shekari-Far A, Hakimian F, Haghiralsadat B F, Fatemi S K, Dashtestani F 2020 Core-shell Au@Co-Fe hybrid nanoparticles as peroxidase mimetic nanozyme for antibacterial application Process Biochem. 95 131-8 doi: 10.1016/j.procbio.2020.05.003
    Hu W-C, Younis M R, Zhou Y, Wang C, Xia X-H 2020 In situ fabrication of ultrasmall gold nanoparticles/2D MOFs hybrid as nanozyme for antibacterial therapy Small 16 2000553 doi: 10.1002/smll.202000553
    Wang Z, Dong K, Liu Z, Zhang Y, Chen Z, Sun H, Ren J, Qu X 2017 Activation of biologically relevant levels of reactive oxygen species by Au/g-C3N4 hybrid nanozyme for bacteria killing and wound disinfection Biomaterials 113 145-57 doi: 10.1016/j.biomaterials.2016.10.041
    Liao X, Xu Q, Sun H, Liu W, Chen Y, Xia X-H, Wang C 2022 Plasmonic nanozymes: localized surface plasmonic resonance regulates reaction kinetics and antibacterial performance J. Phys. Chem. Lett. 13 312-23 doi: 10.1021/acs.jpclett.1c03804
    Zhong Y, Wang T, Lao Z, Lu M, Liang S, Cui X, Li Q-L, Zhao S 2021 Au-Au/IrO2@Cu(PABA) reactor with tandem enzyme-mimicking catalytic activity for organic dye degradation and antibacterial application ACS Appl. Mater. Interfaces 13 21680-92 doi: 10.1021/acsami.1c00126
    Mu Q, Sun Y, Guo A, Xu X, Qin B, Cai A 2021 A bifunctionalized NiCo2O4-Au composite: intrinsic peroxidase and oxidase catalytic activities for killing bacteria and disinfecting wound J. Hazard. Mater. 402 123939 doi: 10.1016/j.jhazmat.2020.123939
    Xu Q, Liao X, Hu W, Liu W, Wang C 2021 Plasmon induced dual excited synergistic effect in Au/metal-organic frameworks composite for enhanced antibacterial therapy J. Mater. Chem. B 9 9606-14 doi: 10.1039/D1TB02141A
    Yan L, et al 2021 Gold nanoplates with superb photothermal efficiency and peroxidase-like activity for rapid and synergistic antibacterial therapy Chem. Commun. 57 1133-6 doi: 10.1039/D0CC06925F
    Fan Y, Gan X, Zhao H, Zeng Z, You W, Quan X 2022 Multiple application of SAzyme based on carbon nitride nanorod-supported Pt single-atom for H2O2 detection, antibiotic detection and antibacterial therapy Chem. Eng. J. 427 131572 doi: 10.1016/j.cej.2021.131572
    Xi J, Wei G, An L, Xu Z, Xu Z, Fan L, Gao L 2019 Copper/carbon hybrid nanozyme: tuning catalytic activity by the copper state for antibacterial therapy Nano Lett. 19 7645-54 doi: 10.1021/acs.nanolett.9b02242
    Yim G, Kim C Y, Kang S, Min D-H, Kang K, Jang H 2020 Intrinsic peroxidase-mimicking Ir nanoplates for nanozymatic anticancer and antibacterial treatment ACS Appl. Mater. Interfaces 12 41062-70 doi: 10.1021/acsami.0c10981
    Cao C, et al 2022 POD nanozyme optimized by charge separation engineering for light/pH activated bacteria catalytic/photodynamic therapy Signal Transduct. Target 7 86 doi: 10.1038/s41392-022-00900-8
    Lu C, Tang L, Gao F, Li Y, Liu J, Zheng J 2021 DNA-encoded bimetallic Au-Pt dumbbell nanozyme for high-performance detection and eradication of E. coli O157:H7 Biosens. Bioelectron. 187 113327 doi: 10.1016/j.bios.2021.113327
    Zhang S, Lu Q, Wang F, Xiao Z, He L, He D, Deng L 2021 Gold-platinum nanodots with high-peroxidase-like activity and photothermal conversion efficiency for antibacterial therapy ACS Appl. Mater. Interfaces 13 37535-44 doi: 10.1021/acsami.1c10600
