• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

Vacancy-engineered LiMn2O4 embedded in dual-heteroatom-doped carbon via metal-organic framework-mediated synthesis towards longevous lithium ion battery

Vacancy-engineered LiMn2O4 embedded in dual-heteroatom-doped carbon via metal-organic framework-mediated synthesis towards longevous lithium ion battery

  • 摘要: Spinel LiMn2O4 (LMO) is deemed to be a promising cathode material for commercial lithium-ion batteries (LIBs) in prospect of its cost-effectiveness, nontoxicity, fabulous rate capability, and high energy density. Nevertheless, the LMO is inevitably confronted with sluggish diffusion kinetics and drastic capacity degradation triggered by multiple issues, including Jahn–Teller distortion, Mn dissolution, and structural attenuation. Thereinto, a metal-organic framework (MOF) chemistry engineering for hierarchical micro-/nano-structural F, O-dual-doped carbon embedded oxygen vacancy enriched LiMn2O4 cathode (OV-LMO@FOC) is proposed for longevous LIBs. Bestowed by experimental and theoretical implementations, systematic investigations of OV-LMO@FOC endow that the meticulous integration of F, O-dual-doped carbon and oxygen vacancy in LMO-based cathode reconfigures the electronic structure, boosts electronic conductivity, expedites diffusion capability, facilitates energetically preferable Li+ adsorption, and suppresses Mn dissolution in the electrolyte, consequently achieving fabulous long-term cycling stability. As expected, the OV-LMO@FOC behaves with compelling electrochemical performance with prosperous reversible capacity (130.2 mAh g-1 at 0.2 C upon 200 cycles), exceptional rate capacity (93.7 mAh g-1 even at 20 C), and pronounced long-term cyclability (112.5 mAh g-1 after 1200 cycles with 77.6% capacity retention at 1 C). Even at the ultrahigh current density of 5 C, the OV-LMO@FOC bears a brilliant capacity of 96.9 mAh g-1 upon 1000 cycles with an extraordinary capacity retention of 90.7%, and maintains a discharge capacity of 70.9 mAh g-1 upon 4000 cycles. This work envisions the MOF-chemistry in surface modification and electronic modulation engineering of high-performance cathode materials towards industrialization in automotive market.

     

    Abstract: Spinel LiMn2O4 (LMO) is deemed to be a promising cathode material for commercial lithium-ion batteries (LIBs) in prospect of its cost-effectiveness, nontoxicity, fabulous rate capability, and high energy density. Nevertheless, the LMO is inevitably confronted with sluggish diffusion kinetics and drastic capacity degradation triggered by multiple issues, including Jahn–Teller distortion, Mn dissolution, and structural attenuation. Thereinto, a metal-organic framework (MOF) chemistry engineering for hierarchical micro-/nano-structural F, O-dual-doped carbon embedded oxygen vacancy enriched LiMn2O4 cathode (OV-LMO@FOC) is proposed for longevous LIBs. Bestowed by experimental and theoretical implementations, systematic investigations of OV-LMO@FOC endow that the meticulous integration of F, O-dual-doped carbon and oxygen vacancy in LMO-based cathode reconfigures the electronic structure, boosts electronic conductivity, expedites diffusion capability, facilitates energetically preferable Li+ adsorption, and suppresses Mn dissolution in the electrolyte, consequently achieving fabulous long-term cycling stability. As expected, the OV-LMO@FOC behaves with compelling electrochemical performance with prosperous reversible capacity (130.2 mAh g-1 at 0.2 C upon 200 cycles), exceptional rate capacity (93.7 mAh g-1 even at 20 C), and pronounced long-term cyclability (112.5 mAh g-1 after 1200 cycles with 77.6% capacity retention at 1 C). Even at the ultrahigh current density of 5 C, the OV-LMO@FOC bears a brilliant capacity of 96.9 mAh g-1 upon 1000 cycles with an extraordinary capacity retention of 90.7%, and maintains a discharge capacity of 70.9 mAh g-1 upon 4000 cycles. This work envisions the MOF-chemistry in surface modification and electronic modulation engineering of high-performance cathode materials towards industrialization in automotive market.

     

/

返回文章
返回