• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

Amorphous/Crystalline Heterostructured Nanoporous High-Entropy Metallic Glasses for Efficient Water Splitting

Amorphous/Crystalline Heterostructured Nanoporous High-Entropy Metallic Glasses for Efficient Water Splitting

  • 摘要: Developing nanoporous high-entropy metallic glass (HEMG) with a high specific surface area presents a promising approach to develop a cost-effective and efficient catalyst, which utilize the synergistic effect of its multi-component composition and the adjustable atomic environment of its disordered structure. However, the glassy structure invariably gets erased due to the inevitable crystallization during the nanoporous construction procedure through dealloying. Here, an innovative HEMG with an endogenetic nano-scale phase-separated structure is specially designed to maintain a fully glassy state throughout the nanoporous construction procedure. Consequently, an amorphous/crystalline heterostructure (ACH)—nanocrystal flakes embedded in amorphous ligaments—is intentionally constructed, which exhibits significant lattice distortion at amorphous/crystalline interfaces, resulting in high density of active sites. The ACH facilitates intermediate adsorption by promoting directional charge transfer between amorphous and crystalline phases and improves product desorption through downshifting the d-band center. This results in remarkable electrolysis performance, requiring only a 1.53 V potential to achieve a current density of 10 mA cm-2 for overall water-splitting in an alkaline electrolyte, surpassing that of commercial Pt/C || IrO2 catalysts of 1.62 V. This research pioneers strategies to refine the composition, atomic structure, and electron characteristics of HEMG, unlocking new functional applications.

     

    Abstract: Developing nanoporous high-entropy metallic glass (HEMG) with a high specific surface area presents a promising approach to develop a cost-effective and efficient catalyst, which utilize the synergistic effect of its multi-component composition and the adjustable atomic environment of its disordered structure. However, the glassy structure invariably gets erased due to the inevitable crystallization during the nanoporous construction procedure through dealloying. Here, an innovative HEMG with an endogenetic nano-scale phase-separated structure is specially designed to maintain a fully glassy state throughout the nanoporous construction procedure. Consequently, an amorphous/crystalline heterostructure (ACH)—nanocrystal flakes embedded in amorphous ligaments—is intentionally constructed, which exhibits significant lattice distortion at amorphous/crystalline interfaces, resulting in high density of active sites. The ACH facilitates intermediate adsorption by promoting directional charge transfer between amorphous and crystalline phases and improves product desorption through downshifting the d-band center. This results in remarkable electrolysis performance, requiring only a 1.53 V potential to achieve a current density of 10 mA cm-2 for overall water-splitting in an alkaline electrolyte, surpassing that of commercial Pt/C || IrO2 catalysts of 1.62 V. This research pioneers strategies to refine the composition, atomic structure, and electron characteristics of HEMG, unlocking new functional applications.

     

/

返回文章
返回