    Niu J, Zhao C, Liu C, Ren J, Qu X 2021 Bio-inspired bimetallic enzyme mimics as bio-orthogonal catalysts for enhanced bacterial capture and inhibition Chem. Mater. 33 8052-8 doi: 10.1021/acs.chemmater.1c02469
    Sun D, et al 2020 Ultrasound-switchable nanozyme augments sonodynamic therapy against multidrug-resistant bacterial infection ACS Nano 14 2063-76 doi: 10.1021/acsnano.9b08667
    Zhu Z, et al 2022 Plasmon-enhanced peroxidase-like activity of nitrogen-doped graphdiyne oxide quantum dots/gold-silver nanocage heterostructures for antimicrobial applications Chem. Mater. 34 1356-68 doi: 10.1021/acs.chemmater.1c03952
    Xiao J, Hai L, Li Y, Li H, Gong M, Wang Z, Tang Z, Deng L, He D 2022 An ultrasmall Fe3O4-decorated polydopamine hybrid nanozyme enables continuous conversion of oxygen into toxic hydroxyl radical via GSH-depleted cascade redox reactions for intensive wound disinfection Small 18 2105465 doi: 10.1002/smll.202105465
    He Y, Chen X, Zhang Y, Wang Y, Cui M, Li G, Liu X, Fan H 2022 Magnetoresponsive nanozyme: magnetic stimulation on the nanozyme activity of iron oxide nanoparticles Sci. China Life Sci. 65 184-92 doi: 10.1007/s11427-020-1907-6
    Vallabani N V S, Vinu A, Singh S, Karakoti A 2020 Tuning the ATP-triggered pro-oxidant activity of iron oxide-based nanozyme towards an efficient antibacterial strategy J. Colloid Interface Sci. 567 154-64 doi: 10.1016/j.jcis.2020.01.099
    Karim M N, et al 2018 Visible-light-triggered reactive-oxygen-species-mediated antibacterial activity of peroxidase-mimic CuO nanorods ACS Appl. Nano Mater. 1 1694-704 doi: 10.1021/acsanm.8b00153
    Chishti B, Fouad H, Seo H K, Alothman O Y, Ansari Z A, Ansari S G 2020 ATP fosters the tuning of nanostructured CeO2 peroxidase-like activity for promising antibacterial performance New J. Chem. 44 11291-303 doi: 10.1039/C9NJ05955E
    Ma W, Zhang T, Li R, Niu Y, Yang X, Liu J, Xu Y, Li C M 2020 Bienzymatic synergism of vanadium oxide nanodots to efficiently eradicate drug-resistant bacteria during wound healing in vivo J. Colloid Interface Sci. 559 313-23 doi: 10.1016/j.jcis.2019.09.040
    Wang Y, Chen C, Zhang D, Wang J 2020 Bifunctionalized novel Co-V MMO nanowires: intrinsic oxidase and peroxidase like catalytic activities for antibacterial application Appl. Catal. B 261 118256 doi: 10.1016/j.apcatb.2019.118256
    Cao F, Zhang L, Wang H, You Y, Wang Y, Gao N, Ren J, Qu X 2019 Defect-rich adhesive nanozymes as efficient antibiotics for enhanced bacterial inhibition Angew. Chem., Int. Ed. 58 16236-42 doi: 10.1002/anie.201908289
    Ma D, Xie C, Wang T, Mei L, Zhang X, Guo Z, Yin W 2020 Liquid-phase exfoliation and functionalization of MoS2 nanosheets for effective antibacterial application ChemBioChem 21 2373-80 doi: 10.1002/cbic.202000195
    Lin Y, Liu X, Liu Z, Xu Y 2021 Visible-light-driven photocatalysis-enhanced nanozyme of TiO2 nanotubes@MoS2 nanoflowers for efficient wound healing infected with multidrug-resistant bacteria Small 17 2103348 doi: 10.1002/smll.202103348
