• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

Scanning probe microscopy in probing low-dimensional carbon-based nanostructures and nanomaterials

  • Abstract: Carbon, as an indispensable chemical element on Earth, has diverse covalent bonding ability, which enables construction of extensive pivotal carbon-based structures in multiple scientific fields. The extraordinary physicochemical properties presented by pioneering synthetic carbon allotropes, typically including fullerenes, carbon nanotubes, and graphene, have stimulated broad interest in fabrication of carbon-based nanostructures and nanomaterials. Accurate regulation of topology, size, and shape, as well as controllably embedding target spn-hybridized carbons in molecular skeletons, is significant for tailoring their structures and consequent properties and requires atomic precision in their preparation. Scanning probe microscopy (SPM), combined with on-surface synthesis strategy, has demonstrated its capabilities in fabrication of various carbon-based nanostructures and nanomaterials with atomic precision, which has long been elusive for conventional solution-phase synthesis due to realistic obstacles in solubility, isolation, purification, etc. More intriguingly, atom manipulation via an SPM tip allows unique access to local production of highly reactive carbon-based nanostructures. In addition, SPM provides topographic information of carbon-based nanostructures as well as their characteristic electronic structures with unprecedented submolecular resolution in real space. In this review, we overview recent exciting progress in the delicate application of SPM in probing low-dimensional carbon-based nanostructures and nanomaterials, which will open an avenue for the exploration and development of elusive and undiscovered carbon-based nanomaterials.

     

/

返回文章
返回