    Luo Q, Li J, Wang W, Li Y, Li Y, Huo X, Li J, Wang N 2022 Transition metal engineering of molybdenum disulfide nanozyme for biomimicking anti-biofouling in seawater ACS Appl. Mater. Interfaces 14 14218-25 doi: 10.1021/acsami.2c00172
    Ali S R, De M 2021 Thiolated ligand-functionalized MoS2 nanosheets for peroxidase-like activities ACS Appl. Nano Mater. 4 12682-9 doi: 10.1021/acsanm.1c03242
    Wang X, et al 2020 Biodegradable nickel disulfide nanozymes with GSH-depleting function for high-efficiency photothermal-catalytic antibacterial therapy iScience 23 101281 doi: 10.1016/j.isci.2020.101281
    Xi J, Zhang J, Qian X, An L, Fan L 2020 Using a visible light-triggered pH switch to activate nanozymes for antibacterial treatment RSC Adv. 10 909-13 doi: 10.1039/C9RA09343E
    Bai Q, et al 2022 Plasmonic nanozyme of graphdiyne nanowalls wrapped hollow copper sulfide nanocubes for rapid bacteria-killing Adv. Funct. Mater. 32 2112683 doi: 10.1002/adfm.202112683
    Xie Y, Qian Y, Li Z, Liang Z, Liu W, Yang D, Qiu X 2021 Near-infrared-activated efficient bacteria-killing by lignin-based copper sulfide nanocomposites with an enhanced photothermal effect and peroxidase-like activity ACS Sustain. Chem. Eng. 9 6479-88 doi: 10.1021/acssuschemeng.1c01589
    Mo S, Song Y, Lin M, Wang J, Zhang Z, Sun J, Guo D, Liu L 2022 Near-infrared responsive sulfur vacancy-rich CuS nanosheets for efficient antibacterial activity via synergistic photothermal and photodynamic pathways J. Colloid Interface Sci. 608 2896-906 doi: 10.1016/j.jcis.2021.11.014
    Wang J, Wang Y, Zhang D, Chen C 2020 Intrinsic oxidase-like nanoenzyme Co4S3/Co(OH)2 hybrid nanotubes with broad-spectrum antibacterial activity ACS Appl. Mater. Interfaces 12 29614-24 doi: 10.1021/acsami.0c05141
    Xiu W, et al 2020 Biofilm microenvironment-responsive nanotheranostics for dual-mode imaging and hypoxia-relief-enhanced photodynamic therapy of bacterial infections Research 2020 9426453 doi: 10.34133/2020/9426453
    Xi J, Wei G, Wu Q, Xu Z, Liu Y, Han J, Fan L, Gao L 2019 Light-enhanced sponge-like carbon nanozyme used for synergetic antibacterial therapy Biomater. Sci. 7 4131-41 doi: 10.1039/C9BM00705A
    Tripathi K M, Ahn H T, Chung M, Le X A, Saini D, Bhati A, Sonkar S K, Kim M I, Kim T 2020 N, S, and P-Co-doped carbon quantum dots: intrinsic peroxidase activity in a wide ph range and its antibacterial applications ACS Biomater. Sci. Eng. 6 5527-37 doi: 10.1021/acsbiomaterials.0c00831
    Liu Y, Xu B, Lu M, Li S, Guo J, Chen F, Xiong X, Yin Z, Liu H, Zhou D 2022 Ultrasmall Fe-doped carbon dots nanozymes for photoenhanced antibacterial therapy and wound healing Bioactive Mater. 12 246-56 doi: 10.1016/j.bioactmat.2021.10.023
    Zhang L, Liu Z, Deng Q, Sang Y, Dong K, Ren J, Qu X 2021 Nature-inspired construction of MOF@COF nanozyme with active sites in tailored microenvironment and pseudopodia-like surface for enhanced bacterial inhibition Angew. Chem., Int. Ed. 60 3469-74 doi: 10.1002/anie.202012487
    Liu Z, Wang F, Ren J, Qu X 2019 A series of MOF/Ce-based nanozymes with dual enzyme-like activity disrupting biofilms and hindering recolonization of bacteria Biomaterials 208 21-31 doi: 10.1016/j.biomaterials.2019.04.007
    Zhang S, Yang Z, Hao J, Ding F, Li Z, Ren X 2022 Hollow nanosphere-doped bacterial cellulose and polypropylene wound dressings: biomimetic nanocatalyst mediated antibacterial therapy Chem. Eng. J. 432 134309 doi: 10.1016/j.cej.2021.134309
    Feng Y, Qin J, Zhou Y, Yue Q, Wei J 2022 Spherical mesoporous Fe-N-C single-atom nanozyme for photothermal and catalytic synergistic antibacterial therapy J. Colloid Interface Sci. 606 826-36 doi: 10.1016/j.jcis.2021.08.054
    Huang L, Chen J, Gan L, Wang J, Dong S 2019 Single-atom nanozymes Sci. Adv. 5 eaav5490 doi: 10.1126/sciadv.aav5490
    Huo M, Wang L, Zhang H, Zhang L, Chen Y, Shi J 2019 Construction of single-iron-atom nanocatalysts for highly efficient catalytic antibiotics Small 15 1901834 doi: 10.1002/smll.201901834
    Wang X, Shi Q, Zha Z, Zhu D, Zheng L, Shi L, Wei X, Lian L, Wu K, Cheng L 2021 Copper single-atom catalysts with photothermal performance and enhanced nanozyme activity for bacteriainfected wound therapy Bioactive Mater. 6 4389-401 doi: 10.1016/j.bioactmat.2021.04.024
    Zhao Y, et al 2021 A highly accessible copper single-atom catalyst for wound antibacterial application Nano Res. 14 4808-13 doi: 10.1007/s12274-021-3432-x
    Xu B, et al 2019 A single-atom nanozyme for wound disinfection applications Angew. Chem., Int. Ed. 58 4911-6 doi: 10.1002/anie.201813994
    Yu Y, et al 2022 Theory-screened MOF-based single-atom catalysts for facile and effective therapy of biofilm-induced periodontitis Chem. Eng. J. 431 133279 doi: 10.1016/j.cej.2021.133279
    Jiang D, Ni D, Rosenkrans Z T, Huang P, Yan X, Cai W 2019 Nanozyme: new horizons for responsive biomedical applications Chem. Soc. Rev. 48 3683-704 doi: 10.1039/C8CS00718G
    Wu W, Huang L, Wang E, Dong S 2020 Atomic engineering of single-atom nanozymes for enzyme-like catalysis Chem. Sci. 11 9741-56 doi: 10.1039/D0SC03522J
    Sang Y, Li W, Liu H, Zhang L, Wang H, Liu Z, Ren J, Qu X 2019 Construction of nanozyme-hydrogel for enhanced capture and elimination of bacteria Adv. Funct. Mater. 29 1900518 doi: 10.1002/adfm.201900518
    Huang Y, Ren J, Qu X 2019 Nanozymes: classification, catalytic mechanisms, activity regulation, and applications Chem. Rev. 119 4357-412 doi: 10.1021/acs.chemrev.8b00672
    Wei M, Lee J, Xia F, Lin P, Hu X, Li F, Ling D 2021 Chemical design of nanozymes for biomedical applications Acta Biomater. 126 15-30 doi: 10.1016/j.actbio.2021.02.036
    Lu X, Gao S, Lin H, Yu L, Han Y, Zhu P, Bao W, Yao H, Chen Y, Shi J 2020 Bioinspired copper single-atom catalysts for tumor parallel catalytic therapy Adv. Mater. 32 2002246 doi: 10.1002/adma.202002246
    Kim M S, Lee J, Kim H S, Cho A, Shim K H, Le T N, An S S A, Han J W, Kim M I, Lee J 2020 Heme cofactor-resembling Fe-N single site embedded graphene as nanozymes to selectively detect H2O2 with high sensitivity Adv. Funct. Mater. 30 1905410 doi: 10.1002/adfm.201905410
    Ensign A A, Jo I, Yildirim I, Krauss T D, Bren K L 2008 Zinc porphyrin: a fluorescent acceptor in studies of Zn-cytochrome c unfolding by fluorescence resonance energy transfer Proc. Natl Acad. Sci. USA 105 10779-84 doi: 10.1073/pnas.0802737105
    Ducros V, Brzozowski A M, Wilson K S, Brown S H, stergaard P, Schneider P, Yaver D S, Pedersen A H, Davies G J 1998 Crystal structure of the type-2 Cu depleted laccase from Coprinus cinereus at 2.2 resolution Nat. Struct. Biol. 5 310-6 doi: 10.1038/nsb0498-310
    Liao J J-L 2007 Molecular recognition of protein kinase binding pockets for design of potent and selective kinase inhibitors J. Med. Chem. 50 409-24 doi: 10.1021/jm0608107
    Tao Y, Ju E, Ren J, Qu X 2015 Bifunctionalized mesoporous silica-supported gold nanoparticles: intrinsic oxidase and peroxidase catalytic activities for antibacterial applications Adv. Mater. 27 1097-104 doi: 10.1002/adma.201405105
    Chang M, Hou Z, Wang M, Yang C, Wang R, Li F, Liu D, Peng T, Li C, Lin J 2021 Single-atom Pd nanozyme for ferroptosis-boosted mild-temperature photothermal therapy Angew. Chem., Int. Ed. 60 12971-9 doi: 10.1002/anie.202101924
    Jiao L, et al 2020 Densely isolated FeN4 sites for peroxidase mimicking ACS Catal. 10 6422-9 doi: 10.1021/acscatal.0c01647
    Wang L, et al 2020 Defect-rich adhesive molybdenum disulfide/rGO vertical heterostructures with enhanced nanozyme activity for smart bacterial killing application Adv. Mater. 32 2005423 doi: 10.1002/adma.202005423
    Wei F, Cui X, Wang Z, Dong C, Li J, Han X 2021 Recoverable peroxidase-like Fe3O4@MoS2-Ag nanozyme with enhanced antibacterial ability Chem. Eng. J. 408 127240 doi: 10.1016/j.cej.2020.127240
    Liu Y, Nie N, Tang H, Zhang C, Chen K, Wang W, Liu J 2021 Effective antibacterial activity of degradable copper-doped phosphate-based glass nanozymes ACS Appl. Mater. Interfaces 13 11631-45 doi: 10.1021/acsami.0c22746
    Li D, Guo Q, Ding L, Zhang W, Cheng L, Wang Y, Xu Z, Wang H, Gao L 2020 Bimetallic CuCo2S4 nanozymes with enhanced peroxidase activity at neutral pH for combating burn infections ChemBioChem 21 2620-7 doi: 10.1002/cbic.202000066
    Xia X, Zhang J, Lu N, Kim M J, Ghale K, Xu Y, McKenzie E, Liu J, Ye H 2015 Pd-Ir core-shell nanocubes: a type of highly efficient and versatile peroxidase mimic ACS Nano 9 9994-10004 doi: 10.1021/acsnano.5b03525
    Puvvada N, Panigrahi P K, Mandal D, Pathak A 2012 Shape dependent peroxidase mimetic activity towards oxidation of pyrogallol by H2O2 RSC Adv. 2 3270-3 doi: 10.1039/c2ra01081j
    He S, Huang J, Zhang Q, Zhao W, Xu Z, Zhang W 2021 Bamboo-like nanozyme based on nitrogen-doped carbon nanotubes encapsulating cobalt nanoparticles for wound antibacterial applications Adv. Funct. Mater. 31 2105198 doi: 10.1002/adfm.202105198
    Wang X, Zhong X, Zha Z, He G, Miao Z, Lei H, Luo Q, Zhang R, Liu Z, Cheng L 2020 Biodegradable CoS2 nanoclusters for photothermal-enhanced chemodynamic therapy Appl. Mater. Today 18 100464 doi: 10.1016/j.apmt.2019.100464
    Vallabani N V S, Singh S, Karakoti A S 2019 Investigating the role of ATP towards amplified peroxidase activity of iron oxide nanoparticles in different biologically relevant buffers Appl. Surf. Sci. 492 337-48 doi: 10.1016/j.apsusc.2019.06.177
    Chen L, Xing S, Lei Y, Chen Q, Zou Z, Quan K, Qing Z, Liu J, Yang R 2021 A glucose-powered activatable nanozyme breaking pH and H2O2 limitations for treating diabetic infections Angew. Chem., Int. Ed. 60 23534-9 doi: 10.1002/anie.202107712
    Liu C, Zhang M, Geng H, Zhang P, Zheng Z, Zhou Y, He W 2021 NIR enhanced peroxidase-like activity of Au@CeO2 hybrid nanozyme by plasmon-induced hot electrons and photothermal effect for bacteria killing Appl. Catal. B 295 120317 doi: 10.1016/j.apcatb.2021.120317
    Gao F, Li X, Zhang T, Ghosal A, Zhang G, Fan H M, Zhao L 2020 Iron nanoparticles augmented chemodynamic effect by alternative magnetic field for wound disinfection and healing J. Control. Release 324 598-609 doi: 10.1016/j.jconrel.2020.06.003
    Shi S, et al 2018 Iron oxide nanozyme suppresses intracellular Salmonella Enteritidis growth and alleviates infection in vivo Theranostics 8 6149-62 doi: 10.7150/thno.29303
    Chen Z, Yin J-J, Zhou Y-T, Zhang Y, Song L, Song M, Hu S, Gu N 2012 Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity ACS Nano 6 4001-12 doi: 10.1021/nn300291r
    Wiegand C, Abel M, Ruth P, Elsner P, Hipler U C 2015 pH Influence on antibacterial efficacy of common antiseptic substances Skin Pharmacol. Phys. 28 147-58 doi: 10.1159/000367632
    Vallabani N V S, Karakoti A S, Singh S 2017 ATP-mediated intrinsic peroxidase-like activity of Fe3O4-based nanozyme: one step detection of blood glucose at physiological pH Colloids Surf. B 153 52-60 doi: 10.1016/j.colsurfb.2017.02.004
    Lin Y, Huang Y, Ren J, Qu X 2014 Incorporating ATP into biomimetic catalysts for realizing exceptional enzymatic performance over a broad temperature range NPG Asia Mater. 6 e114 doi: 10.1038/am.2014.42
    Xu C, Pu K 2021 Second near-infrared photothermal materials for combinational nanotheranostics Chem. Soc. Rev. 50 1111-37 doi: 10.1039/D0CS00664E
    Qiang L, Jin H, Feng Y, Wu R, Song Y, Liu L 2021 Apoptosis-like bacterial death modulated by photoactive hyperthermia nanomaterials and enhanced wound disinfection application Nanoscale 13 14785-94 doi: 10.1039/D1NR02881B
    Feng Y, Chen Q, Yin Q, Pan G, Tu Z, Liu L 2019 Reduced graphene oxide functionalized with gold nanostar nanocomposites for synergistically killing bacteria through intrinsic antimicrobial activity and photothermal ablation ACS Appl. Bio Mater. 2 747-56 doi: 10.1021/acsabm.8b00608
    Chen Q, Zhang L, Feng Y, Shi F, Wang Y, Wang P, Liu L 2018 Dual-functional peptide conjugated gold nanorods for the detection and photothermal ablation of pathogenic bacteria J. Mater. Chem. B 6 7643-51 doi: 10.1039/C8TB01835A
    Liu Z, Zhao X, Yu B, Zhao N, Zhang C, Xu F-J 2021 Rough carbon-iron oxide nanohybrids for near-infrared-ii light-responsive synergistic antibacterial therapy ACS Nano 15 7482-90 doi: 10.1021/acsnano.1c00894
    Liu L, Pan X, Liu S, Hu Y, Ma D 2021 Near-infrared light-triggered nitric oxide release combined with low-temperature photothermal therapy for synergetic antibacterial and antifungal Smart Mater. Med. 2 302-13 doi: 10.1016/j.smaim.2021.08.003
    Gui H, Feng Y, Qiang L, Sun T, Liu L 2021 Core/shell structural ultra-small gold and amyloid peptide nanocomposites with effective bacterial surface adherence and enhanced antibacterial photothermal ablation Smart Mater. Med. 2 46-55 doi: 10.1016/j.smaim.2020.12.001
    Zhu X, Chen X, Jia Z, Huo D, Liu Y, Liu J 2021 Cationic chitosan@Ruthenium dioxide hybrid nanozymes for photothermal therapy enhancing ROS-mediated eradicating multidrug resistant bacterial infection J. Colloid Interface Sci. 603 615-32 doi: 10.1016/j.jcis.2021.06.073
    Yin W, Yu J, Lv F, Yan L, Zheng L R, Gu Z, Zhao Y 2016 Functionalized nano-MoS2 with peroxidase catalytic and near-infrared photothermal activities for safe and synergetic wound antibacterial applications ACS Nano 10 11000-11 doi: 10.1021/acsnano.6b05810
    Wang X, Sun X, Bu T, Wang Q, Zhang H, Jia P, Li L, Wang L 2021 Construction of a photothermal hydrogel platform with two-dimensional PEG@zirconium-ferrocene MOF nanozymes for rapid tissue repair of bacteria-infected wounds Acta Biomater. 135 342-55 doi: 10.1016/j.actbio.2021.08.022
    Craig L, Pique M E, Tainer J A 2004 Type IV pilus structure and bacterial pathogenicity Nat. Rev. Microbiol. 2 363-78 doi: 10.1038/nrmicro885
    Song H, Ahmad Nor Y, Yu M, Yang Y, Zhang J, Zhang H, Xu C, Mitter N, Yu C 2016 Silica nanopollens enhance adhesion for long-term bacterial inhibition J. Am. Chem. Soc. 138 6455-62 doi: 10.1021/jacs.6b00243
    Roberts R E, Hallett M B 2019 Neutrophil cell shape change: mechanism and signalling during cell spreading and phagocytosis Int. J. Mol. Sci. 20 1383 doi: 10.3390/ijms20061383
    Shan J, Yang K, Xiu W, Qiu Q, Dai S, Yuwen L, Weng L, Teng Z, Wang L 2020 Cu2MoS4 nanozyme with NIR-II light enhanced catalytic activity for efficient eradication of multidrug-resistant bacteria Small 16 2001099 doi: 10.1002/smll.202001099
    Zhang W, Ren X, Shi S, Li M, Liu L, Han X, Zhu W, Yue T, Sun J, Wang J 2020 Ionic silver-infused peroxidase-like metal-organic frameworks as versatile antibiotic’ for enhanced bacterial elimination Nanoscale 12 16330-8 doi: 10.1039/D0NR01471K
    Huang T, Yu Z, Yuan B, Jiang L, Liu Y, Sun X, Liu P, Jiang W, Tang J 2022 Synergy of light-controlled Pd nanozymes with NO therapy for biofilm elimination and diabetic wound treatment acceleration Mater. Today Chem. 24 100831 doi: 10.1016/j.mtchem.2022.100831
    Wang M, et al 2022 Triple-synergistic MOF-nanozyme for efficient antibacterial treatment Bioactive Mater. 17 289-99 doi: 10.1016/j.bioactmat.2022.01.036
    Nong W, Chen Y, Lv D, Yan Y, Zheng X, Shi X, Xu Z, Guan W, Wu J, Guan Y 2022 Metal-organic framework based nanozyme hybrid for synergistic bacterial eradication by lysozyme and light-triggered carvacrol release Chem. Eng. J. 431 134003 doi: 10.1016/j.cej.2021.134003
    Du X, Jia B, Wang W, Zhang C, Liu X, Qu Y, Zhao M, Li W, Yang Y, Li Y-Q 2022 pH-switchable nanozyme cascade catalysis: a strategy for spatial-temporal modulation of pathological wound microenvironment to rescue stalled healing in diabetic ulcer J. Nanobiotechnol. 20 12 doi: 10.1186/s12951-021-01215-6
    Zhang Y, Li D, Xu Y, Niu Y 2022 Application of a cascaded nanozyme in infected wound recovery of diabetic mice ACS Biomater. Sci. Eng. 8 1522-31 doi: 10.1021/acsbiomaterials.1021c01590
    Li Y, Wang L, Liu H, Pan Y, Li C, Xie Z, Jing X 2021 Ionic covalent-organic framework nanozyme as effective cascade catalyst against bacterial wound infection Small 17 2100756 doi: 10.1002/smll.202100756
    Guo G, et al 2020 Space-selective chemodynamic therapy of CuFe5O8 nanocubes for implant-related infections ACS Nano 14 13391-405 doi: 10.1021/acsnano.0c05255
    Feng X, Hou X, Cui C, Sun S, Sadik S, Wu S, Zhou F 2021 Mechanical and antibacterial properties of tannic acid-encapsulated carboxymethyl chitosan/polyvinyl alcohol hydrogels Eng. Regen. 2 57-62 doi: 10.1016/j.engreg.2021.05.002
    Wu H, Li F, Shao W, Gao J, Ling D 2019 Promoting angiogenesis in oxidative diabetic wound microenvironment using a nanozyme-reinforced self-protecting hydrogel ACS Cent. Sci. 5 477-85 doi: 10.1021/acscentsci.8b00850
    Li Y, Fu R, Duan Z, Zhu C, Fan D 2022 Construction of multifunctional hydrogel based on the tannic acid-metal coating decorated MoS2 dual nanozyme for bacteria-infected wound healing Bioactive Mater. 9 461-74 doi: 10.1016/j.bioactmat.2021.07.023
    Li Y, Yu P, Wen J, Sun H, Wang D, Liu J, Li J, Chu H 2022 Nanozyme-based stretchable hydrogel of low hysteresis with antibacterial and antioxidant dual functions for closely fitting and wound healing in movable parts Adv. Funct. Mater. 32 2110720 doi: 10.1002/adfm.202110720
    Jia Z, Lv X, Hou Y, Wang K, Ren F, Xu D, Wang Q, Fan K, Xie C, Lu X 2021 Mussel-inspired nanozyme catalyzed conductive and self-setting hydrogel for adhesive and antibacterial bioelectronics Bioactive Mater. 6 2676-87 doi: 10.1016/j.bioactmat.2021.01.033
    Li Y, Fu R, Duan Z, Zhu C, Fan D 2022 Adaptive hydrogels based on nanozyme with dual-enhanced triple enzyme-like activities for wound disinfection and mimicking antioxidant defense system Adv. Healthcare Mater. 11 2101849 doi: 10.1002/adhm.202101849
    Xu M, et al 2020 Near-infrared-controlled nanoplatform exploiting photothermal promotion of peroxidase-like and oxd-like activities for potent antibacterial and anti-biofilm therapies ACS Appl. Mater. Interfaces 12 50260-74 doi: 10.1021/acsami.0c14451
    Zhang Y, Li D, Tan J, Chang Z, Liu X, Ma W, Xu Y 2021 Near-infrared regulated nanozymatic/photothermal/photodynamic triple-therapy for combating multidrug-resistant bacterial infections via oxygen-vacancy molybdenum trioxide nanodots Small 17 2005739 doi: 10.1002/smll.202005739
    Wang X, Sun X, Bu T, Wang Q, Jia P, Dong M, Wang L 2022 In situ fabrication of metal-organic framework derived hybrid nanozymes for enhanced nanozyme-photothermal therapy of bacteria-infected wounds Composites B 229 109465 doi: 10.1016/j.compositesb.2021.109465
    Liao Z-Y, et al 2022 Metal-organic framework modified MoS2 nanozyme for synergetic combating drug-resistant bacterial infections via photothermal effect and photodynamic modulated peroxidase-mimic activity Adv. Healthcare Mater. 11 2101698 doi: 10.1002/adhm.202101698
    Cheng H, Lin S, Muhammad F, Lin Y-W, Wei H 2016 Rationally modulate the oxidase-like activity of nanoceria for self-regulated bioassays ACS Sens. 1 1336-43 doi: 10.1021/acssensors.6b00500
    Shi W, Fan H, Ai S, Zhu L 2015 Honeycomb-like nitrogen-doped porous carbon supporting Pt nanoparticles as enzyme mimic for colorimetric detection of cholesterol Sens. Actuators B 221 1515-22 doi: 10.1016/j.snb.2015.06.157
  • 加载中


    Figures(8)  / Tables(1)

    Article Metrics

    Article Views(1013) PDF downloads(184)
    Article Statistics
    Related articles from


    DownLoad:  Full-Size Img  PowerPoint